传热系数K和给热系数α的测定资料重点
化工原理传热膜系数测定实验报告

化工原理传热膜系数测定实验报告SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#北京化工大学化工原理实验报告实验名称:传热膜系数测定实验班级:化工1305班姓名:张玮航学号: 32 序号: 11同组人:宋雅楠、陈一帆、陈骏设备型号:XGB型旋涡气泵及ASCOM5320型压力传感器第4套实验日期: 2015-12-17一、实验摘要首先,本实验让空气走内管,蒸汽走环隙,采用由XGB 型漩涡气泵风机、ASCOM5320型压力传感器、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,由人工智能仪来读取所有温度和压差等参数,用计算机软件实现数据的在线采集与控制。
其次,由所得数据分别求得了正常条件和加入静态混合器后的强化条件下的对流传热膜系数α,再通过作图,使用图解法确定了传热膜系数准数关系式Re Pr m n Nu A =(n=)中的系数A 和指数m 后,在双对数坐标纸中作出了0.4/Pr Re Nu 的关系曲线。
最后,整理出了流体在圆管内做强制湍流流动的传热膜系数准数半经验关联式,并与公认的关联式进行了比较。
关键词:传热膜系数K 、雷诺数Re 、努赛尔准数Nu 、普朗特数Pr 、图解法二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法: (1)测定空气在圆管内作强制湍流时的给热系数α1 (2)测定加入静态混合器后空气的强制湍流给热系数α1’2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,将实验所得结果与公认的关联式进行比较,分析影响α的因素,了解工程上强化传热的措施。
三、实验原理间壁式传热过程可分为三个过程:第一、由热流体对固体壁面的对流传热,第二、固体壁面的热传导,第三、固体壁面对冷流体的对流传热。
当流体无相变时的对流传热准数关系式可由量纲分析法写为:Re Pr m n p Nu A Gr =对于强制湍流而言,Gr 数可忽略,进行简化后:Re Pr m n Nu A =在本文中,采用Excel 软件对上述准数关系式中的指数m 、n 和系数A 进行计算机求解。
传热实验实验报告

传热实验实验报告一、实验目的1、研究传热试验设备上三种管的传热系数K。
2、研究设备的结构特点以及实验数据,定量描述保温管、裸管、汽水套管的传热特性。
3、研究流量改变对总传热系数的影响,并分析哪一侧流体流量是控制性热阻,如何强化传热过程。
二、实验原理根据传热基本方程、牛顿冷却定律以及圆筒壁的热传导方程,已知传热设备的结构尺寸,只要测得传热速率Q,以及各有关的温度,即可算出K,α 和λ。
(1)测定汽-水套管的传热系数K(W /(m2·℃)):Q=KAΔt m式中:A——传热面积,m2;Δt m——冷、热流体的平均温度,℃;Q——传热速率,W 。
Q =W汽r式中:W汽——冷凝液流量,kg/s ;r——冷凝液汽化潜热,J / kg 。
(2)测定裸管的自然对流给热系数α(W /(m2·℃)):Q=α A(t w - t f)式中:t w,t f——壁温和空气温度,℃。
(3)测定保温材料的导热系数λ(W /(m·℃)):Q=λA m(T w - t w)/ b式中:Tw,tw ——保温层两侧的温度,℃;b——保温层的厚度,m;Am ——保温层内外壁的平均面积,m2。
三、实验装置与流程(1)实验装置:该装置主体设备为“三根管”:汽-水套管、裸管和保温管。
这“三根管”与锅炉、汽包、高位槽、智能数字显示控制仪等组成整个测试系统。
本实验采用水蒸汽冷凝的方法,将水蒸气分别通过保温管、裸管和套管换热器中冷凝传热,通过测量蒸汽冷凝量、壁温、水温及空气的温度等参数,推算出保温管的导热系数、裸管和套管的对流传热系数。
(2)实验流程:锅炉内加热产生的水蒸气送入汽包,然后在三根并联的紫铜管内同时冷凝,冷凝液有计量管或量筒收集,以测冷凝液速率。
三根紫铜管外情况不同:一根管外用珍珠岩保温;另一根是裸管;还有一根为一套管式换热器,管外是来自高位槽的冷却水。
可定性观察到三个设备冷凝速率的差异,并测定K、α 和λ。
传热综合实验实验报告

传热综合实验一、实验目的:1、 掌握传热系数K 、传热膜系数α1的测定方法,加深对其概念和影响因素的理解;2、 掌握用最小二乘法确定关联式me AR Nu =中常熟A 、指数m 的值;3、 通过对普通套管换热器和强化套管换热器的比较,了解工程上强化传热的措施;4、 掌握孔板流量计的原理;5、 掌握测温热电偶的使用方法。
二、实验原理(一)无量纲准则数对流传热准数关联式是无量纲准则数之间的方程,主要是有关Nu 、Re 、Pr 等数据组的关系。
雷诺准数μρdu =Re努赛尔特准数λαdNu =普兰特准数λμP C =Pr式中:d ——换热器内管内劲,m ;α——空气传热膜系数,W ·m -2·℃; ρ——空气密度,kg ·m -3;λ——空气的传热系数,W ·m -1·℃;p C ——空气定压比热,J ·kg -1·℃;μ——空气的动力粘度,Pa ·S 。
实验中用改变空气的流量来改变准数Re 之值。
根据定性温度计算对应的Pr 准数值。
同时由牛顿冷却定律,求出不同流速下的传热膜系数α值,进而算得Nu 准数值。
(二)对流传热准数关联式对于流体在圆形直管中作强制湍流时的对流传热系数的准数关联式可以表示成:nm C Nu Pr Re =系数C 、指数m 和n 则需由实验加以确定。
通过实验测得不同流速下孔板流量计的压差,空气的进、出口温度和换热器的壁温,根据所测的数据,经过差物性数据和计算,可求出不同流量下的Nu 和Re ,然后用线性回归方法(最小二乘法)确定关联式me AR Nu =中常数A 、m 的值。
(三)线性回归用图解法对多变量方程进行关联时,要对不同变量Re 和vPr 分别回归。
为了便于掌握这类方程的关联方法,可去n=0.4。
这样就简化成单变量方程。
两边取对数,得到直线方程Re lg lg Prlg4.0m C Nu+= 在双对数坐标系中作图,找出直线斜率,即为方程的指数m 。
恒压过滤、传热实验要点

实验六 恒压过滤常数测定实验一. 实验目的1. 了解恒压过滤装置及其操作。
2.掌握过滤操作的原理。
3. 掌握过滤常数K ,q e ,θe 的测定方法。
二.实验原理 1. 过滤常数的求取已知恒压过滤方程为2()()e e q q K θθ+=+ (6-1)式中:q -单位过滤面积获得的滤液体积,m 3/m 2;q e -单位过滤面积的虚拟滤液体积,m 3/m 2; θ-实际过滤时间,S ; θe -虚拟过滤时间,S ; K -过滤常数,m 2/S 。
将(6-1)式微分,得22e d q q dq K Kθ=+ (6-2) 式(6-2)为直线方程,于普通坐标系上标绘dqd θ对q 的关系,所得直线斜率为2K ,截距为2e q K,从而求出K 、q e 。
θe 可由下式求得:2e e q K θ= (6-3)当各数据点的时间间隔不大时,/d dq θ可以用增量之比/q θ∆∆来代替,通过/q θ∆∆与q 作图即可求得K 。
在实验中,当计量瓶中的滤液达到100 ml 刻度时开始按表计时,作为恒压过滤时间的零点。
但是,在此之前过滤早以开始,即计时之前系统内已有滤液存在,这部分滤液量可视为常量以q '表示,•这些滤液对应的滤饼视为过滤介质以外的另一层过滤介质,在整理数据时应考虑进去,则方程应改写为()q q kq k q e '++=∆∆22θ (6-4) 其中 AV q '='(6-5)式中A —滤布面积m 22. 滤饼压缩性指数s 与物料过滤特征常数k滤饼压缩性指数s 是反映滤饼的压缩性,一般s =0~1;滤饼不可压缩时,则s =0。
与压差有如下关系:'()s r r P =∆(6-6)式中r '为单位压强差下滤饼的比阻,1/m 2;物料的物料过滤特征常数k 定义如下:1'k r uμ=(6-7)式中为滤液的粘度,Pa ∙s ;u 为滤液的流速,m/s ;研究表明,过滤常数K 与过滤压强差∆P 、滤饼压缩性指数s 与物料过滤特征常数k 之间存在如下关系:12()s K k P -=∆(6-8)对上式两边取对数,可得ln (1)ln()ln(2)K s P k =-∆+ (6-9)这样通过在若干不同的压强差下对指定物料进行试验,求得若干过滤压强差∆P 下的过滤常数K 值,以ln(∆P )对ln K 作图,就可得到一条直线,则直线的斜率即为(1-s ),截距为ln(2k ),于是就可求得s 和k 。
实验三 传热系数K和给热系数α的测定

实验三 传热系数K 和给热系数α的测定一、 实验目的1. 了解间壁式传热元件和给热系数测定的实验组织方法;2. 学会给热系数测定的试验数据处理方法;3. 了解影响给热系数的因素和强化传热的途径。
二、实验原理在工业生产中,间壁式换热器是经常使用的换热设备。
热流体借助于传热壁面,将热量传递给冷热体,以满足生产工艺的要求。
影响换热器传热速率的参数有传热面积、平均温度差和传热系数三要素。
为了合理选用或设计换热器,应对其性能有充分的了解。
除了查阅文献外,换热器性能实测是重要的途径之一。
传热系数是度量换热器性能的重要指标。
为了提高能量的利用率,提高换热器的传热系数以强化传热过程,在生产实践中是经常遇到的问题。
列管换热器是一种间壁式的传热装置。
冷热液体间的传热过程是由热流体对壁面的对流传热、间壁的热传导、以及壁面对冷流体的对流传热这三个传热子过程组成,其所涉及的热量衡算为:1212()()()()h h w c c w mw w Q KA T t Q A T t Q A t t A Q t t ααλδ=-=-=-=- 1122111w w w w h h m c c T t t t t t T tQ A A A KA δαλα----==== 1h h m c cK A A A A A A δαλα=++在所考虑的这个传热过程忠,所涉及的参数共有13个,采用因次分析方法 :π=13-4=9个无因次数群。
该方法的基本处理过程是将研究的对象分解成两个或多个子过程 。
即:12(,)K f αα≈分别对α1、α2进行研究:1111111(,,,,,)p f d u c αρμλ=无因次处理得:0(,)Re Pr p b c c d du f Nu a μαρλμλ=→= 1)传热系数K 的实验测定热量衡算式:21()c c pc Q q c t t ρ=- 传热速率式:m Q KA t =∆ 其中:12211221()()lnm T t T t t T t T t ---∆=--两式联立,得:21()c c pc mq c t t K A t ρ-=∆2)给热系数α的实验测定热量衡算式:21()c c pc Q q c t t ρ=- 传热速率式: c mc Q A t α=∆ 其中:2121()()lnw w mc w w t t t t t t t t t ---∆=--下上上下两式联立,得:21()c c pc c mcq c t t A t ρα-=∆三、实验装置及流程图本实验选用空气作为冷流体 华理是冷却水,水蒸汽作为热流体。
试验三空气-水对流给热系数测定

实验三空气-水对流给热系数测定一、实验目的1. 测定套管换热器中空气—水系统的传热系数;2. 测定不同的热空气流量时,Nu与Re之间的关系,并得到准数方程式;二、基本原理1. 测定传热系数K根据传热速率方程式(1)(2)实验时,若能测定或确定Q、t m和A,则可测定K。
(1)传热速率在不考虑热损失的条件下(3)式中:—空气的质量流量,kg/s,,为空气的容积流量,m3/s,ρ为空气的密度,kg/m3;—空气的定压比热,J/(kg·K);—空气的进、出口温度,℃。
(2)传热推动力t m(4)式中:,—冷却水出口温度,℃,—冷却水进口温度,℃(3)传热面积(5)式中:L—传热管长度,m ;d—传热管内径,m 。
2. 求Nu与Re的定量关系式由因次分析法可知,空气在圆形直管中强制湍流时的传热膜系数符合下列准数关联式:或(6)式中:A,n—待定系数及指数;—定性温度下空气的导热系数,W/(m·K);—空气的流速,m/s, ;μ—空气的粘度,kg/(m·s);—管壁对空气的传热膜系数,W/(m2·K)。
在水—空气换热系统中,若忽略管壁与污垢的热阻,则总传热系数K与传热膜系数的关系为:式中:—管壁对水的传热膜系数,W/(m2·K)—管壁对空气的传热系数,W/(m2·K)本实验中保持水在套管环隙间的高速流动,且由于水的比热较大,因此水的进、出口温度变化很小,管壁对水的传热系数较管壁对空气的传热系数大得多,即,这样总传热系数近似等于管壁对空气的传热系数:实验中通过调节空气的流量,测得对应的传热系数,然后将实验数据整理为Re及Nu,再将所得的一系列Nu-Re数据,通过用双对数坐标纸作图或回归分析法求得待定系数A和指数n,进而得到准数方程式。
三、实验装置如图1所示,实验装置由加热器1、夹套换热器14、15、风机7和流量计2、10等组成。
换热器的内管14为φ30×2mm的铜管,有效长度为2000mm。
传热系数K和给热系数Α和流化床干燥实验的计算示例

传热系数K和给热系数α的测定四.实验步骤1.在蒸汽发生器放入去离子水之液位管上段处,是水浸没加热电棒,以防烧坏。
2.打开加热电源开关,水蒸汽发生器开始工作,约20min水沸腾,此时打开气源开关,调节空气流量为20m3/h。
待套管表面发热,打开套管底端发兰下的排气拷克2~3次,排除不凝性气体。
3.因为是气泵原因,随着冷流体流量增加,冷流体进口温度会增加,所以在冷流体进入系统前,先经过一个小换热器。
用水冷却,注意下进上出。
4.整个实验操作热流体的进口温度是恒定的,改变唯一操作变量即冷空气转子流量计阀门开度,达到改变流速的目的。
5.待冷流体出口温度显示值保持5min以上不变时方可同时采集实验数据。
6.实验结束时,先关加热电源,保持冷空气继续流动10min,以足够冷却套管换热器及壁温,保护热电偶接触正常。
7.上机数据处理的直线相关系数要求R≥0.95,否则,实验重做。
8.通过放尽阀将蒸汽发生器内的水放尽9.仪表屏中间的大表是温控表,请不要乱揿按钮。
10.如果上面四个温度显示仪表在实验之前互相间相差1.0℃以上,可按以下步骤处理:按set 键,见CLK ,单击set 键,见110,同时按set 键(先)和∆保持不动,见SLO ,按set 键14下,见pb1,按set 键一下,即进入修改基准数,利用∇∆、来修改温度基准,完后按set 键确定,接着按黑O 复位即可。
请在pb1上修改,其他功能参数不能改变切忌!五.原始数据记录。
六.计算示例以装置号3032第1组数据为例。
由8.5520.816.302t t =+=+出进℃,查得ρc =1.076kg/m 3,C pc =0.24kcal/kg ℃, μ=20.3μPa·s ,λ=0.02461w/m ℃1热负荷计算Q=W c ρc C pc (t 2-t 1)=20×1.076×0.24×4.18×(81.0-30.6)=1088kj/h2.传热系数K 计算55.446.301050.81105ln 6.300.81t T t T ln )t T ()t T (t 1212m =---=-----=∆℃ KA ∆t m =W c ρc C pc (t 2-t 1)h m /kj 34255.443.10175.014.31088t l d Q t A )t t (C W K 2m m 12pc c c =⨯⨯⨯=∆π=∆-ρ=平℃ 3.给热系数c α计算32.396.308.990.816.100ln )6.308.99()0.816.100(t t t t ln )t t ()t t (t 1m 2m 1m 2m mc =---=-----=∆--下上下上℃()12t t c W t A pc c c mc c c -=∆ρα42432.393.1016.014.31088t l d Q mc c c =⨯⨯⨯=∆π=αkj/m 2h ℃ 4.给热系数h α计算()12t t c W t A pc c c mh h h -=∆ρα79.46.1001058.99105ln 8.996.100t T t T ln t t t T t T ln )t T ()t T (t m m m m m m m m mh ==--=-----=∆----上下下上下上上下℃ ()12t t c W t A pc c c mh h h -=∆ρα292979.43.1019.014.31088t l d Q mh h h =⨯⨯⨯=∆π=αkj/m 2h ℃ 5.雷诺数R e 谱朗特数Pr 的计算65.27016.0785.03600/20d 41W u 22=⨯=π=m/s 461034.2103.20076.165.27016.0du Re ⨯=⨯⨯⨯=μρ=- 71.036000246.0103.2024.0Cp Pr 6=⨯⨯⨯=λμ=- N UC 97.6518.40246.0016.0424d c =⨯⨯=λα= 六.过程运算表3031号装置过程运算表3032号装置过程运算表七.作图法关联曲线方程b e r aR P Nu =4.0/(17)由下图3031,用作图法待定上式函数中的常数b a 和,方法如下:以直线为斜边,作直角三角形,读得斜边上二点A(10000,40.6),B (20000,70.2)该三角形的高与该三角形底边之比的值,即为此函数的指数b ;然后在直线上读得一点坐标,将该坐标待入式(17),可求得常数a 。
传热系数测定的实验

传热系数测定的实验(水蒸气-空气体系)一.实验目的1.了解管套式换热器的结构2.观察水蒸气在水平换热管外壁上的冷凝现象,判断冷凝类型3.测定水蒸气—空气在换热器中的总传热系数K和对流给热系数a,加深对其概念和影响因素的理解。
4.学习线性回归法确定关联式Nu=ARe m pr0.4中常数A,m的值5.掌握热电偶测量温度的原理和方法二.实验原理1.总传热系数的测定在套管换热器中,环隙通以水蒸气,内管通冷空气,水蒸气冷凝放出热量加热空气。
当冷热液体在换热器内进行稳定传热时,该换热器同时满足热量衡算和传热速率方程,若忽略热损失,公式如下:Q=KAΔt m=q m c p(t2-t1)三.实验内容1.衡量水蒸气-空气通过换热器的总传热系数K对实验数据进行线性回归,求出准数方程Nu=ARe m pr0.4中的常数A,M的值2.通过计算分析影响总传热系数的因素四.实验装置来自蒸汽发生器的水蒸气进入不锈钢套管换热器,与来自风机的空气进行热交换,冷凝水通过管道排入地沟,冷空气经转自流量计进入套管换热器内管热交换后装置。
实验流程如图:五.实验步骤1.检查蒸汽发生器的仪表和水位是否正常。
2.打开换热器的总电源开关,打开仪表电源开关,观察仪器读数是否正常。
3.当蒸汽压稳定后,排除蒸汽发生器到实验装置之间管道中的冷凝水,防止夹带冷凝水的蒸汽损坏压力表及压力变送器。
4.打开换热器内的不凝性气体排除阀。
5.刚开始通入蒸汽时,要仔细调节蒸气进口阀的开度,让蒸气徐徐流入换热器中,逐渐加热,由冷态转变为热态,不得少于10MIN。
6.恒定空气流量,改变蒸气压,测量4组实验数据。
改变客气流量,恒定蒸汽压,测量4组数据7.实验完毕,清理实验场地。
传热系数测定的实验(水-热空气体系)一.实验目的1.了解列管式换热器的结构。
2.测定水-热空气在换热器中的总传热系数K和对流给热系数α加深对其概念影响因素的理解。
3.学习线性回归法确定关联式Nu=ARe m pr0.4中常数A,m的值4.掌握热电偶测量温度的原理和方法二.实验原理在列管式换热器中,壳程通冷水,管程通热空气,热空气冷却放热加热水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情况下,求出Nu=a0RebPrc中的常数a0、b(c=0.4) (注意是
用一个大组5位同学的数据点连成曲线,求曲线的截距和斜
率,不是某两位同学的数据点。因此一个大组的每位同学每
人处理一组数据后要合作完成最后一项工作。)
2020/10/7
13
2020/10/7
14
思考题
1)何为因次分析法? 2)影响对流传热系数的主要因素有哪些? 3)如何强化空气方的传热系数? 4)该实验过程传热的阻力主要在那里?
h Ah Am c Ac
Q
T
tw1 1
tw1 tw2
tw2 t 1
T t 1
h Ah
Am
c Ac KA
K
1
A A
A
h Ah Am c Ac
K f d1, 1, 1 ,cp1,1,u1,, , 2, 2 ,cp2,2,u2 f (6,2,5)
传热过程的参数共有13个,采用因次分析方法 : π=13-4=9个无因次数群
配上套管换热器、蒸汽发生炉、疏水器、阀门 管路、凉水塔系统组成如下实验装置。
2020/10/7
9
五 实验流程和实验步骤
实验步骤
先开蒸汽发生炉,待上壁温开始升温后,开空气 输送开关,调节转子流量计流量 ;
打开不凝性气体放气阀,“开-关”重复2次; 整个实验操作控制蒸汽压力恒定在0.04Mpa以下
简化工程处理方法
过程分解和过程合成法 :
该方法的基本处理过程是将研究的对象分解 成两个或多个子过程 。即:
K f 1,2
分别对α1、α2进行研究:
1 f d1, u1, 1, 1, cp1, 1
无因次处理得:
d
f
du
,
cp
Nu ao Re b Pr c
三 传热系数K的实验测定
热量衡算式:
传热系数K和给热系数α的测定
Contents
1
实验目的
2
实验原理
3
传热系数K和给热系数α的测定
4
实验组织
5
实验流程和实验步骤
6
原始数据表
2020/10/7
2
一 实验目的
了解给热系数测定的实验组织方法; 学会给热系数测定的试验数据处理方法; 了解影响给热系数的因素和强化传热的途径。
二 实验原理
间壁式换热装置 :
Q cA tmcBiblioteka 其中:tmc(tm上
t2 ) (tm下 ln tm上 t2
t1 )
tm下 t1
两式联立,得: c qc cC pc( t2 t1 )
Atmc
四 实验组织方法
qc----空气流量计1个; t1、 t2 -----冷流体进、出口温度计2个; T-----水蒸汽温度计1个; tw上、 tw下 -----上壁温、下壁温温度计2个; P ---装1个压力表;
由热流体对固体壁面的对流给热,固体壁 面的热传导和固体对冷流体的对流给热三 个传热过程所组成。
Q KAT t
Q h Ah T tw1
Q c Ac tw2 t
Q
Am
tw1
tw2
Q
T
tw1 1
tw1 tw2
tw2 t 1
T t 1
h Ah
Am
c Ac KA
K
1 A Aδ A
六 原始数据表
装置号: d外=19 mm ,δ=1.5mm,L=1.3m
序号 蒸汽压力 蒸汽温度 空气流量 空气进口 空气出口 下端壁温 上端壁温
Mpa
℃
L/h
℃
℃
℃
℃
1 2 3 4 5 6
数据处理注意事项:
1)干空气在定性温度下物性数据内插法求取;
2)换热面积和流通面积的区别;
3)在已求取干空气在定性温度下物性数据和给热系数α的
某一刻度,改变唯一操作变量即空气转子流量计 阀门开度,达到改变流速的目的; 实验布点采用小流量和大流量分别布点集中原则, 因为是直线原因; 待冷流体出口温度显示值保持5min以上不变时方 可同时采集实验数据; 实验结束时,先关蒸汽进口调节阀,保持空气继 续流动10min,以足够冷却壁温,保护热电偶接 促正常。
Q qcρcCpc( t2 t1 )
传热速率式: Q KA t m
其中:tm
(T1
t2 ) (T2 ln T1 t2
t1 )
T2 t1
两式联立,得: K qccCpc( t2 t1 )
Atm
给热系数α的实验测定
热量衡算式: 传热速率式: Q qcρcCpc(t2 - t1 )