空气 水蒸气对流给热系数测定实验报告
对流传热系数测定实验报告

竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
空气-水蒸汽对流给热系数测定

热流体与固体壁面的对数平均温差可由式(4—2)计算,
T
TW
m
T1
TW1 T2 TW 2
ln T1 TW1
T2 TW 2
(6-2)
式中:TW1 - 热流体进口处热流体侧的壁面温度,℃;
TW2 - 热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,
tW
空气-水蒸汽对流给热系数测定
一、实验目的 1.了解间壁式传热元件,掌握给热系数测定的实验方法。 2.掌握给热系数测定的实验数据处理方法。 3.观察水蒸气在水平管外壁上的冷凝现象。 4.了解热电阻测温的方法。
二、基本原理 在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量
交换,称为间壁式换热。如图 6-1 所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
对于空气在管内强制对流被加热时,可将式(6-9)改写为,
1 2
1 0.023
4
0.8
d 1.8 2
2
1 Pr20.4
2 qm2
0.8
(6-9) (6-10)
令,
m
1 0.023
4
0.8
d 1.8 2
(6-11)
X
2
1 Pr20.4
2 qm2
0.8
(6-12)
Y
1 2
C
RS 2
bd 2 d m
实验测定 m2 、 t1、t2、T1、T2 、并查取 t平均
1 2
t1
t2 下冷流体对应的 c p2 、换热面积
A,
即可由上式计算得总给热系数 K。
空气-水蒸气对流给热系数测定实验报告

空气-水蒸气对流给热系数测定实验报告本实验使用臭氧编码器,通过悬浮思路分析,利用不同的匀速度下不同的温度差分析空气-水蒸气的对流换热系数,帮助我们理解空气-水蒸汽对流的过程。
本文将对实验的设备、方法、结果及分析进行详细介绍。
一、实验设备1. 实验室气体混合系统2. 实验室压力传感器4. 实验室水蒸气浸润计6. 实验室数据采集器二、实验方法1. 设计实验2. 实验片段将实验室气体混合系统、压力传感器、温度传感器、水蒸气浸润计和湿度传感器等设备设置在实验室中,同时使用数据采集器对数据进行实时记录。
在实验中,我们首先设置了一个不同的温度差,然后观察它们在不同的匀速度下的换热系数。
通过计算,我们可以得到不同匀速下不同温度差的换热系数。
三、实验结果及分析通过实验结果和数据分析,我们得到不同温度差和匀速度下的换热系数。
1. 换热系数随着温度差的增加而增加我们可以看到,在温度差越大的情况下,热传导的能力也越强。
颗粒与颗粒之间的间距越小,热量间的转移就越快,因此换热系数也越高。
当温度差在一定的范围内,换热系数与温度差的平方成正比。
我们还可以看到,在匀速越大的情况下,换热系数也会越大。
当匀速越大时,颗粒间的热传导也会越快,从而使换热系数更大。
综合以上分析,我们可以得到空气-水蒸汽的对流换热系数与温度差和匀速度密切相关。
当温度差和匀速度越大时,换热系数也会越大。
同时,通过这些实验结果,我们可以更好地理解空气-水蒸汽对流的过程。
四、实验结论通过本次实验,我们可以得出以下结论:1. 空气-水蒸汽的对流换热系数与温度差成正比,当温度差越大时,换热系数也会越大。
因此,我们可以通过控制空气-水蒸汽的温度差和匀速度来控制其换热系数,从而更好地理解热传导过程。
空气-水蒸气对流给热系数测定实验报告

空气-水蒸气对流给热系数测定实验报告
实验目的:测定空气-水蒸气对流给热系数。
实验原理:空气-水蒸气对流给热系数是指在给定条件下,单位时间内单位面积的对流热流量。
在实际应用中,了解对流给热系数的大小对于设计和优化热传递设备非常重要。
实验装置:实验装置包括一个加热管、一个水槽以及一个温度计。
通过控制加热管的电压和水槽的温度,可以得到不同的条件下空气-水蒸气对流的热传递情况。
实验步骤:
1. 将实验装置准备好,确保加热管和温度计的位置正确。
2. 首先将加热管的电压调整到一个固定值,记录加热管上的电压和电流。
3. 启动水槽并将水温调整到一个适当的温度。
4. 将温度计放置在实验装置中,记录下来水的初始温度。
5. 开始记录时间和温度,每隔一段时间记录一次温度值。
6. 进行多组实验,每组实验可以改变加热管的电压或者水槽的温度,以得到不同的实验数据。
实验数据处理:
1. 将实验数据整理成表格。
2. 根据实验数据绘制温度-时间曲线。
3. 计算出空气-水蒸气对流的热传递系数。
4. 对不同实验条件下得到的热传递系数进行比较和分析。
实验结果:
根据实验数据计算得出的空气-水蒸气对流给热系数为X(单位)。
实验讨论:
根据实验结果可以得出结论:在给定的实验条件下,空气-水
蒸气对流给热系数为X,说明X。
实验结论:
通过本实验测定得到空气-水蒸气对流给热系数为X(单位),实验结果具有一定的参考价值,并为相关热传递设备的设计和优化提供了理论依据。
实验三对流给热系数测定实验(空气-水蒸气体系)

实验三 对流给热系数测定实验(空气-水蒸气体系)3.1 实验目的1) 观察水蒸气在水平管外壁上的冷凝现象;2)测定空气在圆形直管内强制对流给热系数和换热器总传热系数并随着流量的变化规律;3)掌握热电阻测温方法;4)掌握化工原理实验软件库(VB 实验数据处理软件系统)的使用。
3.2 基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=α0A 0(T -T W )m =αi A i (t w -t)m (1—15) 式中:V 被加热流体体积流量,m 3/s ; ρ 被加热流体密度,kg/m 3; C P 被加热流体平均比热,J/(kg ·℃);α0、αi 水蒸气对内管外壁的冷凝给热系数和流体对内管内壁的对流给热系数,W/(m 2·℃);t 1、t 2 被加热流体进、出口温度,℃; A 0、A i 内管的外壁、内壁的传热面积,m 2; (T -T W )m 水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1—16)(t w -t)m 内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w mw -----=- (1—17) 式中:T 1、T 2 蒸汽进、出口温度,℃; T w1、T w2、t w1、t w2 外壁和内壁上进、出口温度,℃。
当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。
由式(1—17)可得:m P Tw T A t t C V )()(0120--=ρα (1—18)mw P it t A t t C V )()(012--=ρα (1—19) 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A 0或A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1 —18)算得实测的水蒸气(平均)冷凝给热系数α0;通过 式(1 —19)算得实测的流体在管内的(平均)对流给热系数αi 。
实验7. 空气-蒸汽对流给热系数的测定

实验7. 空气-蒸汽对流给热系数的测定一、实验目的1.熟悉传热过程及间壁式换热器的结构,掌握热电阻的测温方法;2.观察蒸汽在水平冷凝管外壁上的冷凝现象,测定对流给热系数h ;3.测定努塞尔数Nu 与雷诺数e R 之间的关系,并确定它们的关联式;4.了解强化传热的途径,分析热交换过程的影响因素。
二、基本原理工业生产中冷流体和热流体常通过固体壁面进行热量交换,此种换热方式称为间壁式传热。
间壁式传热过程是由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热过程组成,间壁式传热过程如图2—10所示。
当传热过程达到稳定时,它们有如下关系: 图2—10 间壁式传热过程示意图()()()()112122121122m p m p W W m M mq c t t q c T T h A t t h A T T KA t Φ=-=-=-=-=∆ (2—45) 式中:Φ—传热速率,W ;q m1、q m2 —冷、热流体的质量流量,1kg s -⋅; c p1、c p2 —冷、热流体的比热容,11kJ kg K --⋅⋅;T 1 、T 2—热流体的进出口温度,K ; t 1、t 2 —冷流体的进出口的度,K ;A 1、A 2—冷、热流体侧的对流传热面积,m 2;12,h h —冷、热流体与固体壁面的对流给热系数,21W m K --⋅⋅; ()W m t t -、()W m T T -—冷、热流体与固体壁面的对数平均温度差,K ;K —总传热系数,21W m K --⋅⋅; A —传热面积,m 2;m t ∆—对数平均温度差,K ;热流体与固体壁面的对数平均温差可由下式计算()()()22112211ln W W W W m W T T T T T T T T T T -----=- (2-46)式中:12,W W T T —热流体进出口处热流体侧壁面的温度,K 。
固体壁面与冷流体的对数平均温差可由下式求得()()()22112211ln t t t t t t t t t t W W W W m W -----=- (2-47)式中:12,W W t t —冷流体进出口处冷流体侧壁面的温度,K ; 冷热流体间的对数平均温度差可由下式计算()()12211221ln m T t T t t T t T t ---∆=-- (2—48)在套管式换热器中,由于水蒸气通过套管的环隙,冷空气或水通过内管间,测定对流给热系数时,由式(2—45)可得内管内壁面与冷空气或水的对流给热系数()()112111p W mm c t t h A t t -=- (2—49)实验中,要测定内管的壁温t w1和t w2,冷空气或水的进出口温度t 1和t 2;实验用套管的长度l ,内径d 1,换热面积11A d l π=,冷流体的质量流量及比热容,即可求得对流给热系数h 1。
对流传热系数测定实验报告

竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
空气-水蒸气对流给热系数测定实验报告

一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t tt t t t t t t W W W W m W-----=- (4-3)δ TT W t Wt图4-1间壁式传热过程示意图式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T lnt T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算?,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()()22112211ln W W W W m W T T T T T T T T T T -----=-(4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t t t t t t t t t W W W W m W-----=-(4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆(4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α(4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算?2。
然而,直接测量固体壁面的温度,尤其管内壁的温度,实验技术难度大,而且所测得的数据准确性差,带来较大的实验误差。
因此,通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流给热系数就成为人们广泛采用的一种实验研究手段。
由式(4-1)得,()mp t A t t c m K ∆-=1222(4-6)实验测定2m 、2121T T t t 、、、、并查取()2121t t t +=平均下冷流体对应的2p c 、换热面积A ,即可由上式计算得总给热系数K 。
1. 近似法求算对流给热系数2α以管内壁面积为基准的总给热系数与对流给热系数间的关系为,11212122211d d d d R d bd R K S m S αλα++++=(4-7)用本装置进行实验时,管内冷流体与管壁间的对流给热系数约为几十到几百K m W .2;而管外为蒸汽冷凝,冷凝给热系数1α可达~K m W .1024左右,因此冷凝传热热阻112d d α可忽略,同时蒸汽冷凝较为清洁,因此换热管外侧的污垢热阻121d d R S 也可忽略。
实验中的传热元件材料采用紫铜,导热系数为383.8K m W ⋅,壁厚为2.5mm ,因此换热管壁的导热热阻md bd λ2可忽略。
若换热管内侧的污垢热阻2S R 也忽略不计,则由式(4-7)得, K ≈2α (4-8)由此可见,被忽略的传热热阻与冷流体侧对流传热热阻相比越小,此法所得的准确性就越高。
2. 冷流体质量流量的测定用孔板流量计测冷流体的流量,则,2m V ρ=(4-9)式中,V 为冷流体进口处流量计读数,ρ为冷流体进口温度下对应的密度。
3. 冷流体物性与温度的关系式在0~100℃之间,冷流体的物性与温度的关系有如下拟合公式。
(1)空气的密度与温度的关系式:52310 4.510 1.2916t t ρ--=-⨯+ (2)空气的比热与温度的关系式:60℃以下p C =1005 J / (kg ?℃),70℃以上p C =1009 J / (kg ?℃)。
(3)空气的导热系数与温度的关系式: 8252108100.0244t t λ--=-⨯+⨯+ (4)空气的黏度与温度的关系式:6235(210510 1.716910t t μ---=-⨯+⨯+⨯)五.主要仪器设备(含流程简图及主要仪器)1.实验装置实验装置如图4-1所示图4-1 空气-水蒸气换热流程图来自蒸汽发生器的水蒸气进入不锈钢套管换热器环隙,与来自风机的空气在套管换热器内进行热交换,冷凝水经疏水器排入地沟。
冷空气经孔板流量计或转子流量计进入套管换热器内管(紫铜管),热交换后排出装置外。
2.设备与仪表规格(1)紫铜管规格:直径φ21×2.5mm,长度L=1000mm;(2)外套不锈钢管规格:直径φ100×5mm,长度L=1000mm;(4)铂热电阻及无纸记录仪温度显示;(5)全自动蒸汽发生器及蒸汽压力表。
六、操作方法与实验步骤实验步骤1、打开控制面板上的总电源开关,打开仪表电源开关,使仪表通电预热,观察仪表显示是否正常。
2、在蒸汽发生器中灌装清水至水箱的球体中部,开启发生器电源,使水处于加热状态。
到达符合条件的蒸汽压力后,系统会自动处于保温状态。
3、打开控制面板上的风机电源开关,让风机工作,同时打开冷流体进口阀,让套管换热器里充有一定量的空气。
4、打开冷凝水出口阀,排出上次实验余留的冷凝水,在整个实验过程中也保持一定开度。
注意开度适中,开度太大会使换热器中的蒸汽跑掉,开度太小会使换热不锈钢管里的蒸汽压力过大而导致不锈钢管炸裂。
5、在通水蒸汽前,也应将蒸汽发生器到实验装置之间管道中的冷凝水排除,否则夹带冷凝水的蒸汽会损坏压力表及压力变送器。
具体排除冷凝水的方法是:关闭蒸汽进口阀门,打开装置下面的排冷凝水阀门,让蒸汽压力把管道中的冷凝水带走,当听到蒸汽响时关闭冷凝水排除阀,方可进行下一步实验。
6、开始通入蒸汽时,要仔细调节蒸汽阀的开度,让蒸汽徐徐流入换热器中,逐渐充满系统中,使系统由“冷态”转变为“热态”,不得少于10分钟,防止不锈钢管换热器因突然受热、受压而爆裂。
同时,打开顶端放气阀,将设备内的空气排出,至排气管有蒸汽放出,关闭排气阀。
7、上述准备工作结束,系统也处于“热态”后,调节蒸汽进口阀,使蒸汽进口压力维持在0. 01MPa,可通过调节蒸汽发生器出口阀及蒸汽进口阀开度来实现。
8、自动调节冷空气进口流量时,可通过仪表调节风机转速频率来改变冷流体的流量到一定值,在每个流量条件下,均须待热交换过程稳定后方可记录实验数值,一般每个流量下至少应使热交换过程保持15分钟方为视为稳定;改变流量,记录不同流量下的实验数值。
9、记录6~8组实验数据,可结束实验。
先关闭蒸汽发生器,关闭蒸汽进口阀,关闭仪表电源,待系统逐渐冷却后关闭风机电源,待冷凝水流尽,关闭冷凝水出口阀,关闭总电源。
10、打开实验软件,输入实验数据,进行后续处理。
七、实验数据记录与处理1、实验原始数据记录表,根据相关计算式进行相关数据计算。
实验原始数据记录表空气进口处密度:2916.10.34105.40.34102916.1105.41035325+⨯⨯-⨯=+⨯-=----t t ρ=1.1502kg/m 3空气质量流量:s kg V m s /0058.036001502.13.182=⨯=⨯=ρ空气流速:s m d V u /2952.25016.0016.014.336003..18442=⨯⨯⨯⨯==π 2、给热系数K 的计算空气定性温度:()55.54)1.750.34(2221=+=+=t t t 平均°C<60°C 则空气比热:1005=Cp J/(kg ·°C)定性温度下的空气密度'ρ:冷、热流体间的对数平均温差:()()=-----=-----=∆0.348.1031.754.104ln)0.348.103()1.754.104(ln 12211221t T t T t T t T t m 46.6565°C传热面积:2220502.01016.014.3m l d A =⨯⨯==π 对流传热系数:()6565.460502.0)0.341.75(10050058.01222⨯-⨯⨯=∆-=mp t A t t c m K =103.1096w/(m 2·°C)3、近似法求给热系数2α 则2α=K=103.1096w/(m 2·°C)4、2α理论值的计算10)7169.1105102(⨯+⨯+⨯-=t t =s Pa ⋅⨯=⨯+⨯⨯+⨯⨯-----5532610885.110)7169.10.341050.34102( 空气导热系数: 雷诺数:2311010885.10759.12952.25016.0'Re 5=⨯⨯⨯==-μρdu普兰特数:6990.002710.010885.11005Pr 5=⨯⨯==-λμCp努赛尔数:88.6002710.0016.011.1032=⨯==λαd Nu 对于流体在圆形只管内做湍流时的对流传热系数,如符合以下条件:54102.1100.1Re ⨯-⨯=,1207.0Pr -=,管长与管内径之60/≥d l ,则n Nu Pr Re 023.08.0=。
本实验中,605.62016.0/1/≥==d l ,而Re,Pr 也基本在这个范围内,n=0.4。
所以可以用上述公式计算Nu的理论值n Nu Pr Re 023.0'8.0===⨯⨯4.08.06990.023110023.061.74理论'2α:)/(56.104016.0/02710.074.61/''22C m W d Nu ︒⋅=⨯==λα 误差:/'2α-2α//'2α=(104.56-103.11)/104.56%100⨯=1.38%八、实验结果与分析1、冷流体给热系数的实验计算值与理论值(800230.0.4Re .Nu/Pr =)列表比较,计算各点误差,并分析讨论。
①、迪图斯-贝尔特公式(n Nu Pr Re 023.08.0=)有条件范围,而实验数据并未全在此范围之内。
那用此公式算出的Nu'和2α' 误差就可能较大。
②、设备内的空气未排尽,即有不凝性气体存在,使2α值下降。