对流传热系数的测定
对流传热系数实验报告

一、实验目的1. 了解对流传热的基本原理,掌握对流传热系数的测定方法。
2. 掌握牛顿冷却定律的应用,通过实验验证其对流传热系数的计算公式。
3. 分析影响对流传热系数的因素,如流体速度、温度差、流体性质等。
二、实验原理对流传热系数是指单位时间内,单位面积上流体温度差为1℃时,单位面积上传递的热量。
牛顿冷却定律描述了对流传热过程,即:Q = h A (T1 - T2)式中:Q ——传热量(W)h ——对流传热系数(W/(m²·K))A ——传热面积(m²)T1 ——高温流体温度(℃)T2 ——低温流体温度(℃)根据牛顿冷却定律,可以通过实验测量传热量、传热面积、流体温度差,从而计算出对流传热系数。
三、实验仪器与材料1. 套管换热器2. 温度计3. 流量计4. 计时器5. 计算器6. 水和空气四、实验步骤1. 准备实验仪器,连接套管换热器、温度计、流量计等。
2. 在套管换热器内注入水,打开冷却水阀门,调节流量至预定值。
3. 在套管换热器外通入空气,调节风速至预定值。
4. 同时打开加热器和冷却水阀门,使水加热至预定温度,空气冷却至预定温度。
5. 记录开始加热和冷却的时间,观察温度变化。
6. 当温度变化稳定后,记录温度计的读数,计算温度差。
7. 关闭加热器和冷却水阀门,停止实验。
五、实验数据与处理1. 记录实验数据,包括水温度、空气温度、流量、时间等。
2. 根据牛顿冷却定律计算传热量Q:Q = m c ΔT其中,m为水的质量流量(kg/s),c为水的比热容(J/(kg·K)),ΔT为温度差(K)。
3. 计算对流传热系数h:h = Q / (A ΔT)六、实验结果与分析1. 根据实验数据,计算对流传热系数h,并与理论值进行比较。
2. 分析实验结果,探讨影响对流传热系数的因素。
3. 分析实验误差,总结实验经验。
七、结论通过对对流传热系数的测定实验,掌握了对流传热的基本原理和牛顿冷却定律的应用。
实验五 对流给热系数测定

5 对流给热系数测定5.1 实验目的(1) 测定水蒸汽在圆直水平管外冷凝给热系数α0及冷流体(空气或水)在圆直水平管内的强制对流给热系数αi 。
(2) 观察水蒸汽在圆直水平管外壁上的冷凝状况(膜状冷凝和滴状冷凝)。
5.2实验原理5.2.1.串联传热过程冷流体(空气和水)与热流体水蒸汽通过套管换热器的内管管壁发生热量交换的过程可分为三步:○1套管环隙内的水蒸汽通过冷凝给热将热量传给圆直水平管的外壁面(A 0); ○2热量从圆直水平管的外壁面以热传导的方式传至内壁面(A i ); ○3内壁面通过对流给热的方式将热量传给冷流体(V c )。
在实验中, 水蒸汽走套管换热器的环隙通道, 冷流体走套管换热器的内管管内, 当冷、热流体间的传热达到稳定状态后, 根据传热的三个过程、牛顿冷却定律及冷流体得到的热量, 可以计算出冷热流体的给热系数(以上是实验原理)。
(以下是计算方法)传热计算公式如下:Q=α0A 0( T –T w )m = αi A i ( t w –t)m =V c ρc C pc (t 2-t 1) (1)由(1)式可得:m w pc c c T T A t t C V )()(0120--=ρα (2)m w i pc c c i t t A t t C V )()(12--=ρα (3)式(2)中, ( T –Tw)为水蒸汽温度与内管外壁面温度之差, 式(3)中, ( tw –t)为内管内壁面温度与冷流体温度之差。
由于热流体温度T 、内管外壁温Tw 、冷流体温度t 及内管内壁温tw 均沿内管管长不断发生变化, 因此, 温差( T –Tw) 和( tw –t)也随管长发生变化, 在用牛顿冷却定律算传热速率Q 时, 温差应分别取进口(1)与出口(2)处两端温差的对数平均值( T –Tw)m 和( tw –t)m, 方法如下:22112211ln )()()(w W W w w T T T T T T T T T T -----=- (4) 22112211ln )()()(t t t t t t t t t t w w w w m w -----=- (5)当套管换热器的内管壁较薄且管壁导热性能优良(即λ值较大)时, 管壁热阻可以忽略不计, 可近似认为管壁内、外表面温度相等, 即Tw1=tw1, Tw2=tw2。
对流传热系数的测定实验指导书

对流传热系数的测定实验指导书1 训练目的:1.1熟悉换热装置中的各种设备及名称、各类测量仪表及名称、控制阀门的作用、冷热流体进出口位置等。
1.2了解换热器的结构,掌握对装置的试压、试漏等操作技能。
1.3掌握传热系统的流程和开、停车步骤及常见事故的处理方法。
1.4学会对流传热系数的测定方法。
1.5测定空气在圆形直管内(或螺旋槽管内)的强制对流传热系数,并把数据整理成准数关系式。
1.6了解影响对流传热系数的因素和强化传热的途径。
2.实验内容:测定不同空气流量下空气和水蒸汽在套管换热器中的进出口温度,求得空气在管内的对流传热系数。
3 基本原理3.1准数关系式对流传热系数是研究传过程及换热性能的一个很重要的参数。
在工业生产和科学研究中经常采用间壁式换热装置来达到物料的冷却和加热目的,这种传热过程是冷热流体通过固体壁面(传热元件)进行的热量交换,由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对流传热所组成。
由单位传热速率议程式知,单位时间、单位传热面积所传递的热量为q=K(T-t)而对流传热所传递的热量,对于冷热流体可由牛顿定律表示q=a h·(T-T wl)或q=a·(t w2-t)式中q—传热量,W/℃;a—给热系数,W/㎡;T—热流体温度,℃;t—冷液体温度,℃;T w1、t w2—热冷液体的壁温,℃;下标:c—冷侧面h—热侧由于对流传热过程十分复杂,影响因素极多,目前尚不能通过解析法得到对流传热系数的关系式,它必须由实验加以测定获得各种因素下对流传热系数的定量关系。
为了减少实验工作量,采用因次分析法将有关的影响因素无因次化处理后组成若干个无因次数群,从而获得描述对流传热过程的无因次方块字程。
在此基础上组织实验,并经过数据处理得到相应的关系式,如流体在圆形(光滑)直管中做强制对流传热时传热系数的变化规律可用如下准数关联式表示N u=CR e m P r n=ad/λR e=duρ/µ=dw/AμNμ—努塞尔特准数;Re—雷诺准数;P r—普兰特准数;w—空气的质量流量,㎏/s;d—热管内径,m;A—换热管截面积,㎡;μ—定性温度下空气的粘度,P a·S;λ—定性温度下空气的导热系数,W/(m·℃);a—对流传热系数,W/(㎡·℃);当流体被加热时,n=0.4;被冷却时,n=0.3。
对流传热系数测定实验报告

竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
对流传热系数测定实验.doc

对流传热系数测定实验.doc实验目的:1.测定水在圆管内的对流传热系数。
2.熟悉实验过程和方法,掌握实验技能。
实验原理:对流传热是指在流体内部,由于温度差而发生的热量传递过程。
负责传热的机构是流体内的对流,它能有效地加快热量的传递。
圆管内加热相当于给液体部分加热,液体受热变得稀薄,流动影响整个管道,使得流体相对速度增加,对流热传导增强,同时散热增大。
对流传热系数,以水作为样品,可得公式如下:V=λ(ρ 2-ρ1)gL^3/μQ其中:V 水流速λ 对流传热系数ρ1 密度ρ2 受热稀薄液体的密度g 重力加速度L 热交换区段的长度μ 动力粘度系数Q 加热量测量方法:以恒流供热方式加热,用热电偶及温度计测量流体进入和流出处的温度,并通过流量表测量流体流量。
最后,利用以上数据及传热计算公式计算对流传热系数。
实验过程:1.组装好实验装置。
2.调节水流量,打开恒温水浴,调节温度至稳定后,进一步调节流量,直到流量稳定。
3.测量流体进入和流出处的温度,测量流体流量,并记录数据。
实验记录:表一流体进出口温度及温度差(数据保留两位小数)进口温度45.20°C 流量计温度差 6.95°C表二流量及所用时间流量(L/min)时间(s)0.50 55.110.60 48.781.10 23.61采用已有数据计算出对流传热系数的值如下:ρ1 998kg/m³μ 1.004×10^{-3}N/s·m²Q 0.293WL 0.15mλ 195.44W/(m²·K)实验结果:本次实验得到了水在圆管内的对流传热系数λ=195.44W/(m²·K)。
实验五对流传热系数

• 2.待蒸汽发生器内温度接近设定温度时,打开蒸汽阀 门至最大,阀门14;使蒸汽进入套管环隙。(空气走 管内,空气不易产生污垢,以清洁;水蒸气走管间, 易排除不凝气体和清洁)
• 3.打开放气阀排除不凝性气体,打开放气阀7; • 4.微开排液阀,以便冷凝水及时排除。一直保持打开
2020/4/9
4
二、基本原理
从上式推倒出管内空气对流传热系数的计算式
i
WC p (t出 t进 ) Stm
Vs C p (t出 t进 )
Stm
所以当传热达到稳定后,用蒸汽温度可计算出
tm,利用仪器测出各数据,就能计算出实测 值i。
2020/4/9
5
二、基本原理
2.准数关联式 对流传热系数是研究传热过程及换热器 性能的一个很重要的参数。这种传热过 程是冷热流体通过固体壁面(传热元件) 进行的热量交换,由热流体对固体壁面 的对流传热、固体壁面的热传导和固体 壁面对冷流体的对流传热所组成。
2020/4/9
6
二、基本原理
• 由传热速率方程式知,单位时间、单位传热面 所传递的热量为
•
Q=K(T-t)
• 而对流传热所传递的热量,对于冷热流体可由 牛顿定律表示
• Q=h·(T-Tw 不能通过解析法得到对流传热系数的关系式,
它必须由实验加以测定获得。
2020/4/9
实验五 对流传热系数的测定
• 一、实验目的 • 1.学会对流传热系数的测定方法。(换热器的
性能参数,决定换热器的尺寸) • 2.测定空气在圆形直管内(或螺旋槽管内)的强
制对流传热系数,并把数据整理成准数关联式, 以检验通用的对流传热准数关联式。 • 3.了解影响对流传热系数的因素和强化传热的 途径。
对流传热系数测定实验报告

对流传热系数测定实验报告对流传热系数测定实验报告引言:热传导是物质内部传递热量的方式之一,而对流传热则是指通过流体介质传递热量的过程。
对流传热系数是描述该过程的重要参数之一。
本实验旨在通过测定实验方法,确定对流传热系数,并探讨其影响因素。
实验装置和方法:实验装置主要包括一个加热器、一个冷却器、一个测温仪和一根试管。
首先,将试管一端与加热器相连,另一端与冷却器相连。
然后,在试管内部加入一定量的流体介质,如水。
接下来,将加热器加热至一定温度,同时使用测温仪测量试管内部和外部的温度。
通过记录试管内外温度的变化,可以计算出对流传热系数。
实验结果和分析:通过实验测量,我们得到了一组温度数据,并利用这些数据计算出了对流传热系数。
然后,我们将对流传热系数与其他因素进行分析。
首先,我们探讨了流体介质的影响。
我们使用了不同流体介质进行实验,并比较了它们的对流传热系数。
结果表明,不同流体介质的传热性能存在差异。
例如,水的对流传热系数要大于油的对流传热系数。
这是因为水的热导率较高,能够更快地传递热量。
而油的热导率较低,传热速度较慢。
其次,我们研究了流体流速的影响。
我们调节了流体流速,并测量了对流传热系数的变化。
结果显示,随着流速的增加,对流传热系数也会增加。
这是因为流体流速的增加会增加流体与试管壁之间的接触面积,从而增加传热效率。
此外,我们还考察了试管的材料对对流传热系数的影响。
我们使用了不同材料的试管进行实验,并比较了它们的对流传热系数。
结果显示,不同材料的试管对对流传热系数有一定的影响。
例如,金属试管的对流传热系数要大于玻璃试管的对流传热系数。
这是因为金属具有较高的热导率,能够更好地传递热量。
结论:通过本实验,我们成功地测定了对流传热系数,并分析了其影响因素。
实验结果表明,流体介质、流体流速和试管材料都会对对流传热系数产生影响。
在实际应用中,我们可以根据这些影响因素来选择合适的流体介质、控制流速和选择合适的材料,以提高传热效率。
强制对流传热系数的测定

第二套 tw2 23.5714 Et 4.8571
第三套 tw3 24.0Et 3.1
第四套 tw4 23.7429Et 3.8943
式中:
t
为壁温(
w
℃),
Et为输出热电势(mV)。
2、实验流程:
设 备
流 程
符 号
符号说明
1.压差计
2.流量调节阀
3.转子流量计
4.备用阀
★ 外套管由五段法兰联接的钢管制成,这 是为了便于安装铠装热电偶。管外包有聚氨 酯泡沫塑料保温。
四、 操作要点
㈠. 在实验开始前,必须掌握UJ—63电位差计的使 用方法。 ㈡. 实验开始时,先通空气。再通加热蒸汽。并打 开放气咀8,待空气排净后再关小,但在整个实验过 程中,它始终微开(以冒少量蒸汽为宜),以便不 凝性气体能连续排除。
★ 套管换热器所需蒸汽压强由蒸汽阀门10 控制,由弹簧管压强计9测量。蒸汽温度则用 铠装热电偶11测定。 ★ 加热蒸汽放热冷凝,由疏水器20排出。
为了排除套管环隙中积存的不凝性气体(如
空气)。热交换器一端装有放气咀8。
★ 热交换器入口有一定长度的稳定段,以 消除端效应。
★ 为了测定内管管壁的温度,在内管壁上 等距焊有四对热电偶,热电偶热端用铜焊在 内管(黄铜管)上预先铣好的凹槽中。热电 偶材料为镍铬——镍铝。 ★ 热电偶由法兰中间引出后,经冷端至转换 开关,17和UJ—36电位差计18。热电偶冷端置 于冰瓶16中。
压计测出。
◆ T2由进口温度计测出。
三、装置和流程
1. 设备及测量仪表: 见图
◆本试验装置共四套,内管均为黄铜管,管
内径为20[mm]有效长度均为1.975[m]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.7854
0.7059
-0.1513
14
35.5606
32137.33
4.5070
121.7381
72.4171
1.8598
0.7059
-0.1512
15
41.8077
37579.85
4.5750
176.1398
104.5268
2.0192
0.7060
-0.1512
lgRe
lgNu
3.9152
5、顺时针方向缓慢旋转电压调节电位器,使电压表的示值为180V,待水沸腾,水蒸气进入玻璃套管。
6、加热约10分钟后,启动鼓风机,待空气入口温度稳定后开始测试。
7、调节空气流量旁路阀的开度,使压差计的读数为所需的空气流量值(注意旁路阀全开时,空气流量为最小值,全关时为最大值)。
8、待玻璃套管中充满蒸汽并有适量冷凝液时算起,约5分钟后可读取数值。
30.8006
1.4886
0.7057
-0.1514
3
14.7282
13622.79
4.1343
59.0845
35.5059
1.5503
0.7057
-0.1514
4
16.7864
15487.25
4.1900
66.4355
39.8797
1.6008
0.7058
-0.1513
5
18.4296
16951.27
2、启动风机时,空气流量旁路阀不能关上,否则会把U型压差计中的液体冲出。
附:实验装置流量与温度校正数据
空气流量公式: ,R单位为mm .
蒸汽侧壁温与测温热电偶电势关系:T=(22.2E-0.6),E单位为mv
空气进出口温度校正:
注:实验装置上所给数据与教材中所给数据略有不同,以实验装置上所给的数据为准计算。
流体在圆形直管强制对流时满足下述准数关联式:
式中:Nu—努塞尔特准数, ,无因次
Re—雷诺准数, ,无因次
Pr—普兰特准数, ,无因次
测定不同流速条件下的对流传热系数,在双对数坐标中标绘Nu-Re关系得到一条直线,直线斜率应为0.8。
三、实验内容
1、测定不同空气流量下空气和水蒸汽在套管换热器换热时内管空气的对流传热系数,推算总传热系数。
对流传热系数的测定
北京理工大学 化学学院 董婧 1120102745
一、实验目的
1、掌握对流传热系数的测定方法,测定空气在圆形直管内的强制对流传热系数,验证准数关联式。
2、了解套管换热器的结构及操作,掌握强化传热的途径。
3、学习热电偶测量温度的方法。
二、实验原理
冷热流体在间壁两侧换热时,传热基本方程及热衡算方程为:
2、在双对数坐标中标绘Nu-Re关系,验证准数关联式。
四、实验装置与流程
1、实验装置流程图
图3-3传热实验装置流程示意图
1―蒸汽发生器2―水位指示管3―风机4―风量调节阀5―孔板6―U型管7―空气进口温度计8―空气出口温度计9―热电偶测量系统
10―冷凝回水管11―外管12―内管
2、流程简介
如图3-3所示,鼓风机将空气送入换热器内管,风量由阀门4进行调节,并采用孔板流量计5计量流量,进出换热器的温度分别由进出口的温度计7、8读出
76.5
55.75
1.0732
1.017
1.9888
2.8663
2
2.2
37.0
76.0
56.50
1.0716
1.017
1.9925
2.8715
3
3.2
39.1
76.0
57.55
1.0681
1.017
1.9978
2.8789
4
4.2
40.0
76.0
58.00
1.0666
1.017
2.0000
2.8820
5
5.1
41.1
76.0
58.55
1.0648
1.017
2.0028
2.8859
6
6.1
42.0
76.0
59.00
1.0633
1.017
2.0050
2.8890
7
7.1
42.0
76.0
59.00
1.0633
1.017
2.0050
2.8890
8
8.0
43.0
76.0
59.50
1.0617
1.017
2.0075
实验装置流量与温度校正数据
空气流量公式: ,R单位为mm .
蒸汽侧壁温与测温热电偶电势关系:T=(22.2E-0.6),E单位为mv
空气进出口温度校正:
七、实验数据处理
1、实验数据记录
序号
ΔR(cm)
t进(℃)
t出(℃)
热电偶电势E(mV)
1
1.1
35.0
76.5
4.34
2
2.2
37.0
76.0
4.37
3
3.2
39.1
76.0
4.38
4
4.2
40.0
76.0
4.38
5
5.1
41.1
76.0
4.39
6
6.1
42.0
76.0
4.38
7
7.1
42.0
76.0
4.39
8
8.0
43.0
76.0
4.39
9
9.1
44.0
76.0
4.40
10
10.0
44.5
76.0
4.40
11
11.0
44.5
75.0
4.40
12
故得
由于换热器总传热系数近似等于关内对流传热系数,所以亦可得到套管换热器的总传热系数
K= =38.867W/(m2 K)
各组计算数据如下表:
①用内插法计算得到的物性参数:
序号
ΔR(cm)
t进(℃)
t出(℃)
t平(℃)
ρ
Cp
μ×105
λ×102
(kg·m-3)
kJ/(kg·℃)
(Pa·s)
1
1.1
35.0
2、传热系数的计算
以第一组数据为例进行计算,如下:
当 , 时,
平均温度为t平=55.75℃;
查附录六可知(内插法计算),在55.75℃下,空气的物性为:
密度ρ=1.0732kg/m3,定压热容为Cp=1.017kJ/(kg·℃),
导热系数 ,黏度 ;
故有
空气流量
空气质量流量
蒸汽侧壁温度
由方程组
可得
又由于管壁导热系数较大且管壁较薄,管内壁温与外壁温近似相等,即 =Tw=95.748℃
4.2292
71.2849
42.7336
1.6308
0.7058
-0.1513
6
20.0871
18429.09
4.2655
77.0193
46.1209
1.6639
0.7058
-0.1513
7
21.6087
19825.14
4.2972
82.3679
49.3238
1.6931
0.7058
-0.1513
8
2.8859
15.5876
6
6.1
42.0
76.0
4.38
59.00
2.0050
1.0633
2.8890
16.9895
7
7.1
42.0
76.0
4.39
59.00
2.0050
1.0633
2.8890
18.2765
8
8.0
43.0
76.0
4.39
59.50
2.0075
1.0617
2.8925
19.3564
1.017
2.0133
2.9006
13
13.0
45.8
76.0
60.90
1.0572
1.017
2.0145
2.9023
14
20.0
47.5
76.0
61.75
1.0546
1.017
2.0188
2.9083
15
28.0
49.0
76.5
62.75
1.0515
1.017
2.0238
2.91见下一页)
9、重复步骤7、8,分别取10个以上空气流量值(应包括最大和最小流量值)。
10、测试结束后,将加热电压调节电位器旋至最左端(逆时针方向),使电压表、电流表的示值为零;约5分钟后关闭鼓风机,并将旁路阀全开,切断总电源,停止实验。
六、实验注意事项
1、实验过程中,蒸汽发生器中的水位不能低于液位计下端的红线,否则螺旋形电热管将被烧坏;液位亦不能过高,否则会使水溢入套管。
22.8855
20938.84
4.3210
85.7828
51.3066
1.7102
0.7058
-0.1513
9
24.3485
22214.06
4.3466
89.1427
53.2517
1.7263
0.7059
-0.1513
10
25.4784
23212.98
4.3657
92.4413
55.1888
1.7419