电磁感应
什么是电磁感应

什么是电磁感应电磁感应是一种基本的物理现象,是指当导体处于磁场中,或者导体相对于磁场有相对运动时,会产生感应电流或感应电动势。
这一现象的发现和研究对于电磁学和电动力学的发展具有重要意义,为电力和电子技术的应用提供了基础。
1. 法拉第电磁感应定律在1831年,英国科学家迈克尔·法拉第发现了电磁感应现象,并总结出了法拉第电磁感应定律。
该定律的主要内容是:当导体线圈中的磁通量发生变化时,线圈中会产生感应电动势。
感应电动势的大小与磁通量变化率成正比,方向则遵循左手定则。
这一定律为后续的电磁学研究奠定了基础。
2. 电磁感应的应用电磁感应现象在现代科技和生活中有广泛的应用。
2.1 发电机发电机是利用电磁感应原理将机械能转化为电能的装置。
它通过转动的磁场感应线圈中的导体,产生感应电动势,从而产生了电流。
这种电流可以用于供电,满足人们对电力的需求。
2.2 变压器变压器是利用电磁感应现象实现电能的升降压的装置。
当变压器的一侧线圈接通交流电时,通过变压器的铁芯产生的交变磁场,感应到了另一侧的线圈,从而在其上产生了感应电动势。
通过变压器的设计,可以实现对电能的有效传输和调节。
2.3 感应炉感应炉是利用电磁感应现象将电能转化为热能的装置。
感应炉将交流电流通过线圈产生交变磁场,感应到了内部的導体,激发了導体内部的涡流,从而产生了高温。
这一技术在工业生产中被广泛应用,如金属熔炼和表面淬火等。
2.4 增强现实技术增强现实技术是将虚拟信息与现实场景相结合的技术。
感应装置在增强现实设备中起到关键作用,通过感应和测量场景中的电磁信号,根据设定的算法计算出物体的位置、方向等信息,并实时展示在使用者的视野中。
2.5 传感器传感器是一种能够感知和测量特定环境参数的装置。
许多传感器利用电磁感应原理工作,如温度传感器、光敏传感器和磁场传感器等。
总结电磁感应是指导体处于磁场中或与磁场有相对运动时,产生感应电流或感应电动势的现象。
法拉第电磁感应定律为这一现象提供了科学解释,并为电磁学的发展奠定了基础。
什么是电磁感应电磁感应的原理是什么

什么是电磁感应电磁感应的原理是什么电磁感应是在磁场的作用下,有导体中的电子受到力的作用而产生电流的现象。
它是电磁学的重要概念之一,也是许多电器和电机的工作原理。
本文将详细介绍电磁感应的原理和相关概念。
一、电磁感应的基本概念电磁感应是法拉第发现的重要实验现象。
当一个导体在磁场中运动或者磁场的大小发生变化时,导体内部就会产生感应电流。
这个被感应出来的电流称为感应电流,而产生感应电流所依靠的原因是电磁感应。
二、法拉第电磁感应定律法拉第电磁感应定律是揭示电磁感应规律的基本定律。
它的表述如下:当一个导体回路与磁场相互运动时,所产生的感应电动势的大小正比于导体的运动速率和磁场的磁感应强度,与导体回路的形状和位置有关。
三、电磁感应的原理电磁感应的原理基于磁场的变化和导体中的电子受力。
当导体在磁场中运动时,导体内的自由电子也会随之运动。
在磁场的影响下,这些电子将受到洛伦兹力的作用。
洛伦兹力的大小与电子速度、磁感应强度和磁场与电子运动方向的夹角有关。
如果导体形成一个回路,那么导体内部的电子将发生聚集和运动,形成感应电流。
四、电磁感应的应用电磁感应的原理在许多实际应用中得以运用。
最典型的应用就是发电机和变压器。
发电机通过转动的磁场和导体线圈的相对运动,产生感应电流,将机械能转换为电能。
而变压器则利用电磁感应的原理,将交流电的电压升高或降低。
此外,电磁感应还广泛应用于感应炉、感应加热、感应电动机等领域。
五、电磁感应的实例为了更加直观地理解电磁感应的原理,这里列举几个具体的实例。
例如,在自行车后轮上装有一个磁铁和线圈,当自行车运动时,磁铁和线圈的相对运动会产生感应电流,从而驱动一个小灯泡点亮。
此外,感应炉中的底部有一个强磁场,当放入一个铁锅时,锅底感应出的感应电流将产生浑身发烫的效果。
六、总结电磁感应是电磁学中重要的概念,它揭示了电流和磁场之间的密切联系。
法拉第电磁感应定律提供了电磁感应规律的基本原理,而导体中的自由电子受力则是电磁感应现象的基础。
电磁感应与电磁感应现象

电磁感应与电磁感应现象电磁感应是物理学中的重要概念之一,描述了磁场和电场之间相互作用的现象。
在本文中,我们将探讨电磁感应的基本原理、数学描述以及常见的电磁感应现象。
一、电磁感应的基本原理电磁感应是指通过磁场的变化来引起电场的变化,或者通过电场的变化来引起磁场的变化。
这一现象最早由迈克尔·法拉第在19世纪中期发现,并被归纳为法拉第电磁感应定律。
法拉第电磁感应定律表达了电磁感应的数学关系,即在一根导线中产生的感应电动势与导线所受磁通量的变化率成正比。
数学上可以表示为以下公式:ε = -dΦB/dt其中,ε代表感应电动势,ΦB代表磁通量,t代表时间。
负号表示感应电动势的方向与磁通量的变化方向相反。
二、电磁感应现象1. 磁感应电流:当导线与磁场相互垂直运动时,磁场会通过导线并产生感应电流。
这一现象被称为磁感应电流,也是电磁感应的最基本形式之一。
根据法拉第电磁感应定律,感应电流的大小与导线所受磁通量的变化率成正比。
2. 电磁感应现象:当导体中的电流发生变化时,会产生磁场。
如果附近存在其他导体,这个磁场的变化将导致其他导体中产生感应电动势,并引起电流的产生。
这个过程被称为电磁感应现象。
3. 互感现象:当两个或多个线圈互相靠近时,它们之间的磁场相互影响,从而产生互感现象。
这一现象在电力变压器和电动机等电气设备中得以应用。
三、电磁感应的应用电磁感应在日常生活中有许多应用。
以下是一些常见的例子:1. 发电机:发电机通过转动磁场与线圈之间的相互作用,将机械能转化为电能。
这种电能的产生基于电磁感应的原理。
2. 变压器:变压器利用电磁感应的互感现象来改变电压。
通过改变线圈的匝数比例,可以使电压升高或降低。
3. 感应炉:感应炉通过高频交变电磁感应产生高温,用于金属熔化和加热。
4. 摇杆火柴盒发电机:这是一个简单的实验装置,通过将导线沿火柴盒摇杆绑在磁铁上,摇动杆即可产生感应电流,点燃火柴。
结语电磁感应是电磁学的重要概念之一,描述了磁场和电场之间的相互作用。
什么是电磁感应电磁感应的现象有哪些

什么是电磁感应电磁感应的现象有哪些电磁感应是指当一个导体或线圈处于变化的磁场中时,会在导体中产生感应电流或感应电动势的现象。
这个现象主要由法拉第电磁感应定律描述。
本文将介绍电磁感应的基本原理和相关的现象。
一、电磁感应的基本原理电磁感应的基本原理是法拉第电磁感应定律,即磁通量的变化率与感应电动势成正比。
具体表达为:ε = - dΦ/dt式中,ε表示感应电动势,Φ表示磁通量,t表示时间,d/dt表示对时间的导数。
根据电磁感应的基本原理,我们可以进一步分析电磁感应的现象。
二、电磁感应的现象1. 电磁感应产生的感应电流当一个导体或线圈通过一个变化的磁场时,会在导体中产生感应电流。
这是因为磁场的变化导致磁通量的变化,进而产生感应电动势,从而驱动电子在导体中流动形成电流。
这种现象常见于变压器、感应电动机等电器设备中。
2. 电磁感应产生的感应电动势与感应电流类似,变化的磁场也会在导体中产生感应电动势。
感应电动势的存在导致电子在导体中发生偏移,从而产生电场效应。
这种现象常见于发电机、电磁铁等设备中。
3. 电磁感应的自感现象自感是指导体自身产生的感应电动势。
当导体中的电流发生变化时,会产生变化的磁场,进而导致导体中产生感应电动势。
这种现象常见于继电器、电感等设备中。
4. 电磁感应的互感现象互感是指不同的导体之间由于共享磁场而产生的互相感应的现象。
当一个导体中的电流发生变化时,会产生变化的磁场,进而影响到附近的另一个导体,使其中产生感应电动势。
这种现象常见于变压器、互感器等设备中。
需要注意的是,电磁感应的现象主要是在变化的磁场中产生的。
当磁场稳定时,不会产生感应电流或感应电动势。
结论电磁感应是指导体或线圈在变化的磁场中产生感应电流或感应电动势的现象。
通过法拉第电磁感应定律,我们可以了解到磁通量的变化率与感应电动势的关系。
电磁感应的现象包括感应电流、感应电动势、自感和互感等。
这些现象在电子设备、电动机等领域中有广泛的应用。
电磁感应(20张ppt)

生成智慧之果
三、感应电流产生的条件应用
2.如图所示,磁场中有一个闭合的弹簧线圈。先把线圈撑开(图甲), 然后放手,让线圈收缩(图乙)。线圈收缩时,其中是否有感应电流? 为什么?
生成智慧之果
三、感应电流产生的条件应用
3、 如图所示,垂直于纸面的匀强磁场局限在虚线框内, 闭合线圈由位置1穿过虚线框运动到位置2。线圈在什么时候 有感应电流?什么时候没有感应电流?为什么?
孙正林 泰州市第三高级中学
开启智慧之门
一、电磁感应的探索历程 1.奥斯特梦圆“电生磁” 1820年,丹麦物理学家奥斯特发现通电导 线周围的小磁针发生偏转,从而发现电流的磁 效应.
开启智慧之门
2.法拉第发现“磁生电” 1831年,英国物理学家法拉第发现
了电磁感应现象.
电源
G
开启智慧之门
奥斯特梦圆 : “电”生“磁” (机遇总是垂青那些有准备的人)
法拉第心系: “磁”生“电” (成功总是属于那些坚持不懈的人)
探究智慧之源
二、探究感应电流产生的条件
实验1:
如何才能在回路中 产生感应电流?
实验操作 表针是否摆动
导体棒左移 是 导体棒右移 是 导体棒不动 否 导体棒上移 否 导体棒下移 否
结论:闭合回路的部分导体在磁场
中切割磁感线
实验2:向线圈中插入磁铁和把磁铁 从线圈中拔出
实验2:向线圈中插入磁铁和把磁铁从线圈中拔出
磁铁的运 指针是
动
否摆动
N极插入线 圈
是
N极停在线 否 圈中
N极从线圈 中抽出
是
磁铁的运 指针是
动
否摆动
S极插入线 圈
是
S极停在线
电磁感应

二、自感现象
1.自感现象 (1)概念:由于导体本身的电流变化而产生的电磁感应现象称为 自感,由于自感而产生的感应电动势叫做自感电动势,其大 小E= ,L为自感系数.
(2)自感系数:L与线圈的大小、形状、圈数以及是否有铁芯等
因素有关,其单位是亨利,符号是 H.
通电和断电自感比较如下表
通电自感 电 路 图 器 材 要 求 断电自感
(3)若
是Φ-t图象上某点切线的斜率.
所求的感应电动势为整个闭合电路的
恒定,则E不变.用E=n
感应电动势,而不是回路中某部分导体的电动势.
(4)磁通量的变化常由B的变化或S的变化两种情况引起. ①当ΔΦ仅由B的变化引起时,E=nS ②当ΔΦ仅由S的变化引起时,E=nB (5)由E=n . .
计算出的是Δt时间内的平均感应电动势.
二者电流大小和方向都相同.一个矩形闭合金属线圈与A、B在同一平面 内,并且ab边保持与通电导线平行,线圈从图中的位置1匀速向左移动, 经过位置2,最后到位置3,其中位置2恰在A、B的正中间,则下面的说 法中正确的是( ) AD
A.在位置2这一时刻,穿过线圈的磁通量为零 B.在位置2这一时刻,穿过线圈的磁通量的变化率为零 C.从位置1到位置3的整个过程中,线圈内感应电流的方向发 生了变化
a
o
d
b O’
c
P167【例】 (2009·广东,18)如图9-2-3(a)所示,一个电阻值为R,匝数为n的圆
形金属线圈与阻值为2R的电阻R1连接成闭合回路.线圈的半径为r1,在线圈中
半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随 时间t变化的关系图线如图9-2-4(b)所示.图线与横、纵轴的截距分别为t0和 B0.导线的电阻不计.求0至t1时间内. (1)通过电阻R1上的电流大小和方向;
电磁感应的概念和电磁感应定律

电磁感应的概念和电磁感应定律电磁感应是指在磁场中变化的磁通量产生电场,从而引发电流的现象。
电磁感应定律则进一步阐述了电磁感应的具体规律。
本文将详细介绍电磁感应的概念和电磁感应定律的应用。
一、电磁感应的概念电磁感应是指当导体运动或者磁场发生变化时,导体中会产生感应电流。
这个现象最早由英国科学家迈克尔·法拉第于1831年发现,并被称为法拉第感应定律。
电磁感应的重要性体现在多方面,比如发电机、变压器等电磁设备的工作原理都基于电磁感应。
二、电磁感应定律电磁感应定律主要包括两个方面,即法拉第电磁感应定律和楞次定律。
1. 法拉第电磁感应定律法拉第电磁感应定律描述了变化的磁场对导体中感应电流的影响。
该定律可以用以下公式来表示:ε = -ΔΦ / Δt其中,ε 表示感应电动势,ΔΦ 表示磁通量的变化量,Δt 表示磁通量变化的时间。
负号表示感应电动势的方向与磁通量的变化方向相反。
根据该定律,当磁通量的变化较大且变化速度较快时,感应电动势也会相应增大。
2. 楞次定律楞次定律是描述感应电流对产生它的磁场的影响。
根据楞次定律,感应电流的方向会使得它所产生的磁场方向发生变化,以阻碍磁场变化的原因。
这可以用下面的公式来表示:ε = -dΦ / dt其中,ε 表示感应电动势,dΦ 表示磁通量的变化率。
负号表示感应电动势的方向与磁通量的变化率相反。
根据楞次定律,感应电流的方向会使得它所产生的磁场方向改变,从而减缓磁场的变化速度。
三、电磁感应的应用电磁感应广泛应用于各个领域,特别是在发电和变压器方面。
1. 发电发电机是利用电磁感应产生电能的装置。
当发电机中的转子旋转时,磁场发生变化,进而在线圈中产生感应电动势。
这个感应电动势可以通过导线外部的电路提供给电器设备,从而产生电流。
2. 变压器变压器是利用电磁感应实现电能的传输和变压的设备。
当交流电通过变压器的一侧线圈时,产生的磁场将感应出另一侧线圈中的电动势,从而改变电压大小。
电磁感应基础知识

电磁感应基础知识总结【基础知识梳理】一、电磁感应现象1.磁通量(1)概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积。
(2)公式:①二坠。
(3)单位:1Wb=1T・m2。
(4)物理意义:相当于穿过某一面积的磁感线的条数。
2.电磁感应现象(1)电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。
(2)产生感应电流的条件①条件:穿过闭合电路的磁通量发生变化。
②特【典例】闭合电路的一部分导体在磁场内做切割磁感线的运动。
(3)产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只产生感应电动势,而不产生感应电流。
(4)能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。
二、楞次定律1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:适用于一切回路磁通量变化的情况。
(3)楞次定律中“阻碍”的含义£SAAt2.右手定则(1) 内容① 磁感线穿入右手手心。
② 大拇指指向导体运动的方向。
③ 其余四指指向感应电流的方向。
(2) 适用范围:适用于部分导体切割磁感线。
三、法拉第电磁感应定律的理解和应用1.感应电动势(1) 概念:在电磁感应现象中产生的电动势。
(2) 产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
⑶方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律⑴内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
A ①(2) 公式:E=njt ,其中n 为线圈匝数。
E(3) 感应电流与感应电动势的关系:遵守闭合电路欧姆定律,即1=越。
3.磁通量变化通常有三种方式 (1) 磁感应强度B 不变,垂直于磁场的回路面积发生变化,此时E=nB-(2) 垂直于磁场的回路面积不变,磁感应强度发生变化,此时E=nA^S ,其中普是B —t图象的斜率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应综合二 练习
1、 两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R ,导轨的电阻可忽略不计,斜面处在一匀强磁场中,磁场方向垂直于斜面向上,质量为m ,电阻可不计的金属棒ab ,在沿着斜面,与棒垂直的恒力F 作用下沿导轨匀速上滑,并上升h 高度,如图所示,在这过程中( )
A. 作用在金属棒上的各个力的合力所做的功等于零
B. 作用在金属棒上的各个力的合力所做的功等于mgh 与电阻R 上发出的焦耳热之和
C. 恒力F 与安培力的合力所做的功等于零
D. 恒力F 与重力的合力所做的功等于电阻R 上发出的焦耳热
2、 光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y =x 2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y =a 的直线(图中的虚线所示).一个小金属块从抛物线上y =b (b >a )处以速度v 沿抛物线下滑.假设抛物线足够长,则金属块沿抛物线下滑后产生的焦耳热总量是( )
A .mgb
B .22
1mv
221mv B . 22
1mv C .)(a b mg - D .22
1
)(mv a b mg +-
3、如图所示,闭合金属铜环从高为h 的曲面滚下,沿曲面的另一侧上升,设闭合环初速度为零,不计摩擦,则
( )
A .若是匀强磁场,环上升的高度小于h
B .若是匀强磁场,环上升的高度大于h
C .若是非匀强磁场,环上升的高度等于h
D .若是非匀强磁场,环上升的高度小于h
4、如图(a ),圆形线圈P 静止在水平桌面上,其正上方悬挂一相同的线圈Q ,P 和Q 共轴.Q 中通有变化电流,电流随时间变化的规律如图(b )所示.P 所受的重力为G ,桌面对P 的支持力为N ,则
时刻N >G 时刻N >G 时刻N <G 时刻N =G
5、如图所示, 水平放置的无限长金属导轨上有一个阻值为R 的电阻, 电路中所有其它电阻不计, 电源的电动势为E, ab 金属棒的质量为m, 长度为l, 棒与导轨间的滑动摩擦因数为μ, 磁场垂直与导轨向下, 闭合电键S 后导体棒开始滑动, 求最终导体棒的速度v
R E B
b
a
6、如图15(a)所示,一端封闭的两条平行光滑导轨相距L,距左端L处的中间一段被弯成半径为H的1/4圆弧,导轨左右两段处于高度相差H的水平面上。
圆弧导轨所在区域无磁场,右段区域存在磁场B0,左段区域存在均匀分布但随时间线性变化的磁场B(t),如图15(b)所示,两磁场方向均竖直向上。
在圆弧顶端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t0滑到圆弧顶端。
设金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g。
⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变为什么
⑵求0到时间t0内,回路中感应电流产生的焦耳热量。
⑶探讨在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,回路中感应电流的大小
和方向。
7、图中a1b1c1d1和a2b2c2d2为在同一竖直面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。
导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。
x1y1与x2y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。
两杆与导轨构成的回路的总电阻为R。
F为作用于金属杆x1y1上的竖直向上的恒力。
已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。
8、正方形金属线框abcd,每边长L=0.1m,总质量m=0.1kg,回路总电阻R=Ω,用细线吊住,线的另一端跨过两个定滑轮,挂着一个质量为M=0.14kg的砝码。
线框上方为一磁感应强度B=的匀强磁场区,如图,线框abcd在砝码M的牵引下做加速运动,当线框上边ab进入磁场后立即做匀速运动.接着线框全部进入磁场后又做加速运动.(g=10m/s2)问:
(1)线框匀速上升的速度多大此时磁场对线框的作用力多大
(2)线框匀速上升过程中,重物M做功多少其中有多少转变为电
能
F
a
b
c
d
x y
a
b c
d
x y
9、如图所示,固定水平桌面上的金属框架cdef ,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动,此时adeb 构成一个边长为I 的正方形,棒的电阻为r ,其余部分电阻不计,开始时磁感强度为0B 。
(1)若从0=t 时刻起,磁感强度均匀增加,每秒增量为k ,同时保持棒静止,求棒中的感应电流,在图上标出感应电流的方向。
(2)在上述(1)情况中,始终保持棒静止,当1t t =秒末时需加的垂直于棒的水平拉力为多大
(3)若从0=t 时刻起,磁感强度逐渐减小,当棒以恒定速度v 向右作匀速运动时,可使棒中不产生感应电流,则磁感强度应怎样随时间变化(写出B 与t 的关系式)
10、如图所示位于竖直平面的正方形平面导线框abcd ,边长为L =10cm ,线框质量为m =0.1kg ,电阻为R =Ω,其下方有一匀强磁场区域,该区域上、下两边界间的距离为H ( H > L ),磁场的磁感应强度为B =5T ,方向与线框平面垂直。
今线框从距磁场上边界h =30cm 处自由下落,已知线框的dc 边进入磁场后,ab 边到达上边界之前的某一时刻线框的速度已达到这一阶段的最大值,问从线框开始下落到dc 边刚刚到达磁场下边界的过程中,磁场作用于线框的安培力做的
总功是多少(g =10m/s 2)。