12固体小球对流传热系数的测定讲解
固体小球传热实验

一、实验项目的来源与技术背景
来源与背景
应用价值: 化工生产中的换热器,冷凝器,暖气片,电子
元器件散热,宇航材料隔热以及建筑材料保温等。
一、实验项目的来源与技术背景
来源与背景
二、实验原理
实验原理 根据热平衡原理,球体热量随时间的变化应等
于通过对流换热向周围环境的散热速率。
-CV
dT dt
AT
8
计; 4、5、6、9–管路调节阀
13
2
35
1ห้องสมุดไป่ตู้
7–沙粒床层反应器;8–带嵌装热 7
电偶的钢球;10–温度记录仪; 6
11–钢球移动轨迹; 12–电加热炉 4
控制器;13–管式加热炉
二、实验原理
实验原理
图2 实验计算机控制界面流程图
二、实验原理
实验原理
图2 固体小球对流传热实验装置图
三、实验操作技巧与难点 实验步骤如下:
热量传递的方式:导热,对流和辐射。
对流传热系数——表征传热过程强烈程度的指标。
理论上:
h流化床> h固定床> h强制对流> h 自然对流
一、实验项目的来源与技术背景
来源与背景
非定常导热过程简化处理——集总参数法 条件: 小球体积尽量小,忽略其内部热阻,将小球看作 均一的来处理。
一、实验项目的来源与技术背景
技巧与难点
1)开启设备总电源,打开计算机操作界面,开启管 式加热炉电源并输入加温预热的预设值。温度应控 制400-500度之间。温度太高会引入热辐射,造成 测量误差。另外也容易损坏铜球及热电偶;而温度 太低,温差较小,易产生系统误差。
三、实验操作技巧与难点
技巧与难点
2)应快速将加热小球置于不同的环境中进行实验, 以免造成计算机温度采集的读数误差。
【2017年整理】实验五对流传热系数

实验五对流传热系数的测定一、实验目的1.学会对流传热系数的测定方法。
2.测定空气在圆形直管内(或螺旋槽管内)的强制对流传热系数,并把数据整理成准数关联式,以检验通用的对流传热准数关联式。
3.了解影响对流传热系数的因素和强化传热的途径。
二、实验内容测定不同空气流量下空气和水蒸汽在套管换热器中的进、出口温度,求得空气在管内的对流传热系数。
三、基本原理1.准数关联式对流传热系数是研究传热过程及换热器性能的一个很重要的参数。
在工业生产和科学研究中经常采用间壁式换热装置来达到物料的冷却和加热目的,这种传热过程是冷热流体通过固体壁面(传热元件)进行的热量交换,由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
由传热速率方程式知,单位时间、单位传热面所传递的热量为q=K(T-t) (5—1)而对流传热所传递的热量,对于冷热流体可由牛顿定律表示q=αh·(T-T w1) (5—2)或q=αc·(t w2-t) (5—3)式中q———传热量,W/m2;α———给热系数,W/m2·T———热流体温度,℃;t———冷流体温度,℃;T w1、t w2———热、冷流体侧的壁温,℃;下标:c——冷侧h——热侧。
由于对流传热过程十分复杂,影响因素极多,目前尚不能通过解析法得到对流传热系数的关系式,它必须由实验加以测定获得各影响因素与对流传热系数的定量关系。
为了减少实验工作量,采用因次分析法将有关的影响因素无因次化处理后组成若干个无因次数群,从而获得描述对流传热过程的无因次方程。
在此基础上组织实验,并经过数据处理得到相应的关系式,如流体在圆形(光滑)直管中做强制对流传热时传热系的变化规律可用如下准数关联式表示N u=CR e m P r n(5—4)Ndu=αλ(5—5)R du dw A e ==ρμμ(5—6) 式中 N u ———努塞尔特准数;R e ———雷诺准数;P r ———普兰特准数;w ———空气的质量流量, Kg /s ;d ———热管内径, m ;A ———换热管截面积, m 2;μ———定性温度下空气的粘度, Pa ·S ;λ———定性温度下空气的导热系数, W /(m ·℃);α———对流传热系数, W /(m 2·℃)。
12固体小球对流传热系数的测定讲解

固体小球对流传热系数的测定A 实验目的工程上经常遇到凭藉流体宏观运动将热量传给壁面或者由壁面将热量传给流体的过程, 此过程通称为对流传热(或对流给热)。
显然流体的物性以及流体的流动状态还有周围的环境都会影响对流传热。
了解与测定各种环境下的对流传热系数具有重要的实际意义。
通过本实验可达到下列目的:(1) 测定不同环境与小钢球之间的对流传热系数,并对所得结果进行比较。
(2) 了解非定常态导热的特点以及毕奥准数( Bi )的物理意义。
(3)熟悉流化床和固定床的操作特点。
B 实验原理自然界和工程上,热量传递的机理有传导、 对流和辐射。
传热时可能有几种机理同时存 在,也可能以某种机理为主,不同的机理对应不同的传热方式或规律。
当物体中有温差存在时,热量将由高温处向低温处传递,物质的导热性主要是分子传递现象 的表现。
通过对导热的研究,傅立叶提出:-JT式中:一一-y 方向上的温度梯度 K/mldy上式称为傅立叶定律, 表明导热通量与温度梯度成正比。
负号表明,导热方向与温度梯度的方向相反。
金属的导热系数比非金属大得多,大致在50〜415 W/m K 1范围。
纯金属的导热系数随温度升高而减小,合金却相反,但纯金属的导热系数通常高于由其所组成的合金。
本实验中,小球材料的选取对实验结果有重要影响。
热对流是流体相对于固体表面作宏观运动时,引起的微团尺度上的热量传递过程。
事实上,它必然伴随有流体微团间以及与固体壁面间的接触导热, 因而是微观分子热传导和宏观微团热对流两者的综合过程。
具有宏观尺度上的运动是热对流的实质。
流动状态(层流和湍q yQ y A、dT——扎dy(1)流)的不同,传热机理也就不同。
牛顿提出对流传热规律的基本定律-牛顿冷却定律::-并非物性常数,其取决于系统的物性因素,几何因素和流动因素,通常由实验来测 定。
本实验测定的是小球在不同环境和流动状态下的对流传热系数。
强制对流较自然对流传热效果好,湍流较层流的对流传热系数要大。
固体小球传热系数实验思考题

固体小球传热系数实验思考题摘要:一、实验目的二、实验原理三、实验器材与试剂四、实验步骤1.准备阶段2.实验阶段3.数据处理与分析阶段五、实验结果与讨论六、实验总结正文:一、实验目的固体小球传热系数实验旨在加深对热传导的理解,熟悉热传导实验的原理与方法,掌握热传导系数的计算。
二、实验原理热传导是指在温差的作用下,物体内部热量由高温区向低温区传递的过程。
固体小球传热系数实验是利用热量传递的原理,通过测量固体小球在不同温度下的热传导情况,来计算其传热系数。
三、实验器材与试剂实验器材:恒温槽、温度计、秒表、天平、钢板、固体小球、导热膏。
试剂:水、酒精。
四、实验步骤1.准备阶段a.准备恒温槽,将其调至设定温度;b.在钢板上涂抹一层导热膏;c.将固体小球放在钢板上,用天平称出其质量m;d.用酒精将温度计消毒,待干。
2.实验阶段a.将温度计插入固体小球,确保其接触良好;b.将钢板放入恒温槽,用秒表计时;c.在规定时间内,记录温度计的读数,计算出固体小球的平均温度;d.重复实验三次,确保每次实验的温度稳定。
3.数据处理与分析阶段a.根据实验数据,计算出固体小球的热传导系数;b.分析实验结果,与理论值进行对比,探讨误差来源。
五、实验结果与讨论实验结果显示,固体小球的热传导系数与理论值存在一定差距,这可能是由于实验过程中存在的误差导致的。
通过分析误差来源,可以进一步改进实验方法,提高实验结果的准确性。
六、实验总结固体小球传热系数实验有助于加深对热传导的理解,熟练掌握实验原理与方法,为今后的热传导研究和工程应用打下基础。
实验十二、固体导热系数的测定

十二、固体(橡胶)导热系数实验的操作步骤(313)一、实验的操作步骤1、 利用螺旋测微器测量上、下铜板和橡胶厚度,再用游标卡尺测量它们直径,并称量下铜板的质量等物理量,多次测量,记录在事前设计的表格,然后取平均值。
其中铜板的比热容C=0.385kJ/(K ·kg);2、 根据初始温度设定高温,按一下温控器面板上的设定键(S ),此时设定值(SV )后一位数码管开始闪烁。
根据实验所需温度大小,设定加热终了温度,等待8秒钟后就会自动返回至正常显示态。
3、 将热电偶高温端Ⅰ、Ⅱ分别插入对应的圆筒发热盘侧面和散热盘(P )侧面的小孔中,千万注意不要插错,并将低温端插入旁边杯子中的冰水混合物中,被插侧面的二小孔与冰点补偿器应放在同一侧,以免线路错乱。
热电偶插入小孔时,最好涂抹硅脂,并插入洞孔底部,保证其接触良好。
4、 手动控温测量导热系数时,控制方式开关打到“手动”。
将手动选择开关打到“高”档,根据目标温度的高低,加热一定时间后再打至“低”档。
根据温度的变化情况要手动去控制“高”档或“低”档加热。
然后,每隔5分钟读一次温度示值(具体时间因被测物和温度而异),如在一段时间内样品上、下表面温度T 1、T 2示值都不变,即可认为已达到稳定状态。
5、 自动PID 控温测量时,控制方式开关打到“自动”,手动选择开关打到中间一档,PID 控温表将会使发热盘的温度自动达到设定值。
每隔5分钟读一下温度示值,如在一段时间内样品上、下表面温度T 1、T 2示值都不变,即可认为已达到稳定状态。
6、 记录稳态时T 1、T 2值后,移去样品,继续对下铜板加热,当下铜盘温度比T 2高出10℃左右时,移去圆筒,让下铜盘所有表面均暴露于空气中,使下铜板自然冷却。
每隔30秒读一次下铜盘的温度示值并记录,直至温度下降到T 2 以下一定值。
作铜板的T —t 冷却速率曲线(选取邻近的T 2测量数据来求出冷却速率)。
7、 本实验选用铜-康铜热电偶测温度,温差100℃时,其温差电动势约4.0mV ,故应配用量程0~20mV ,并能读到0.01mV 的数字电压表(数字电压表前端采用自稳零放大器,故无须调零)。
对流传热系数的测定

对流传热系数的测定北京理工大学化学学院董女青1120102745一、实验目的1、掌握对流传热系数的测定方法,测定空气在圆形直管内的强制对流传热系数, 验证准数关联式。
2、了解套管换热器的结构及操作,掌握强化传热的途径。
3、学习热电偶测量温度的方法。
二.实验原理冷热流体在间壁两侧换热时,传热基本方程及热衡算方程为:Q = KAAtm = m^Cp (t入一t出)换热器的总传热系数可表示为:1 1 b 1—------- 1 ---- 1 ----K a :入a 0 式中:Q—换热量,J/sK—总传热系数,J/(m' s)A—换热面积,m:At m-平均温度差,°CCp—比热,J/ (kg • K)nu—质量流量,kg/sb—换热器壁厚,ma i、a o—内、外流体对流传热系数,J/(m? • s)依据牛顿冷却定律,管外蒸汽冷凝,管内空气被加热,换热最亦可表示为:Q = a jAj(t w - t) = a 0A0 (T — T w)式中:t w.凡一管内(冷侧)、管外(热侧)壁温,t、T-管内(冷侧)、管外(热侧)流体温度测定空气流量、进出口温度、套管换热面积,并测定蒸汽侧套管壁温,由于管壁导热系数较大且管壁较薄,管内壁温与外壁温近似柑等,根据上述数据即可得到管内对流传热系数,由丁•换热器总传热系数近似等丁•关内对流传热系数,所以亦可得到套管换热器的总传热系数。
流体在圆形直管强制对流时满足下述准数关联式:Nu = O.O237?e°-8Pr0-33式中:Nu-努塞尔特准数,Nu=^,无因次Re—雷诺准数,Re = ^,无因次P L普兰特准数,Pr =耳,无因次测定不冋流速条件下的对流传热系数,在双对数坐标屮标绘加he关系得到一条直线,直线斜率应为0. &三、实验内容1、测定不同空气流星下空气和水蒸汽在套管换热器换热时内管空气的对流传热系数,推算总传热系数。
2、在双对数坐标中标绘M L R決糸,验证准数关联式。
12固体小球对流传热系数的测定剖析

固体小球对流传热系数的测定A 实验目的工程上经常遇到凭藉流体宏观运动将热量传给壁面或者由壁面将热量传给流体的过程,此过程通称为对流传热(或对流给热)。
显然流体的物性以及流体的流动状态还有周围的环境都会影响对流传热。
了解与测定各种环境下的对流传热系数具有重要的实际意义。
通过本实验可达到下列目的:(1)测定不同环境与小钢球之间的对流传热系数,并对所得结果进行比较。
(2)了解非定常态导热的特点以及毕奥准数(Bi )的物理意义。
(3) 熟悉流化床和固定床的操作特点。
B 实验原理自然界和工程上,热量传递的机理有传导、对流和辐射。
传热时可能有几种机理同时存在,也可能以某种机理为主,不同的机理对应不同的传热方式或规律。
当物体中有温差存在时,热量将由高温处向低温处传递,物质的导热性主要是分子传递现象的表现。
通过对导热的研究,傅立叶提出:dy dT A Q q yy λ-== (1)式中: dydT - y 方向上的温度梯度[]m K / 上式称为傅立叶定律,表明导热通量与温度梯度成正比。
负号表明,导热方向与温度梯度的方向相反。
金属的导热系数比非金属大得多,大致在50~415[]K m W ⋅/范围。
纯金属的导热系数随温度升高而减小,合金却相反,但纯金属的导热系数通常高于由其所组成的合金。
本实验中,小球材料的选取对实验结果有重要影响。
热对流是流体相对于固体表面作宏观运动时,引起的微团尺度上的热量传递过程。
事实上,它必然伴随有流体微团间以及与固体壁面间的接触导热,因而是微观分子热传导和宏观微团热对流两者的综合过程。
具有宏观尺度上的运动是热对流的实质。
流动状态(层流和湍流)的不同,传热机理也就不同。
牛顿提出对流传热规律的基本定律 - 牛顿冷却定律:()f W T T A qA Q -==α (2)α并非物性常数,其取决于系统的物性因素,几何因素和流动因素,通常由实验来测定。
本实验测定的是小球在不同环境和流动状态下的对流传热系数。
用球体法测量导热系数实验资料讲解

用球体法测量导热系数实验天津市高等教育自学考试模具设计与制造专业热工基础与应用综合实验报告(三)用球体法测量导热系数实验主考院校:专业名称:专业代码:学生姓名:准考证号:实验7 用球体法测量导热系数实验一、实验目的1.学习用球体法测定粒状材料导热系数的方法。
2.了解温度测量过程及温度传感元件。
二、实验原理1.导热的定义:导热是指物体内的不同部位因温差而发生的传热,或不同温度的两物体因直接接触而发生的传 热.2.温度场:非稳态 t=f (x,y,z,τ) 稳态 t=f(x,y,z)一维稳态 t=f(x)上式中x,y,z 为空间坐标, τ为时间 3温度梯度:上图中,等温面法向温度增量t ∆与距离n ∆的极限比值的极限。
即:n t nn t n gradt n ∂∂=∆∆=→∆0lim4.傅里叶定律:傅里叶定律的文字表述:在导热现象中,单位时间内通过给定截面的热量,正比例于垂直于该界面方向上的温度变化率和截面面积,而热量传递的方向则与温度升高的方向相反。
dx dt n t Q λλ=∂∂=其中Q 为导热量,单位为W ;A 为传热面积,单位为m2;T 为温度, 单位为K ;x 为在导热面上的坐标,单位为m 。
5.导热系数:导热系数是表征物质导热能力的物性参数。
一般地,不同物质的导热系数相差很大。
金属的导热系数在2.3~417.6W/m ·℃范围, 建筑材料的导热系数在0.16~2.2 W/m ·℃之间, 液体的导热系数波动于0.093~0.7 W/m ·℃, 气体的导热系数为0.0058~0.58 W/m ·℃范围内。
即使是同一种材料,其导热系数亦随温度、压力、湿度、物质结构和密度等因素而变化 dxdt q -=λ λ为导热系数,w/m.k 6.影响λ的因素:1)温度、密度、湿度及材料的种类的等因素。
对流传热过程是流体与壁面间的传热过程,所以凡是与流体流动及壁面有关的因素,也必然影响对流传热系数的数值,实验表明传热系数 值与流体流动产生的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体小球对流传热系数的测定A 实验目的工程上经常遇到凭藉流体宏观运动将热量传给壁面或者由壁面将热量传给流体的过程,此过程通称为对流传热(或对流给热)。
显然流体的物性以及流体的流动状态还有周围的环境都会影响对流传热。
了解与测定各种环境下的对流传热系数具有重要的实际意义。
通过本实验可达到下列目的:(1)测定不同环境与小钢球之间的对流传热系数,并对所得结果进行比较。
(2)了解非定常态导热的特点以及毕奥准数(Bi )的物理意义。
(3) 熟悉流化床和固定床的操作特点。
B 实验原理自然界和工程上,热量传递的机理有传导、对流和辐射。
传热时可能有几种机理同时存在,也可能以某种机理为主,不同的机理对应不同的传热方式或规律。
当物体中有温差存在时,热量将由高温处向低温处传递,物质的导热性主要是分子传递现象的表现。
通过对导热的研究,傅立叶提出:dy dT A Q q yy λ-== (1)式中: dydT - y 方向上的温度梯度[]m K / 上式称为傅立叶定律,表明导热通量与温度梯度成正比。
负号表明,导热方向与温度梯度的方向相反。
金属的导热系数比非金属大得多,大致在50~415[]K m W ⋅/范围。
纯金属的导热系数随温度升高而减小,合金却相反,但纯金属的导热系数通常高于由其所组成的合金。
本实验中,小球材料的选取对实验结果有重要影响。
热对流是流体相对于固体表面作宏观运动时,引起的微团尺度上的热量传递过程。
事实上,它必然伴随有流体微团间以及与固体壁面间的接触导热,因而是微观分子热传导和宏观微团热对流两者的综合过程。
具有宏观尺度上的运动是热对流的实质。
流动状态(层流和湍流)的不同,传热机理也就不同。
牛顿提出对流传热规律的基本定律 - 牛顿冷却定律:()f W T T A qA Q -==α (2)α并非物性常数,其取决于系统的物性因素,几何因素和流动因素,通常由实验来测定。
本实验测定的是小球在不同环境和流动状态下的对流传热系数。
强制对流较自然对流传热效果好,湍流较层流的对流传热系数要大。
热辐射是当温度不同的物体,以电磁波形式,各辐射出具有一定波长的光子,当被相互吸收后所发生的换热过程。
热辐射和热传导,热对流的换热规律有着显著的差别,传导与对流传热速率都正比于温度差,而与冷热物体本身的温度高低无关。
热辐射则不然,即使温差相同,还与两物体绝对温度的高低有关。
本实验尽量避免热辐射传热对实验结果带来误差。
物体的突然加热和冷却过程属非定常导热过程。
此时导热物体内的温度,既是空间位置又是时间的函数,()t z y x f T ,,,=。
物体在导热介质的加热或冷却过程中,导热速率同时取决于物体内部的导热热阻以及与环境间的外部对流热阻。
为了简化,不少问题可以忽略两者之一进行处理。
然而能否简化,需要确定一个判据。
通常定义无因次准数毕奥数(Bi ),即物体内部导热热阻与物体外部对流热阻之比进行判断。
=Bi 外部对流热阻内部导热热阻 A V λααλδ==1 (3) 式中:A V =δ - 为特征尺寸,对于球体为R/3若Bi 数很小,αλδ1<<,表明内部导热热阻<<外部对流热阻,此时,可忽略内部导热热阻,可简化为整个物体的温度均匀一致,使温度仅为时间的函数,即()t f T =。
这种将系统简化为具有均一性质进行处理的方法,称为集总参数法。
实验表明,只要Bi<0.1,忽略内部热阻进行计算,其误差不大于5%,通常为工程计算所允许。
将一直径为d s 温度为0T 的小钢球,置于温度为恒定f T 的周围环境中,若f T T >0,小球的瞬时温度T,随着时间t的增加而减小。
根据热平衡原理,球体热量随时间的变化应等于通过对流换热向周围环境的散热速率。
()f T T A dtdT CV -=αρ- (4)()()dt CV A T T T T d f f ρα-=-- (5) 初始条件:f f T T T T t -=-=00,积分(5)式得:()⎰⎰---=--f f T T T T t f f dt CV A T T T T d 00ρα ()Fo Bi t CV A T T T T f f ⋅-=⎪⎪⎭⎫ ⎝⎛⋅-=--exp exp 0ρα (6) ()2A V at Fo = (7) 定义时间常数ACV αρτ=,分析(6)式可知,当物体与环境间的热交换经历了四倍于时间常数的时间后,即:τ4=t ,可得: 018.040==---e T T T T f f表明过余温度f T T -的变化已达98.2%,以后的变化仅剩1.8%,对工程计算来说,往后可近似作定常数处理。
对小球63S d R A V == 代入式(6)整理得: f f S T T T T t Cd --⋅=0ln 16ρα (8)或 f f S S T T T T t Cd d Nu --⋅==02ln 16λρλα (9)通过实验可测得钢球在不同环境和流动状态下的冷却曲线,由温度记录仪记下T ~t 的关系,就可由式(8)和式(9)求出相应的α和Nu 的值。
对于气体在180000Re 20<<范围,即高Re 数下,绕球换热的经验式为:316.0Pr Re 37.0==λαS d Nu (10)若在静止流体中换热:2=Nu 。
C 预习与思考(1) 明确实验目的。
(2) 影响热量传递的因素有哪些?(3) Bi 数的物理含义是什么?(4) 本实验对小球体的选择有哪些要求,为什么?(5) 本实验加热炉的温度为何要控制在400~500℃,太高太低有何影响?(6) 自然对流条件下实验要注意哪些问题?(7) 每次实验的时间需要多长,应如何判断实验结束?(8) 实验需查找哪些数据,需测定哪些数据?(9) 设计原始实验数据记录表。
(10) 实验数据如何处理?D 实验装置与流程如图2–13所示。
图2–13 测定固体小球对流传热系数的实验装置E 实验步骤及方法1.测定小钢球的直径d s。
2.打开管式加热炉的加热电源,调节加热温度至400~500℃。
a)检查电源线火线、零线、地线连接是否正确,电线是否有破损,确认无误后才能给装置通电;b)接通装置电源(220V/50HZ),此时电源开关红色指示灯亮;c)按下各测温温控开关,此时管式电加热炉控温表和管式电加热炉温控表及小球测温表同时通电。
d)将管式电加热炉控温表(4)设定温度为实验所需的温度值450℃。
3.打开计算机处于工作状态。
启动计算机控制软件。
4.将嵌有热电偶的小钢球置于电加热炉的支架上,从温度计录仪上观察钢球温度的变化。
当小球温度升至450℃时,迅速取出钢球,放在不同的环境条件下进行实验,钢球的温度随时间变化的关系由计算机记录,称冷却曲线。
5.装置运行的环境条件有:自然对流,强制对流,固定床和流化床。
流动状态有:层流和湍流。
6.自然对流实验:将加热好的钢球迅速取出,置于大气当中,尽量减少钢球附近的大气扰动,用计算机进行数据采集小球温度随时间变化的曲线数据,并进行处理计算出给热系数 。
7.强制对流实验:置于扩大管中进行强制对流实验。
方法:打开实验装置上的放空阀(14)和阀(16),关闭阀(15)和阀(13),启动漩涡气泵,缓慢调节阀(15)和阀(14),使流量达到实验所需值。
迅速取出加热好的钢球,置于反应器中的扩大管中,其余步骤同6,记录下空气的流量和采集冷却曲线。
8.固定床实验:调节调节阀(3)并配合调节阀(16)使流化床内固体颗粒处于固定床状态,将加热好的小球置于固定床的砂粒中,进行固定床实验,其余步骤同6,记录反应器的压降和采集冷却曲线。
9.流化床实验:调节调节阀(3)并配合调节阀(16)使流化床处于所需的流化状态,将加热好的钢球迅速置于反应器中的流化层中,进行流化床实验,其余步骤同6,记录反应器的压降和采集冷却曲线。
10.装置停车a)将管式加热炉控温温度设定为零度,降温;b)全开阀门(14),关闭风机电源;c)关闭各分电源开关和总开关注意事项:1.开启风机前一定将阀门(14)全开,否则玻璃转子会因风速过大冲到顶部损坏玻璃转子流量计;同样,关闭风机前一定将阀门(14)全开,否则璃转子会因风速迅速降低砸到底部损坏转子。
2.调节流化床时一定要缓慢打开调节阀(3),并配合调节阀门(16),否则会把流化床内固体颗粒吹出,影响使用。
3.在实验过程中,不要将小球碰到身体,避免灼伤。
F.实验数据和处理实验基础数据:小球:紫铜,直径:14mm,密度:8900kg/m3,比热:385J/kg·K,导热系数:401W/m·K计算:点软件工艺流程画面的计算按钮,按冷却曲线对应的时间和温度点输入左侧表格,其它基础数据和实验信息输入,按计算结果计算,右侧表格显示结果。
按对流传热系数和努塞尔准数,察看图形。
按保存按钮以Word 形式保存文件。
(1) 计算不同环境和流动状态下的对流传热系数 。
(2) 计算实验用小球的Bi 准数,确定其值是否小于0.1。
(3) 将实验值与理论值进行比较。
G 结果与讨论(1) 基本原理的应用是否正确?(2) 对比不同环境条件下的对流传热系数。
(3) 分析实验结果同理论值偏差的原因。
(4) 对实验方法与实验结果讨论。
H 主要符号说明A - 面积, ]m [2;Bi - 毕奥准数, [无因次];C - 比热, ]k g K J [;S d - 小球直径, ]m [;Fo - 傅立叶准数, [无因次];Nu - 努塞尔准数, [无因次];Pr - 普朗特准数, [无因次];y q - y方向上单位时间单位面积的导热量, ]s m J [2; y Q - y方向上的导热速率, ]J [;R - 半径, ]m [;Re - 雷诺准数, [无因次];T - 温度, ]K [或][℃;0T - 初始温度, ]K [或][℃;f T - 流体温度, ]K [或][℃;W T - 壁温, ]K [或][℃;t - 时间, ]s [;V - 体积, ]m [3;α - 对流传热系数, ]K m W [2;λ - 导热系数, ]mK W [;δ - 特征尺寸, ]m [;ρ - 密度, ]m g k [3;τ - 时间常数, ][s ;μ - 粘度, ]s Pa [⋅。
参 考 文 献[1] 天津大学等校合编 .化工传递过程 . 北京: 化学工业出版社, 1980[2] 华东理工大学等校合编 .化学工程实验 . 北京: 化学工业出版社,1996[3] 戴干策等 . 传递现象导论 . 北京: 化学工业出版社,1996。