对流传热系数影响因素
化工原理对传热系数关联式讲义

)0.5
Re
0.8
Pr
1 3
de d1
适用范围: 12000<Re<220000;d2/d1=1.65~17 其中 d1为内管外径,d2为外管内径
返回
例14题4.5.1 一列管式换热器,由38根25×2.5mm的无缝钢管组 成,苯在管内流动,由20℃加热到80 ℃,苯的流量为 8.32kg/s,外壳中通入水蒸气进行加热,求: (1)管壁对苯的对流传热系数; (2)管子换为19×2mm,管壁对苯的对流传热系数; (3)当苯的流量提高一倍,对流传热系数变化如何?
一、流体在管内的强制对流
1.圆形直管内的湍流
适用范围:
Nu 0.023Re0.8 Prn
0.023 ( du )0.8 ( cp )n
d
Re>10000,0.7<Pr<160,<2mPa.s,l/d>60
定性温度:
tm
t1
t2 2
特征尺寸: 管内径di
返回
9 流体被加热时,n=0.4;
被冷却时,n=0.3。
名称 努赛尔特准数
雷诺准数 普朗特准数
格拉斯霍夫准数
准数式
Nu l
Re duρ μ
Pr cp
Gr
l3 2 gt 2
意义
表示对流传热系数的准数
表示流体的流动状态和湍流程 度对对流传热的影响
表示流体物性对对流传热的影 响
表示自然对流对对流传热的影 响
各准数之间的关系 Nu C Rea Prk Gr g
返回
44.5.2 对流传热过程的量纲分析
一、因次分析 =f(u,l,,,cp,,gt)
式中 l——特性尺寸; u——特征流速。
4-5_对流传热系数关联式

知识点4-5 对流传热系数关联式【学习指导】1.学习目的通过本知识点的学习,了解影响对流传热系数的因素,掌握因次分析法,并能根据情况选择相应的对流传热系数关联式。
理解流体有无相变化的对流传热系数相差较大的原因。
2.本知识点的重点对流传热系数的影响因素及因次分析法。
3.本知识点的难点因次分析法。
4.应完成的习题4-11 在一逆流套管换热器中,冷、热流体进行热交换。
两流体进、出口温度分别为t1=20℃、t2=85℃;T1=100℃、T2=70℃。
当冷流体流量增加一倍时,试求两流体的出口温度和传热量的变化情况。
假设两种情况下总传热系数不变,换热器热损失可忽略。
4-12 试用因次分析法推导壁面和流体间自然对流传热系数α的准数方程式。
已知α为下列变量的函数:4-13 一定流量的空气在蒸汽加热器中从20℃加热到80℃。
空气在换热器的管内湍流流动。
压强为180kPa的饱和蒸汽在管外冷凝。
现因生产要求空气流量增加20%,而空气的进出口温度不变,试问应采取什么措施才能完成任务,并作出定量计算。
假设管壁和污垢热阻可忽略。
4-14 常压下温度为120℃的甲烷以10m/s的平均速度在列管换热器的管间沿轴向流动,离开换热器时甲烷温度为30℃,换热器外壳内径为190mm,管束由37根ф19×2的钢管组成,试求甲烷对管壁的对流传热系数。
4-15 温度为90℃的甲苯以1500kg/h的流量流过直径为ф57×3.5mm、弯曲半径为0.6m的蛇管换热器而被冷却至30℃,试求甲苯对蛇管的对流传热系数。
4-16 流量为720kg/h的常压饱和蒸汽在直立的列管换热器的列管外冷凝。
换热器的列管直径为ф25×2.5mm,长为2m。
列管外壁面温度为94℃。
试按冷凝要求估算列管的根数(假设列管内侧可满足要求)。
换热器的热损失可以忽略。
4-17 实验测定列管换热器的总传热系数时,水在换热器的列管内作湍流流动,管外为饱和蒸汽冷凝。
对流换热系数的影响因素

对流换热系数的影响因素
对流换热是指流体与固体表面之间的热量传递方式。
其中,对流换热系数是一个关键参数,用于描述热量传递的效率。
对流换热系数受许多因素影响,下面让我们具体来看看这些因素。
1. 流体性质:流体的密度、粘度、热导率、比热容等性质对对流换热系数的影响较大。
一般来说,流体的密度和比热容越大,对流换热系数越小,而粘度和热导率越大,对流换热系数越大。
2. 流动状态:流动状态对对流换热系数的影响主要表现在雷诺数上。
当雷诺数较小时,流体的流动状态为层流,对流换热系数较低;而当雷诺数较大时,流体的流动状态为湍流,对流换热系数较高。
3. 流动方向:流体流动方向对对流换热系数也有影响。
例如,在水平管道中,流体的对流换热系数比竖直管道中的大;另外,如果流体的流动方向与壁面的角度不同,对流换热系数也会有不同的变化。
4. 壁面形状:壁面形状对换热系数也有明显的影响。
一般来说,壁面越粗糙,对流换热系数就越大;反之,壁面越光滑,对流换热系数就越小。
此外,壁面凸度的改变也会影响对流换热系数。
5. 流体入口速度:流体入口速度对对流换热系数也有影响。
当流体入口速度增加时,对流换热系数会增加,主要是因为流体的对流和湍流增强。
以上就是对流换热系数的影响因素。
在实际工程中,我们需要结合具体情况,选择合适的流体和换热器结构,以提高对流换热系数,从而提高热量传递效率。
同时,我们也要进一步深入研究对流换热机理和影响因素,以推动对流换热领域的发展和应用。
对流传热系数的影响因素

L 60 di
定性温度:除μw取壁温以外,其余均取液体进、出口温度的 算术平均值。
2) 流体在圆形直管内作强制滞流 当管径较小,流体与壁面间的温度差较小,自然对流对
强制滞流的传热的影响可以忽略时
2019/10/15
Nu
1.86Re
1 3
Pr
1 3
di L
1
3
w
0.1 4
的算术平均值。
当量直径可根据管子排列的情况别用不同式子进行计算:
2019/10/15
管子呈正方形排列时: de
4
t2
0.785d02
d0
管子呈三角形排列时:
de
4
2 3
t
2
4
d
2 0
d 0
管外流速可以根据流体流过的最大截面积S计算
A hD1 d0 t
d) 蒸汽中不凝气体含量的影响 蒸汽中含有空气或其它不凝气体,壁面可能为气体层所遮
盖,增加了一层附加热阻,使α急剧下降。 e)冷凝壁面的影响
若沿冷凝液流动方向积存的液体增多,液膜增厚,使传 热系数下降。
例如管束,冷凝液面从上面各排流动下面各排,使液膜 逐渐增厚,因此下面管子的α要比上排的为低。
冷凝面的表面情况对α影响也很大,若壁面粗糙不平或有 氧化层,使膜层加厚,增加膜层阻力,α下降。
2019/10/15
2019/10/15
2、液体沸腾时的对流传热系数
液体沸腾
大容积沸腾 管内沸腾
1)沸腾曲线 当温度差较小时,液体内部产生自然对流,α较小,且随
温度升高较慢。
当△t逐渐升高,在加热表面的局部位置产生气泡,该局 部位置称为气化核心。气泡产生的速度△t随上升而增加, α
对流与对流传热系数

Department of Chemical and Environmental Engineering CTGU Lai Qingke
5
准数的符号与意义
准数名称
符号
准数式
意义
努塞尔特准数 Nusselt
Nu
L/
表示对流传热 系数的准数
雷诺准数 Reynolds
Re
Lu/
确定流动状态 的准数
普兰特准数 Prandtl
1.05
w
0.14
(3)管内层流
当液体被冷却时
w
0.14
0.95
层流 导热 自然对流 α↓ p226式5-65和式5-66
对流传热→要求强化→避免层流
Department of Chemical and Environmental Engineering CTGU Lai Qingke
9பைடு நூலகம்
(4)过渡流(Re=2000~10000) 因湍流不充分,滞流内层较厚,故热阻大而值减小,此时 算得的值须乘以小于1的校正系数f
f 1 6105 Re1.5 (5)圆形弯管 离心力作用 扰动加剧 α↑
乘以校正系数 1 1.77 d
R
(6)非圆形管道
两个途径: ⅰ、当量直径 ⅱ、直接根据有关经验公式计算
p227式5-70
Department of Chemical and Environmental Engineering CTGU Lai Qingke
Pr
cp /
表示物性影响 的准数
格拉斯霍夫准数 Grashof
Gr
g△tL3 2/2
表示自然对流 影响的准数
L—传热面的特征尺寸 m
对流传热系数关联式对流传热系数的影响因素

对流传热系数关联式对流传热系数的影响因素————————————————————————————————作者:————————————————————————————————日期:1-2-4 对流传热系数关联式一、对流传热系数的影响因素实验表明,影响对流传热系数的因素主要有:1、流体的种类和相变化的情况2、流体的特性:1)流体的导热系数λ;2)粘度μ3)比热容ρc p 、密度ρ:ρc p 代表单位体积流体所具有的热容量。
4)体积膨胀系数β:t V V V ∆-=112β 3、流体的流动状态层流和湍流的传热机理有本质区别:层流时,传热只是依靠分子扩散作用的热传导,故h 就较湍流时为小;湍流时,湍流主体的传热为涡流作用的热对流,但壁面附近层流内层中为热传导,涡流使得层流内层的厚度减薄,温度梯度增大,故h就增大。
湍流时的对流系数较大。
4、流体流动的原因自然对流和强制对流的流动原因不同。
强制对流:设ρ1和ρ2分别代表温度为t1和t2两点的密度,则流体因密度差而产生的升力为(ρ1-ρ2)g。
若流体的体积膨胀系数为β,单位为1/℃,并以Δt代表温度差(t2-t1),则可得ρ1=ρ2(1+βΔt)于是每单位体积的流体所产生的升力为:(ρ1-ρ2)g=[ρ2(1+βΔt)-ρ2]g= ρ2gβΔt 强制对流是由于外力的作用,如泵、搅拌器等迫使流体的流动。
强制对流的对流系数大得多。
5、传热面的形状、位置和大小传热管、板、管束等不同的传热面的形状;管子的排列方式,水平或垂直放置;管径、管长或板的高度等,都影响h 值。
表示传热面的形状、位置和大小的尺寸称为特征尺寸,用l 表示所以,h 可以用下式表示:h=f (μ,λ,c p ,ρ,u ,ρgβΔt ,l ) (1)二、因次分析对流体无相变化的对流传热进行因次分析,得到的准数关系式为:c b p a tl g c u l K l )()()(223μρβλμμρλα∆= (2)式(2)中各准数名称、符号和意义列于下表中。
上4章传热7第五节对流传热系数关联式1

Re>10000
L/di<60,要乘以 [1 (d i / L)
] 进行校正。
⒉ 高 液体 西德尔-塔特式:
中 国 矿 业 大 学 化 工 学 院 化 工 系
Nu 0.027 Re
0.8
Pr
1/ 3
( / w )
0.14
(4-71)
被加热1.05 被冷却0.95
液 气 1.0
中 国 矿 业 大 学 化 工 学 院 化 工 系
①流体平均温度 用的最多,t = (t1+t2)/2
②壁面的平均温度 tw 需试差,极少用
③流体和壁面的平均温度(膜温)
有用 tm= (tw +t)/2 = [ tw +征尺寸
中 国 矿 业 大 学 化 工 学 院 化 工 系
除w用tw,用t =(t1+t2)/2
15
(三)流体在圆形直管中做过渡流 2300<Re<10000 先用强制湍流的公式计算,然后乘以校正系数φ。
中 国 矿 业 大 学 化 工 学 院 化 工 系
1 (6 10 ) /( Re ) (φ<1)(4-73)
5 1.8
(四)流体在弯管内做强制对流 弯管轴的弯曲半径使流体在弯 管内流动时,由于惯性离心力的作
的 / 较大时,自然对流对强制滞流的影响可以忽 略,用西德-塔特式:
Nu 1.86 Re
特征尺寸
1/ 3
Pr
1/ 3
(d i / L) ( / w )
1/ 3
0.14
(4-72)
圆管内 di 10< di <40mm
应用范围
定性温度
对流传热系数的影响因素

2)粘度
流体的粘度愈大,对流传热系数愈低。 3)比热和密度
2018/6/3
ρcp:单位体积流体所具有的热容量。
ρcp 值愈大,流体携带热量的能力愈强,对流传热的强 度愈强。 (4)体积膨胀系数 体积膨胀系数β值愈大,密度差愈大,有利于自然对流 。对强制对流也有一定的影响。
3、流体的温度 4、流体流动状态
定性温度: 除μw取壁温以外,其余均取液体进、出口温度的 算术平均值。 2) 流体在圆形直管内作强制滞流
当管径较小,流体与壁面间的温度差较小,自然对流对
强制滞流的传热的影响可以忽略时
2018/6/3
1 1 1 d i 3 N u 1.86 Re 3 Pr 3
L w
6、传热面的性状、大小和位置
2018/6/3
二、因次分析法在对流传热中的应用
•列出影响该过程的物理量,并用一般函数关系表示:
f (l,,,c p,,u, g t )
•确定无因次准数π的数目
i n m 84 4
2018/6/3
准数的符号和意义 准数名称 努塞尔特准数 (Nusselt) 雷诺准数 (Reynolds) 普兰特准数 (Prandtl) 符号 Nu 准数式 意义 表示对流传热的系数 确定流动状态的准数
N u 0.027 Re Pr
u w
2018/6/3
0.8
0.23
0.14
u w
0.14
为考虑热流体方向的校正项。
应用范围: Re 1000, 0.7 Pr 16700 , 定性尺寸: 取为管内径di。
L 60 di
应用范围:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 流体在圆形直管内作强制滞流 当管径较小,流体与壁面间的温度差较小,自然对流
对强制滞流的传热的影响可以忽略时
2019/8/30
Nu 1.86Re13Pr13dLi 13w0.14
应用范围:R 2 e3 ,60 7 P 0 r 0 0 .0 6 ,G r 25 ,R e 0 P rd L i0 1 00 定性尺寸:管内径di。
流传热系数也愈大。 2)粘度
流体的粘度愈大,对流传热系数愈低。 3)比热和密度
2019/8/30
ρcp:单位体积流体所具有的热容量。 ρcp值愈大,流体携带热量的能力愈强,对流传热的强 度愈强。 (4)体积膨胀系数
体积膨胀系数β值愈大,密度差愈大,有利于自然对 流。对强制对流也有一定的影响。
3、流体的温度 4、流体流动状态
d) 蒸汽中不凝气体含量的影响 蒸汽中含有空气或其它不凝气体,壁面可能为气体层所
遮盖,增加了一层附加热阻,使α急剧下降。 e)冷凝壁面的影响
若沿冷凝液流动方向积存的液体增多,液膜增厚,使传 热系数下降。
例如管束,冷凝液面从上面各排流动下面各排,使液膜 逐渐增厚,因此下面管子的α要比上排的为低。
冷凝面的表面情况对α影响也很大,若壁面粗糙不平或有 氧化层,使膜层加厚,增加膜层阻力,α下降。
Nu0.02R3e0.8Prn
或0.02d3du0.8Prn
当流体被加热时n=0.4,流体被冷却时,n=0.3。
2019/8/30
应用范围:R e10,0 0 .6 0P r012 ,管长0与管径比 l /di 60
若l / di<60时, 将计算所得的α乘以 [1(di L)]0.7
准数名称
符号 准数式
意义
努塞尔特准数
l
(Nusselt)
Nu
表示对流传热的系数
雷诺准数
(Reynolds) Re
普兰特准数
(Prandtl)
Pr
格拉斯霍夫准数
(Grashof)
Gr
lu
确定流动状态的准数
cp
表示物性影响的准数
g tl 3 2
2
表示自然对流影响的准数
2019/8/30
c)蒸汽在水平管束外冷凝
1
0.725
r 2 g3
2
n 3 d0t
4
nmn10.n715nn220.75 nnzz0.75
2019/8/30
3)影响冷凝传热的因素
a)冷凝液膜两侧的温度差△t 当液膜呈滞流流动时,若△t加大,则蒸汽冷凝速率增加,
定性温度:除μw取壁温以外,其余均取液体进、出口温度的 算术平均值。
当Gr 250时 00按,上式计算出α后,再乘以一校正因子
f 0.810.01G 5r13
2019/8/30
3)流体在圆形直管内呈过渡流 对于Re=2300~10000时的过渡流范围, 先按湍流的
公式计算α,然后再乘以校正系数f。
2019/8/30
2019/8/30
2、液体沸腾时的对流传热系数
液体沸腾
大容积沸腾 管内沸腾
1)沸腾曲线 当温度差较小时,液体内部产生自然对流,α较小,且随
温度升高较慢。
当△t逐渐升高,在加热表面的局部位置产生气泡,该局 部位置称为气化核心。气泡产生的速度△t随上升而增加, α
急剧增大。称为泡核沸腾或核状沸腾。
热传导。
2019/8/30
1
0.943
g23r Ht
4
修正后
1
1.13
g23r Ht
4
应用范围: Re<1800
定性尺寸: H取垂直管或板的高度。 定性温度: 蒸汽冷凝潜热r取其饱和温度t0下的值,其余物
性取液膜平均温度。
2019/8/30
对于大空间的自然对流,比如管道或传热设备的表面 与周围大气层之间的对流传热,通过实验侧得的c,n的值在 表4-9中。
定性温度 :壁温tw和流体进出口平均温度的算术平均值,膜温。
2019/8/30
4、提高对流传热系数的途径
1)流体作湍流流动时的传热系数远大于层流时的传热系 数,并且Re↑,α↑,应力求使流体在换热器内达到湍流流动 。
3、应用准数关联式应注意的问题 1)定性温度:各准数中的物理性质按什么温度确定
2)定性尺寸:Nu,Re数中L应如何选定。
3)应用范围:关联式中Re,Pr等准数的数值范围。
2019/8/30
三、流体无相变时的对流传热系数
1、流体在管内作强制对流
1)流体在圆形直管内作强制湍流 a)低粘度(大约低于2倍常温水的粘度)流体
注意:管束排数应为10,若不是10时,计算结果应校正。
2019/8/30
2)流体在换热器的管间流动 当管外装有割去25%直径的圆缺形折流板时, 壳方的对
流传热系数关联式为: a)多诺呼(Donohue)法
N u0.2R 30e.6P1r3(w)0.14
0.2d 3 o(do u)0.6(c p)13(w)0.14
4) 不论管内还是管外,提高流u都能增大对流传热系数, 但是增大u,流动阻力一般按流速的平方增加,应根据具 体情况选择最佳的流速。 5)除增加流速外,可在管内装置如麻花铁或选用螺纹管 的方法,增加流体的湍动程度,对流传热系数增大,但此 时能耗增加。
2019/8/30
四、流体有相变时的对流传热系数
1、蒸汽冷凝时的对流传热系数
临界温差,临界热通量和临界对流传热系数。 工业生产中,一般应维持在核状沸腾区域内操作 。
2019/8/30
2)沸腾传热系数的计算
0.0
2de dd120.53Re0.8Pr13
应用范围: Re=12000~220000,d1/d2=1.65~17
定性尺寸:当量直径de
定性温度: 流体进出口温度的算术平均值。
2019/8/30
2、流体在管外强制对流
2019/8/30
2019/8/30
1)流体在管束外强制垂直流动
2)湍流时,圆形直管中的对流传热系数
0.02d3i diu0.8Prn
当n0.4时, 0.02C3p0.40.6u0.8
2019/8/30
α与流速的0.8呈正比,与管径的0.2次方呈反比, 在流体阻力允许的情况下,增大流速比减小管径对提高 对流传热系数的效果更为显著。
2019/8/30
管子呈正方形排列时:
de
4t20.78d502
d0
管子呈三角形排列时:
de 4
2 3
t2
4
d02
d0
管外流速可以根据流体流过的最大截面积S计算
AhD1d0
t
2019/8/30
3、自然对流
NuCGrPrn 或 Cl 2g3tl3Cpn
湍流的对流传热系数远比滞流时的大。
2019/8/30
5、流体流动的原因
强制对流:由于外力的作用
自然对流:由于流体内部存在温度差,使得各部分 的流体密度不同,引起流体质点的位移 单位体积的流体所受的浮力为:
1 2 g 2 1 t 2 g 2g t
2019/8/30
2019/8/30
2019/8/30
流体在错列管束外流过时,平均对流传热系数
N u0.3R 30.6 eP0.3 r3
流体在直列管束外流过时,平均对流传热系数
N u0.2R 60.6 eP0.r33
应用范围: Re>3000
特征尺寸:管外径do,流速取流体通过每排管子中最狭窄 通道处的速度。其中错列管距最狭窄处的距 离应在(x1-do)和2(t-do)两者中取小者。
1)蒸汽冷凝的方式 a) 膜状冷凝:若冷凝液能够浸润壁面,在壁面上形成一完
整的液膜 b)滴状冷凝:若冷凝液体不能润湿壁面,由于表面张力的作
用,冷凝液在壁面上形成许多液滴,并沿壁面 落下
2019/8/30
2019/8/30
2)膜状冷凝的传热系数 a)蒸汽在垂直管外或垂直平板侧的冷凝
假设: ① 冷凝液的物性为常数,可取平均液膜温度下的数值。 ② 一蒸汽冷凝成液体时所传递的热量,仅仅是冷凝潜热 ③ 蒸汽静止不动,对液膜无摩擦阻力。 ④ 冷凝液膜成层流流动,传热方式仅为通过液膜进行的
2019/8/30
1
de
0.36deu0.55Cp`3w0.1
4
应用范围: Re=2×103~106
定性尺寸: 当量直径de。 定性温度: 除μw取壁温以外,其余均取液体进、出口温度
的算术平均值。
当量直径可根据管子排列的情况别用不同式子进行计算:
6、传热面的性状、大小和位置
2019/8/30
二、因次分析法在对流传热中的应用
•列出影响该过程的物理量,并用一般函数关系表示:
f( l, , , c p , , u , g t)
•确定无因次准数π的数目
i n m 8 4 4
2019/8/30
准数的符号和意义
定性尺寸:Nu、Re等准数中的l取为管内径di。
定性温度:取为流体进、出口温度的算术平均值。
b) 高粘度的液体
Nu 0.02R7e0.8Pr0.23uw0.14
u w
0 .14
为考虑热流体方向的校正项。
2019/8/30
应用范围: Re 10, 0.70 P r16,7d 0 L i 0 60 定性尺寸: 取为管内径di。 定性温度:除μw取壁温以外,其余均取液体进、出口温度的
2019/8/30