蒸汽空气对流传热传热系数的测定(精)

合集下载

实验五 空气_蒸汽对流给热系数

实验五 空气_蒸汽对流给热系数
75.5
76.3
76.4
76.7
76.9
77.2
75.9
78.9
78.8
43.2
23.9
75.8
75.6
76.2
76.4
76.5
76.7
76.8
75.6
78.8
78.9
43.5
24.2
75.8
75.5
76.2
76.4
76.5
76.7
76.8
75.6
78.8
78.9
43.6
24.4
75.8
75.6
76.2
102.5
103.1
15
51.8
83.1
102.3
103
10
49.9
82.9
102.4
103.1
7.5
47.6
82.5
102.4
103.2
5
表2冷流体特性参数
空气流速u(m/s)
对数平均温度差Δt
冷流体平均温度
空气密度ρ(Kg/m3)
空气质量流量qm(Kg/h)
空气黏度μ(Pa/s)×10-5
空气的导热系数λ(W•m﹣¹•K﹣¹)
cPF=1.01+(3.1949× ×lg37.7-5.5099×37.7-3.0506× )×10﹣³
=0.84kcal/Kg=161.7KJ/(Kmol•℃)
q= 1+161.7×(83.4-41.82)/90883.7=1.0740
故加料线方程y= X- =14.5X-2.58
= =0.246
即61.26/0.6950.4=A•25008m
50.90/0.6950.4=A•20388.1m

空气-水蒸气对流给热系数测定实验报告

空气-水蒸气对流给热系数测定实验报告

空气-水蒸气对流给热系数测定实验报告本实验使用臭氧编码器,通过悬浮思路分析,利用不同的匀速度下不同的温度差分析空气-水蒸气的对流换热系数,帮助我们理解空气-水蒸汽对流的过程。

本文将对实验的设备、方法、结果及分析进行详细介绍。

一、实验设备1. 实验室气体混合系统2. 实验室压力传感器4. 实验室水蒸气浸润计6. 实验室数据采集器二、实验方法1. 设计实验2. 实验片段将实验室气体混合系统、压力传感器、温度传感器、水蒸气浸润计和湿度传感器等设备设置在实验室中,同时使用数据采集器对数据进行实时记录。

在实验中,我们首先设置了一个不同的温度差,然后观察它们在不同的匀速度下的换热系数。

通过计算,我们可以得到不同匀速下不同温度差的换热系数。

三、实验结果及分析通过实验结果和数据分析,我们得到不同温度差和匀速度下的换热系数。

1. 换热系数随着温度差的增加而增加我们可以看到,在温度差越大的情况下,热传导的能力也越强。

颗粒与颗粒之间的间距越小,热量间的转移就越快,因此换热系数也越高。

当温度差在一定的范围内,换热系数与温度差的平方成正比。

我们还可以看到,在匀速越大的情况下,换热系数也会越大。

当匀速越大时,颗粒间的热传导也会越快,从而使换热系数更大。

综合以上分析,我们可以得到空气-水蒸汽的对流换热系数与温度差和匀速度密切相关。

当温度差和匀速度越大时,换热系数也会越大。

同时,通过这些实验结果,我们可以更好地理解空气-水蒸汽对流的过程。

四、实验结论通过本次实验,我们可以得出以下结论:1. 空气-水蒸汽的对流换热系数与温度差成正比,当温度差越大时,换热系数也会越大。

因此,我们可以通过控制空气-水蒸汽的温度差和匀速度来控制其换热系数,从而更好地理解热传导过程。

对流传热系数的测定

对流传热系数的测定

实验报告课程名称:过程工程原理实验(甲)Ⅰ指导老师:成绩:实验名称:对流传热系数的测定同组学生姓名:一、实验目的和要求1.掌握空气在传热管内对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径。

2.把测得的数据整理成nNu形式的准数方程,并与公认式进行比较。

ARe=3.了解温度、加热功率、空气流量的自动控制原理和使用方法。

二、实验装置与流程本实验流程图如下图1、2所示,实验装置由蒸汽发生器、孔板流量计(变送器)、变频器、套管换热器(强化管和普通管)及温度传感器、智能显示仪表等构成。

空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器的壳程,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。

空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器的管程,热交换后从风机出口排出。

注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选取,三者必须统一。

图1 横管对流传热系数测定实验装置流程图图2 竖管对流传热系数测定实验装置流程图图中符号说明见下表所示三、实验内容和原理在工业生产过程中,大量情况下,采用间壁式换热方式进行换热。

所谓间壁式换热,就是冷、热两种流体之间有一固体壁面,两流体分别在固体壁面的两侧流动,两流体不直接接触,通过固体壁面(传热元件)进行热量交换。

本装置主要研究汽—气综合换热,包括普通管和加强管。

其中,水蒸汽和空气通过紫铜管间接换热,空气走紫铜管内,水蒸汽走紫铜管外,采用逆流换热。

所谓加强管,是在紫铜管内加了弹簧,增大了绝对粗糙度,进而增大了空气流动的湍流程度,使换热效果更明显。

3.1 间壁式传热基本原理如图3所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。

化工原理实验(四)空气-蒸汽对流给热系数测定

化工原理实验(四)空气-蒸汽对流给热系数测定

化工原理实验(四)空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。

2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。

3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。

二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。

如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。

达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)Tt图4-1间壁式传热过程示意图式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ∙℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。

对流传热系数的测定实验报告

对流传热系数的测定实验报告

. . .. . .浙江大学化学实验报告课程名称:过程工程原理实验甲实验名称:对流传热系数的测定指导教师:专业班级:姓名:学号:同组学生:实验日期:实验地点:目录一、实验目的和要求 (2)二、实验流程与装置 (2)三、实验容和原理 (2)1.间壁式传热基本原理 (2)2.空气流量的测定 (2)3.空气在传热管对流传热系数的测定 (2)3.1牛顿冷却定律法 (2)3.2近似法 (2)3.3简易Wilson图解法 (2)4.拟合实验准数方程式 (2)5.传热准数经验式 (2)四、操作方法与实验步骤 (2)五、实验数据处理 (2)1.原始数据: (2)2.数据处理 (2)六、实验结果 (2)七、实验思考 (2)一、实验目的和要求1)掌握空气在传热管对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径;2)把测得的数据整理成形式的准数方程,并与教材中公认经验式进行比较;3)了解温度、加热功率、空气流量的自动控制原理和使用方法。

二、实验流程与装置本实验流程图(横管)如下图1所示,实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显示仪表等构成。

空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。

空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器管,热交换后从风机出口排出。

注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选择,三者必学统一。

图1 横管对流传热系数测定实验装置流程图图中符号说明如下表:符号名称 单位 备注 V空气流量 m 3/h 紫铜管规格Φ19×1.5mm 有效长度1020mm t1空气进口温度 ℃ t2 普通管空气出口温度 ℃三、实验容和原理在工业生产过程中,大量情况下,采用间壁式换热方式进行换热。

实验三对流给热系数测定实验(空气-水蒸气体系)

实验三对流给热系数测定实验(空气-水蒸气体系)

实验三 对流给热系数测定实验(空气-水蒸气体系)3.1 实验目的1) 观察水蒸气在水平管外壁上的冷凝现象;2)测定空气在圆形直管内强制对流给热系数和换热器总传热系数并随着流量的变化规律;3)掌握热电阻测温方法;4)掌握化工原理实验软件库(VB 实验数据处理软件系统)的使用。

3.2 基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=α0A 0(T -T W )m =αi A i (t w -t)m (1—15) 式中:V 被加热流体体积流量,m 3/s ; ρ 被加热流体密度,kg/m 3; C P 被加热流体平均比热,J/(kg ·℃);α0、αi 水蒸气对内管外壁的冷凝给热系数和流体对内管内壁的对流给热系数,W/(m 2·℃);t 1、t 2 被加热流体进、出口温度,℃; A 0、A i 内管的外壁、内壁的传热面积,m 2; (T -T W )m 水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1—16)(t w -t)m 内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w mw -----=- (1—17) 式中:T 1、T 2 蒸汽进、出口温度,℃; T w1、T w2、t w1、t w2 外壁和内壁上进、出口温度,℃。

当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。

由式(1—17)可得:m P Tw T A t t C V )()(0120--=ρα (1—18)mw P it t A t t C V )()(012--=ρα (1—19) 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A 0或A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1 —18)算得实测的水蒸气(平均)冷凝给热系数α0;通过 式(1 —19)算得实测的流体在管内的(平均)对流给热系数αi 。

传热系数测定的实验

传热系数测定的实验

传热系数测定的实验(水蒸气-空气体系)一.实验目的1.了解管套式换热器的结构2.观察水蒸气在水平换热管外壁上的冷凝现象,判断冷凝类型3.测定水蒸气—空气在换热器中的总传热系数K和对流给热系数a,加深对其概念和影响因素的理解。

4.学习线性回归法确定关联式Nu=ARe m pr0.4中常数A,m的值5.掌握热电偶测量温度的原理和方法二.实验原理1.总传热系数的测定在套管换热器中,环隙通以水蒸气,内管通冷空气,水蒸气冷凝放出热量加热空气。

当冷热液体在换热器内进行稳定传热时,该换热器同时满足热量衡算和传热速率方程,若忽略热损失,公式如下:Q=KAΔt m=q m c p(t2-t1)三.实验内容1.衡量水蒸气-空气通过换热器的总传热系数K对实验数据进行线性回归,求出准数方程Nu=ARe m pr0.4中的常数A,M的值2.通过计算分析影响总传热系数的因素四.实验装置来自蒸汽发生器的水蒸气进入不锈钢套管换热器,与来自风机的空气进行热交换,冷凝水通过管道排入地沟,冷空气经转自流量计进入套管换热器内管热交换后装置。

实验流程如图:五.实验步骤1.检查蒸汽发生器的仪表和水位是否正常。

2.打开换热器的总电源开关,打开仪表电源开关,观察仪器读数是否正常。

3.当蒸汽压稳定后,排除蒸汽发生器到实验装置之间管道中的冷凝水,防止夹带冷凝水的蒸汽损坏压力表及压力变送器。

4.打开换热器内的不凝性气体排除阀。

5.刚开始通入蒸汽时,要仔细调节蒸气进口阀的开度,让蒸气徐徐流入换热器中,逐渐加热,由冷态转变为热态,不得少于10MIN。

6.恒定空气流量,改变蒸气压,测量4组实验数据。

改变客气流量,恒定蒸汽压,测量4组数据7.实验完毕,清理实验场地。

传热系数测定的实验(水-热空气体系)一.实验目的1.了解列管式换热器的结构。

2.测定水-热空气在换热器中的总传热系数K和对流给热系数α加深对其概念影响因素的理解。

3.学习线性回归法确定关联式Nu=ARe m pr0.4中常数A,m的值4.掌握热电偶测量温度的原理和方法二.实验原理在列管式换热器中,壳程通冷水,管程通热空气,热空气冷却放热加热水。

实验7. 空气-蒸汽对流给热系数的测定

实验7. 空气-蒸汽对流给热系数的测定

实验7. 空气-蒸汽对流给热系数的测定一、实验目的1.熟悉传热过程及间壁式换热器的结构,掌握热电阻的测温方法;2.观察蒸汽在水平冷凝管外壁上的冷凝现象,测定对流给热系数h ;3.测定努塞尔数Nu 与雷诺数e R 之间的关系,并确定它们的关联式;4.了解强化传热的途径,分析热交换过程的影响因素。

二、基本原理工业生产中冷流体和热流体常通过固体壁面进行热量交换,此种换热方式称为间壁式传热。

间壁式传热过程是由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热过程组成,间壁式传热过程如图2—10所示。

当传热过程达到稳定时,它们有如下关系: 图2—10 间壁式传热过程示意图()()()()112122121122m p m p W W m M mq c t t q c T T h A t t h A T T KA t Φ=-=-=-=-=∆ (2—45) 式中:Φ—传热速率,W ;q m1、q m2 —冷、热流体的质量流量,1kg s -⋅; c p1、c p2 —冷、热流体的比热容,11kJ kg K --⋅⋅;T 1 、T 2—热流体的进出口温度,K ; t 1、t 2 —冷流体的进出口的度,K ;A 1、A 2—冷、热流体侧的对流传热面积,m 2;12,h h —冷、热流体与固体壁面的对流给热系数,21W m K --⋅⋅; ()W m t t -、()W m T T -—冷、热流体与固体壁面的对数平均温度差,K ;K —总传热系数,21W m K --⋅⋅; A —传热面积,m 2;m t ∆—对数平均温度差,K ;热流体与固体壁面的对数平均温差可由下式计算()()()22112211ln W W W W m W T T T T T T T T T T -----=- (2-46)式中:12,W W T T —热流体进出口处热流体侧壁面的温度,K 。

固体壁面与冷流体的对数平均温差可由下式求得()()()22112211ln t t t t t t t t t t W W W W m W -----=- (2-47)式中:12,W W t t —冷流体进出口处冷流体侧壁面的温度,K ; 冷热流体间的对数平均温度差可由下式计算()()12211221ln m T t T t t T t T t ---∆=-- (2—48)在套管式换热器中,由于水蒸气通过套管的环隙,冷空气或水通过内管间,测定对流给热系数时,由式(2—45)可得内管内壁面与冷空气或水的对流给热系数()()112111p W mm c t t h A t t -=- (2—49)实验中,要测定内管的壁温t w1和t w2,冷空气或水的进出口温度t 1和t 2;实验用套管的长度l ,内径d 1,换热面积11A d l π=,冷流体的质量流量及比热容,即可求得对流给热系数h 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验装置
实验步骤
1.实验前的准备,检查工作。 (1) 向电加热釜加水至液位计上端红线处。 (2) 检查空气流量旁路调节阀是否全开。 (3) 检查蒸气管支路各控制阀是否已打开,保证蒸汽和空气管线的畅 通。 (4) 电源是否完好。 2.实验开始—人工实验操作。 (1) 合上电源总开关。 (2) 打开加热电源开关,设定加热电压(不得大于 200V),直至有水蒸 气冒出,在整个实验过程中始终保持换热器出口处有水蒸气。 (3) 启动风机并用放空阀来调节流量。在一定的流量下稳定 5~10 分钟后分别测量空气 的流量、空气进出口的温度。温度由显示仪显示, 切换开关:1-光滑管空气入口温度;2-光 滑管空气出口温度;3-粗糙 管空气入口温度;4-粗糙管空气出口温度;5-加热器内温度。 换热器内 管壁面的温度由双路显示仪(上面光滑管壁面热电势;下面粗糙管壁面 热电势)测 得。然后改变流量,稳定后分别测量空气的流量、进出口的 温度及壁面温度,再继续实验。 (4) 实验结束后,依次关闭加热电源、风机和总电源。
式中 A 与 n 为待定系数与指数.本实验通过 调节空气的流量,测得对应的传热膜系数,然 后,将实验数据整理为 Re 与 Nu 等特征数, 再将所得的一系列Nu~Re 数据,通过双对数坐 标作图或回归分析法求Pr0.4.得待定系数 A 和 指数 n,进而得到传热膜系数α 与 Re 的经 验公式。
测定传热膜系数
注意事项
(1) 实验前将加热器内的水加到指定的位置,防止电热 器干烧损坏电器。 (2) 计算机数据采集和过程控制实验时,应严格按照 计算机使用规程操作计算机,采集 数据和控制实验时 要注意观察实验现象。 (3) 刚刚开始加热时,加热电压在(180V)左右。 (4) 约加热十分钟后,可提前启动鼓风机,保证实验 开始时空气入口温度T′1 (℃)比较 稳定。
化工基础实验
实验三 蒸汽─空气对流传热传热系数的测定
实验目的
1.测定套管式换热器的总传热系数 K; 2.测定圆形直管内传热膜系数α,并学会用实 验方法将流体在管内对流及强制对流 时的实验 数据整理成包括传热膜系数α 的准数方程式; 3.了解并掌握热电偶和园形直管中强制对 流被加热时的传热膜系数符合下列关联式:
相关文档
最新文档