27.1图形的相似第二课时教案

合集下载

人教版数学九年级下册27.1图形的相似(教案)

人教版数学九年级下册27.1图形的相似(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与图形相似相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似图形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“图形相似在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-难点三:相似多边形周长比和面积比的计算,学生需要理解比例因子在计算过程中的作用;
-难点四:将相似知识应用于解决综合性问题,如涉及几何图形的面积计算、实际情境的比例尺应用等。
举例:针对难点二,教师可以通过具体的图形示例,演示在不同情况下如何选择合适的相似判定定理。例如,当已知两个多边形的两个角分别相等时,引导学生运用AA相似定理;当已知两个多边形的一对对应角相等且对应边成比例时,引导学生运用SAS相似定理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个物体形状非常相似的情况?”比如,放大镜下的图形与原图形相似。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形相似的奥秘。
五、教学反思
在今天的课程中,我们探讨了图形的相似这一章节。我发现,对于相似图形的定义和性质,大多数学生能够较快地理解和接受。通过具体的案例和实验操作,他们能够直观地感受到相似图形在实际中的应用。然而,我也注意到在相似判定方法的应用上,部分学生还存在一些困惑。
比如,在讲解AA相似定理、SAS相似定理和SSS相似定理时,有的学生对于何时使用这些定理判断相似多边形感到迷茫。为了帮助学生克服这个难点,我采用了较多的图形示例,并引导他们通过观察和比较来找出相似的关键特征。在接下来的教学中,我考虑再增加一些针对性的练习,让学生在实际操作中更好地掌握这些判定方法。

人教版九年级数学下册《图形的相似》教学设计(第2课时)

人教版九年级数学下册《图形的相似》教学设计(第2课时)

《图形的相似》教学设计(第2课时)【教学目标】1.掌握相似三角形(多边形)对应角相等、对应边的比相等.2.能简单判断三角形或多边形是否相似.3.能运用相似三角形(多边形)对应角相等、对应边的比等于相似比解决简单的问题.4.经历探索相似三角形(多边形)性质特征的过程,发展学生的探究意识、合作交流以及归纳表达的能力.【教学重点】相似三角形(多边形)对应角相等、对应边的比相等的探索体验及简单应用.【教学难点】灵活运用相似三角形(多边形)的性质解决实际问题.【学情思考】本节教材内容简单,但思维由感性向理性升华.学生最初的理解离不开教师的引导,体验探究离不开模仿,而后独立,最后形成严谨的推理能力.九年级的学生已有一定的推理基础,教案设计环节中“探索特殊的到一般的相似三角形(多边形)性质的过程”,由易到难,扩展了知识,培养了学生的思维.为了突破本节课的难点,课堂教学语言要精练规范,强调图形中“角”、“边”、“对应”的相似三要素,帮助学生抓牢知识的本质.教学过程设计(一)激趣导入1.读一读据史料记载,古希腊数学家、天文学家泰勒斯曾测量出金字塔的高度.在某一个有阳光的时刻,金字塔的影子投射在平地上,泰勒斯在影子的顶端直立一根木杆(如图1),他测量出木杆的长度和影长,又测量出金字塔的影长,通过计算,就求出了金字塔的高度.图1 2.想一想泰勒斯这样做有什么道理呢?(其实,它是利用了数学中相似三角形的性质:对应边成比例.)导入:那么相似三角形有哪些性质特征呢?现在让我们一起来探其究竟吧.教师板书课题.【设计意图】利用多媒体展示情境,一方面激发学生学习兴趣,另一方面体现数学与生活的密切联系.(二)探究新知活动1 解决教材上的问题多媒体给出.解决这个活动从以下几个环节展开(教师引导解决第一小问,学生思考完成第二小问):读一读读题,明白已知条件和要解决的问题.听一听 引导、分析1.等边三角形边、角的特殊性;2.左右两个等边三角形的对应关系.(教师板书规范写出)悟一悟 通过上一小问的解决,学生独立思考第二个问题,难度不大. 教师适时强调围绕边、角及对应来思考.说一说 鼓励学生进行结果的归纳表达.板书:1.大小不同的正多边形相似.2.相似的正多边形对应角相等、对应边成比例.活动2 一般的相似三角形(多边形)对应角会相等、对应边会成比例吗?多媒体给出教材上的探究问题此活动围绕以下几个环节展开:猜一猜 说出想法并询问有何理由,如何判断猜想的正确性.量一量 动手操测量验证.说一说 学生总结归纳:相似多边形对应角相等,对应边的比相等;反过来,如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似.互动点评 学生就独立思考及交流之后仍然存在的问题提出来,由能解答的同学予以解答,最后针对学生共同的困惑,教师给予详细的讲解,最后引导归纳结果.教师板书并补充相似比的概念.【设计意图】连贯的两个活动一是强化在处理有关相似问题时围绕对应角、对应边来思考;二是通过体验、感触得到相似多边形的特征,加深了对特征的理解,避免了机械的记忆;三是培养学生思考问题从特殊到一般的方法;四是培养学生归纳总结和表达能力.(三)示例分析教材例题(四)巩固新知1.教材练习;2.两个三角形一定相似吗?两个等腰三角形呢?两个直角三角形呢?3.两个多边形如果仅对应角相等,它们相似吗?如果仅对应边的比相等呢?若不相似,请举出反例.【设计意图】1.进一步巩固新知;2.让学生自己画图,然后结合相似图形应满足的条件判断,强化相似图形对应边、角的特征.(五)拓展提高问题:钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,如图所示,图纸上的△ABC 表示该零件的横断面△A′B′C′,CD 和C′D′分别是它们的高. 请回答:(1)B A AB '',C B BC '',C A AC''各等于多少?(2)△ABC 与△A′B′C′相似吗?如果相似,请说明理由,并指出它们的相似比.(3)请你在图中再找出一对相似三角形.(4)D C CD''等于多少?你是怎么想的?与同伴交流.【设计意图】1.进一步培养建立几何模型的能力;2.扩展相似三角形对应高的比等于相似比的知识.(六)作业布置教材习题.。

人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》一. 教材分析《图形的相似》是人教版数学九年级下册第27.1节的内容,本节主要让学生理解相似图形的概念,掌握相似图形的性质,以及学会运用相似图形解决实际问题。

教材通过生动的实例和丰富的练习,引导学生探索和发现相似图形的性质,培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念和性质,如点、线、面的关系,角度、三角形的性质等。

但是,对于相似图形的概念和性质,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对于解决实际问题,尤其是涉及到相似图形的实际问题,感到困难,需要教师的引导和帮助。

三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。

2.学会运用相似图形解决实际问题。

3.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.相似图形的概念和性质。

2.运用相似图形解决实际问题。

五. 教学方法1.实例教学:通过生动的实例,引导学生观察和发现相似图形的性质。

2.问题驱动:提出实际问题,引导学生运用相似图形进行解决。

3.分组讨论:学生分组讨论,培养学生的合作能力和解决问题的能力。

4.练习巩固:通过丰富的练习,巩固学生对相似图形的理解和掌握。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示实例。

2.练习题:准备相关的练习题,巩固学生的学习效果。

3.实物模型:准备一些实物模型,如相似的三角形、矩形等,帮助学生直观地理解相似图形。

七. 教学过程1.导入(5分钟)利用实物模型或图片,引导学生观察和比较相似的图形,引发学生对相似图形的兴趣。

提问:你们发现这些图形有什么共同的特点?学生回答:形状相同,但大小不同。

教师总结:这就是我们今天要学习的相似图形。

2.呈现(10分钟)展示教学课件,讲解相似图形的概念和性质。

通过实例和图形的变换,引导学生发现相似图形的性质,如对应边的比例关系、对应角的相等关系等。

图形的相似教案 2

图形的相似教案 2

27.1图形的相似(一)教学目标:知识目标:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.能力目标:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题.情感目标:在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质.教学重点:认识图形的相似.教学难点:理解相似图形概念.一.创设情境活动1观察图片,体会相似图形同学们,请观察课本几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗? (课本图27.1-1)( 课本图27.1-2)师生活动: 教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.得到相似图形的概念.教师活动:什么是相似图形?学生活动:共同交流,得到相似图形的概念.学生归纳总结:(板书)形状相同的图形叫做相似图形在活动中,教师应重点关注:学生用数学的语言归纳相似图形的概念;活动2思考:人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?学生活动:学生观察思考,小组讨论回答;二.通过练习巩固相似图形的概念活动3练习问题:1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形(1)或(2)相似的?(课后练习)教师活动:教师出示图片,提出问题;学生活动:学生看书观察,小组讨论后回答问题.教师活动:在活动中,教师应重点关注:在练习中检验学生对相似图形的几何直觉.三. 小结巩固活动3(1)谈谈本节课你有哪些收获.(2)课外作业1、下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.27.1 图形的相似(二)一、教学目标1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.二、重点、难点1.重点:相似多边形的主要特征与识别. 2.难点:运用相似多边形的特征进行相关的计算. 三、课堂引入1. 如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形. 2.问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等. 3.【结论】:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似. (2)相似比:相似多边形对应边的比称为相似比. 问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形. 四、例题讲解例1(补充)(选择题)下列说法正确的是( ) A .所有的平行四边形都相似 B .所有的矩形都相似 C .所有的菱形都相似 D .所有的正方形都相似分析:A 中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A 错;B 中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B 错;C 中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C 也错;D 中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D 说法正确,因此此题应选D .例2(教材P39例题).分析:求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式.例3(补充)已知四边形ABCD 与四边形A 1B 1C 1D 1相似,且A 1B 1:B 1C 1:C 1D 1:D 1A 1=7:8:11:14,若四边形ABCD 的周长为40,求四边形ABCD 的各边的长.分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题. 解:∵ 四边形ABCD 与四边形A 1B 1C 1D 1相似, ∴ AB:BC:CD:DA= A 1B 1:B 1C 1:C 1D 1:D 1A 1. ∵ A 1B 1:B 1C 1:C 1D 1:D 1A 1=7:8:11:14, ∴ AB:BC:CD:DA= 7:8:11:14. 设AB=7m ,则BC=8m ,CD=11m ,DA=14m . ∵ 四边形ABCD 的周长为40, ∴ 7m+8m+11m+14m=40. ∴ m=1.∴ AB=7,则BC=8,CD=11,DA=14. 五、课堂练习1.教材P40练习2、3. 2.教材P41习题4.3.(选择题)△ABC 与△DEF 相似,且相似比是32,则△DEF 与△ABC 与的相似比是( ).A .32 B .23 C .52 D .94六、作业1.教材P41习题3、5、6.2.如图,AB ∥EF ∥CD ,CD=4,AB=9,若梯形CDEF 与梯形EFAB 相似,求EF的长.※3.如图,一个矩形ABCD 的长AD= a cm ,宽AB= b cm ,E 、F 分别是AD 、BC 的中点,连接E 、F ,所得新矩形ABFE 与原矩形ABCD 相似,求a:b 的值. (2:1)相似三角形(一)教学目标: 1.知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比; (2)掌握判定三角形相似的预备定理。

27.1图形的相似(二)

27.1图形的相似(二)

27.1 图形的相似(二)一、教学目标1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.二、重点、难点1.重点:相似多边形的主要特征与识别.2.难点:运用相似多边形的特征进行相关的计算.三、课堂引入1.如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.2.问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.3.【结论】:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似比:相似多边形对应边的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.四、例题讲解例1(补充)(选择题)下列说法正确的是()A.所有的平行四边形都相似 B.所有的矩形都相似C.所有的菱形都相似 D.所有的正方形都相似分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D.例2(教材P39例题).分析:求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式.解:略例3(补充)已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD 的周长为40,求四边形ABCD的各边的长.分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题.解:∵四边形ABCD与四边形A1B1C1D1相似,∴ AB:BC:CD:DA= A 1B 1:B 1C 1:C 1D 1:D 1A 1.∵ A 1B 1:B 1C 1:C 1D 1:D 1A 1=7:8:11:14,∴ AB:BC:CD:DA= 7:8:11:14.设AB=7m ,则BC=8m ,CD=11m ,DA=14m .∵ 四边形ABCD 的周长为40,∴ 7m+8m+11m+14m=40.∴ m=1.∴ AB=7,则BC=8,CD=11,DA=14.五、课堂练习1.教材P40练习2、3.2.教材P41习题4.3.(选择题)△ABC 与△DEF 相似,且相似比是32,则△DEF 与△ABC 与的相似比是( ). A .32B .23C .52D .944.(选择题)下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A .3个B .4个C .5个D .6个5.已知四边形ABCD 和四边形A 1B 1C 1D 1相似,四边形ABCD 的最长边和最短边的长分别是10cm 和4cm ,如果四边形A 1B 1C 1D 1的最短边的长是6cm ,那么四边形A 1B 1C 1D 1中最长的边长是多少?六、作业1. 教材P41习题3、5、6.2.如图,AB ∥EF ∥CD ,CD=4,AB=9,若梯形CDEF 与梯形EFAB 相似,求EF 的长.※3.如图,一个矩形ABCD 的长AD= a cm ,宽AB= b cm ,E 、F 分别是AD 、BC 的中点,连接E 、F ,所得新矩形ABFE 与原矩形ABCD 相似,求a:b 的值. (2:1)。

人教版九年级数学下教案 图形的相似 第二课时

人教版九年级数学下教案 图形的相似 第二课时

27.1 图形的相似第2课时教学目标【知识与技能】1.掌握相似多边形的性质,会利用性质判断相似多边形.2.了解相似比和成比例线段的概念.【过程与方法】经历观察、思考、探索、猜想等活动,提高推理能力.【情感态度】在探索相似多边形的过程中,进一步发展归纳、类比能力,培养学生良好的情感态度. 教学重难点【教学重点】掌握相似多边形性质及判别方法,能用性质解决具体问题.【教学难点】判别两个多边形相似.课前准备无教学过程一、情境导入,初步认识问题 图中的两个大小不同的四边形ABCD 和四边形A 1B 1C 1D 1中,∠A=∠A 1,∠B=∠B 1,∠C=∠C 1,∠D=∠D 1,11111111A D DA D C CD C B BC B A AB ===,因此四边形ABCD 与四边形A 1B 1C 1D 1相似.【教学说明】四边形是学生非常熟知的图形,很容易得出它们相似的结论.让学生通过四边形相似,初步体验相似图形性质.二、思考探究,获取新知问题1 如图,四边形ABCD 与EFGH 相似,求角α,β的大小和EH 的长度x.【教学说明】通过类比,学生能得到两个四边形的对应角相等,对应边的比相等的结论.为进一步探索相似多边形的性质做好铺垫.在这一过程中,教师可适时给出比例线段定义,对其定义,我们应注意:①判别所给出的四条线段是否成比例线段,可先将这四条线段按长、短顺序排列后,再按顺序将两短线段之比与两较长线段之比进行比较即可得知它们是否是成比例线段;②如果知识成比例线段中三条线段的长度,可求出第四条线段之长.这些知识应让学生了解,而后回过来与学生一道得出两个多边形相似的性质:相似的多边形对应角相等,对应边的比相等.三、运用新知,深化理解1.在比例尺为1:1000000的地图上,甲、乙两地的距离为10cm,求两地的实际距离.2.如图所示的两个五边形相似,求a、b、c、d的值.【教学说明】可让学生独立完成,通过此题可加深学生对比例线段的理解.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.四、师生互动,课堂小结1.比例线段的定义如何?如何判别四条线段是成比例线段的?2.相似多边形的性质与判定方法有何区别?3.这节课你的收获有哪些?还有哪些疑问?【教学说明】设置三个问题,师生以谈话交流形式进行,共同总结,及时反思.课后作业1.布置作业:从教材P27-28习题27.1选取.2.完成创优作业中本课时的“课时作业”部分教学反思本课时可以以探究的方式引入,使学生通过操作、观察、猜想、探究、交流、发现等学习方式掌握多边形的性质及判别方法,并且能够运用这些知识解决具体问题.。

人教版九年级数学下册27.1图形的相似优秀教学案例

人教版九年级数学下册27.1图形的相似优秀教学案例
三、教学策略
(一)情景创设
1.利用生活实例,创设有趣、富有挑战性的教学情境,激发学生的学习兴趣;
2.通过多媒体手段,展示相似图形的变化过程,增强学生的直观感受;
3.设计具有情境性的练习题,让学生在解决问题中体会数学与生活的紧密联系。
在教学过程中,我将注重情景创设,让学生在真实的情境中感受相似图形的意义。例如,通过展示建筑设计图纸、交通工具的图纸等实例,让学生认识到相似图形在实际生活中的应用,从而激发学生的学习兴趣。同时,利用多媒体教学手段,形象直观地展示相似图形的变化过程,帮助学生建立直观的认识,为后续的学习打下基础。
(二)过程与方法
1.通过观察、分析生活中的实例,引导学生发现相似图形的特征,培养学生从实际问题中抽象出数学模型的能力;
2.利用多媒体教学手段,形象直观地展示相似图形的变化过程,提高学生的空间想象能力和抽象思维能力;
3.设计具有梯度的练习题,让学生在实践中巩固相似图形的知识,提高解决问题的能力。
在教学过程中,我将采用情境教学法、启发式教学法和合作学习法等多种教学方法,引导学生主动参与课堂讨论,培养学生独立思考和团队协作的能力。同时,运用多媒体教学手段,为学生提供丰富的视觉、听觉信息,激发学生的学习兴趣,提高学生的学习效果。
5.多元化的评价方式:在教学过程中,注重学生的反思与评价。通过学生之间的互相评价、自我评价等,培养学生的自我监控和评价能力。同时,采用多元化的评价方式,关注学生的综合素质,进行全面评价。这种评价方式能够充分调动学生的积极性和主动性,促进学生的全面发展。
3.问题驱动的教学方法:通过设计具有启发性的问题,引导学生独立思考,发现相似图形的特征。同时,通过问题驱动,让学生在探究中掌握相似图形的性质和判定方法。这种教学方法能够培养学生的自主学习能力,提高学生的问题解决能力。

人教版数学九年级下册教案:27.1 图形的相似

人教版数学九年级下册教案:27.1 图形的相似

第27章相似27.1 图形的相似一、教学目标1.核心素养通过图形相似的学习,初步形成基本的几何直观、运算能力、推理能力.2.学习目标(1)理解并掌握两个图形相似的概念.(2)了解成比例线段的概念,会确定线段的比.(3)了解比例尺的概念.(4)记住相似多边形的性质,会辨别两个多边形是否相似,并会运用其性质进行相关的计算.3.学习重点相似图形的概念和与成比例线段的概念;相似多边形的性质与识别.4.学习难点线段成比例的意义;运用相似多边形的性质进行相关的计算.二、教学设计(一)课前设计1.预习任务任务1.阅读教材P24-25,思考:什么是相似图形?你能正确判断两个图形是否相似吗?任务2.阅读教材P26—P28,思考:什么是相似多边形?什么是相似比?相似多边形有怎样的性质?什么是成比例线段?2.预习自测(1)下列各组图形相似的是()答案:B解析:略(2)下列各组数中成比例的是()A. 2,3,4,1B. 3,5,13,9C. 6,8,9,10D. 10,20,20,40答案:D解析:略(3)如图,四边形EFGH 相似于四边形ABCD,则∠A=______度,∠C=______度,∠H=_____度,x=_____,y=_____,z=_____。

答案:70 120 60 40 45 75解析:∵四边形ABCD 和EFGH 相似,所以它们的对应角相等, 由此可得∠A=∠E=70°,∠C=∠G=120°,∠H=∠D=60°.∵四边形ABCD 和EFGH 相似,所以它们的对应边成比例, 由此可得05203018010===z y x , 解得x=40,y=45,z=75. (二)课堂设计1.知识回顾1.全等形的概念:能够完全重合的两个图形叫做全等形。

2.全等多边形的性质:全等多边形的对应角相等,对应边相等。

3.比的意义:两个数相除又叫做两个数的比。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、拓展延伸 1.总结提升 本节课我们都学习了哪些内容? 1、相似多边形的定义 2、相似比的定义: 3、相似多边形的性质: 4、相似多边形的判定: 5、比例线段: (2).在学习的过程中,你有怎样的收获。 2. 作业布置 (1)课本第 27 页,3、4 题; (2)阅读教学 29-31 页 27.1 图形的相似 1、相似多边形的定义 例1 2、相似比的定义: 3、相似多边形的性质: 4、相似多边形的判定: 例2 5、比例线段: 成功之处:
新知探究活动 1:探C1 是由正△ABC 放大后得到的,观察这两 个图形,它们的对应角有什么关系?对应边又有什么关系呢? (2) 、如图中的六边形 A1B1C1D1E1F1 是由正六边形行 ABCDEF 放 大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又 有什么关系呢?
1、学生先观察和计算然后得 出结论。 2、学生交流讨论对应角和对 应边的关系。 3、学生小组交流,一名同学展 示。


结论: 相似正多边形各对应角相等、各对应边的比相等. (3) 、这个结论对于一般的相似多边形是否成立呢? 设计意图:通过特殊图形的认识,有利于本节重点知识的学习。相 似图形中先从特殊到一般,所以选择放手让学生自己探究、小组一 起探究的方式去解决。

源 县 集 体 备 课 课 时 教 案
主备人所在学校及姓名 课题 教学 目标 27.1 图形的相似 知识与能力
别斯托别中学 周建霞
审核人所在学校及姓名 课型 新 授 第 2 课时 课
过程与方法
1.了解比例线段的定义. 2.掌握相似多边形的主要特征,即:相似多边形的对应角相等,对应边 的比相等. 3.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质 进行相关的计算. 经历相似图形的认识过程,观察相似图形的关系,得到相似多边形对应 边成比例,对应角相等的性质。
2

源 县 集 体 备 课 课 时 教 案
二、活动 3:成比例线段
问题:如果把老师手中的粉笔与铅笔,分别看成是两条线段 AB 和 CD,那么 这两条线段的长度比是多少? 归纳:1、两条线段的比,就是两条线段长度的比.
2、对于四条线段 a,b,c,d,如果其中两条线段的比(即它 们长度的比)与另两条线段的比相等,如
a c b d
即 ad=bc) ,我们就
说这四条线段是成比例线段,简称比例线段。 注意:1)度量单位要相同; (2)比例线段具有顺序性; (3)比值与度量单位无关。 练习: (1)以下各组是四条线段的长,成比例线段的是( ) A。 4,8,3,5 B. 4,8,3,6 C. 3,4,5,6 D. 8,4,1,3 (2)已知线段 a=2cm,b=3cm,c=6cm,且 a、b、c、d 成比例, 则 d= cm;若 a、b、d、c 成比例,则 d= cm。 例 2: 在比例尺为 1:10 000 000 的地图上,量得甲、乙两地的 距离是 30cm,求两地的实际距离 问题:怎样理解,比例尺为 1:10 000 000 ?: 四、练测促学 1、如图,两个等边三角形、两个矩形、 两个正方形、两个菱形各成一组,每组中 的一个图形在另一个图形的内部, 对应边 平行,且对应边之间的距离都相等,那么 两个图形不相似的一组是( ) 2、课本 27 页练习题 3 3、在两个相似的五边形中,一个各边长分别为 1,2,3,4,5,另 一个最大边为 8,则后一个五边形的周长是( ) A、27 B、24 C、21 D、18 4、
板 书 设 计
教 学 反 思 改进措施: 不足之处:
4
※5.如图,一个矩形 ABCD 的长 AD= a cm, 宽 AB= b cm,E、F 分别是 AD、BC 的中点, 连接 E、 F, 所得新矩形 ABFE 与原矩形 ABCD 相似,求 a:b 的值. ( 2 :1)
设计意图:检查学生对本节课知识的掌握情况,以便查缺补漏
3

源 县 集 体 备 课 课 时 教 案
1

源 县 集 体 备 课 课 时 教 案
三、导学施教 (一)新知探究活动 2:探索一般图形的相似 问题: (1)两个相似三角形的对应角和对应边的特点是什么? (2)两个相似四边形的对应角和对应边的特点是什么?
1、学生独立完成并纠错。 2、多名学生直接讲解小组派代表展示小组内部答案并讲解原因, 进行全班内的交流。 3、得到相似多边形的相关性质。 小结; (1)相似多边形的特征:相似多边形的对应角相等,对应 边的比相等. 反之,如果两个多边形的对应角相等,对应边的比相等, 那么这两个多边形相似. (2)相似比:相似多边形对应边的比称为相似比. 问题:相似比为 1 时,相似的两个图形有什么关系? 结论:相似比为 1 时,相似的两个图形全等,因此全等形 是一种特殊的相似形. (3)相似多边形的定义: 两个边数相同的多边形,如果它们的对应角分别相等; 对应边成比例,那么这两个多边形叫做相似多边形。 (4)相似多边形的性质: 相似多边形对应角相等,对应边成比例。 (对应边的比相等) . (5)相似多边形的判定方法: 如果两个多边形满足对应角相等,对应边的比相等, 那么这两个多边形相 似. (二)相似多边形性质的运用: 1、例:如图,四边形 ABCD 和 EFGH 相似,求角α ,β 的大小 和 EH 的长度 x 设计意图:检查学生对所学新知识的掌握情况,以便查缺补漏 (三)相似多边形判定的运用: 问题 1:如果两个多边形仅有对应角相等,它们相似吗?如果仅有 对应边相等呢?若不相似, 请举出反例。 (小组交流, 课件展示成果) 问题 2:我是长 3m,宽 1.5m 的矩形黑板.镶在我外围的木质边框宽 10cm ,边框的内外边缘所成的矩形相似吗?为什么?
重难 点 教
情感态度与价值观 培通过学生从图形相似的角度识别现实生活中存在的规律,培养合作交 流意识 教学重点 相似多边形的性质. 教学难点 法 学 运用相似多边形的特征进行相关的计算. 法 讨论法、练习法 教 学 设 计 教具学具准备 课件、坐标纸、三角板 二次备课
一、查学诊断: 问题:上节课我们介绍了什么样的图形是相似图形? 引入:节课我们将介绍两个相似图形都有哪些主要特征. 明确本节课学习目标:本节课我们将学习理解比例线段的概念;会 根据相似多边形的特征识别两个多边形是否相似,并会运用其性质 进行有关的计算. (板书本节课题:27.1 图形的相似) 二、示标导入
相关文档
最新文档