传送带问题的解题技巧-学案
微专题——传送带问题的处理方法

传送带问题的处理方法1.抓好一个力的分析——摩擦力对于传送带问题,分析物体受到的是滑动摩擦力还是静摩擦力,以及摩擦力的方向,是问题的要害。
分析摩擦力时,先要明确“相对运动”,而不是“绝对运动”。
二者达到“共速”的瞬间,是摩擦力发生“突变”的“临界状态”。
如果遇到水平匀变速的传送带,或者倾斜传送带,还要根据牛顿第二定律判断“共速”后的下一时刻物体受到的是滑动摩擦力还是静摩擦力。
2.注意三个状态的分析——初态、共速、末态典例1(2021·辽宁卷)机场地勤工作人员利用传送带从飞机上卸行李。
如图所示,以恒定速率v 1=0.6m/s 运行的传送带与水平面间的夹角37α=︒,转轴间距L =3.95m 。
工作人员沿传送方向以速度v 2=1.6m/s 从传送带顶端推下一件小包裹(可视为质点)。
小包裹与传送带间的动摩擦因数μ=0.8。
取重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8.求: (1)小包裹相对传送带滑动时加速度的大小a ;(2)小包裹通过传送带所需的时间t 。
思维点拨:分析包裹所受摩擦力时,先要明确包裹“相对运动”—— 包裹的速度2v 大于传动带的速度1v ,所以小包裹受到传送带的摩擦力沿传动带向上,然后根据牛顿第二定律列方程求解。
【解析】(1)小包裹的速度2v 大于传动带的速度1v ,所以小包裹受到传送带的摩擦力沿传动带向上,根据牛顿第二定律可知cos sin mg mg ma μθθ-=解得20.4m/s a =(2)根据(1)可知小包裹开始阶段在传动带上做匀减速直线运动,用时121 1.60.6s 2.5s 0.4v v t a --=== 在传动带上滑动的距离为1211 1.60.6 2.5 2.75m 22v v x t ++==⨯= 因为小包裹所受滑动摩擦力大于重力沿传动带方向上的分力,即cos sin mg mg μθθ>,所以小包裹与传动带共速后做匀速直线运动至传送带底端,匀速运动的时间为121 3.95 2.75s 2s 0.6L x t v --=== 所以小包裹通过传送带的时间为12 4.5s =+=t t t【答案】(1)20.4m/s ;(2)4.5s【变式训练】1.(2022·北京丰台·高三期末)传送带在实际生活中有广泛应用。
公开课-传送带问题

问③:试问物块在最短时间内从A运动到B的 情况下,传送带速度至少是多大?
②若传送带的速度较大,求物块从A运动到B 所需要的时间,且试着画出v-t图像
问④:若A为一煤炭,能在与之接触的物体上 留下印记,试求物块在最短时间内从A运动到 B的过程中,留下了多长的痕迹?
7.如图6所示,质量为m的物体用细
绳拴住放在水平粗糙传送带上,
1. 只有v1=v2时,才有v2′=v1 2. 若v1>v2时, 则v2′=v2 3. 若v1<v2时, 则v2′=v2 4. 不管v2多大,v2′=v2.
如图所示的传送皮带,其水平部分ab=2m, bc=4m,bc与水平面的夹角α=37°,一小 物体A与传送皮带的滑动摩擦系数μ=0.25, 皮带沿图示方向运动,速率为2m/s。若把 物体A轻轻放到a点处,它将被皮带送到c点, 且物体A一直没有脱离皮带。求物体A从a点 被传送到c点所用的时间。
如图所示,传送带两轮A、B的距离L=11m,皮 带以恒定速度v=2m/s运动,现将一质量为m的 物块无初速度地放在A端,若物体与传送带间的动 摩擦因数为μ=0.8,传送带的倾角为α=37°,那 么物块m从A端运到B端所需的时间是多少?
(g取10m/s2,cos37°=0.8)
因物体与传送带间的动摩擦因数、斜面倾角、 传送带速度、传送方向、滑块初速度的大小 和方向的不同,传送带问题往往存在多种可 能,因此对传送带问题做出准确的动力学过 程分析,是解决此类问题的关键。
D.若传送带以速度V=2m/s顺时针匀速转动,VB=2m/s 如图,水平传送带A、B两端相距S=3.5m,工件与传送带间的动摩擦因数μ=0.1。工件滑 上A端瞬时速度VA=4m/s,达到B端的瞬时速度设为VB,则
问②:若传送带的速度较大,求物块从A运动到B所需要的时间,且试着画出v-t图像
传送带问题的解题技巧-学案

课题:传送带问题的解题技巧【考纲解读】新课程标准:理解牛顿运动定律,能用牛顿运动定律解释生产生活中的有关现象、解决有关问题。
考试大纲:牛顿运动定律及其应用(属Ⅱ级要求,是高中物理主干知识)一、学习目标:通过本专题的学习,能综合运用动力学观点(牛顿运动定律、运动学规律)处理水平及倾斜传送带问题。
二、方法指导:1.模型特征:一个物体以速度v 0(v 0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示.2.难点透视:主要表现在两方面:其一,传送带问题往往存在多种可能结论的判定,即需要分析确定到底哪一种可能情况会发生;其二,决定因素多,包括滑块与传送带动摩擦因数大小、斜面倾角、滑块初速度、传送带速度、传送方向、滑块初速度方向等.这就需要考生对传送带问题能做出准确的动力学过程分析。
3.建模指导(1)受力分析:传送带模型中要注意摩擦力f 的突变(发生在v 物与v 带相同的时刻),对于倾斜传送带模型要分析mgsin θ与f 的大小与方向。
突变有下面三种:1.滑动摩擦力消失;2.滑动摩擦力突变为静摩擦力;3.滑动摩擦力改变方向;(2)运动分析:a.注意参考系的选择,传送带模型中选择地面为参考系;b.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?c.判断传送带长度—临界之前是否滑出? 4.解题流程三、情景归纳(一)水平传送带项目情景1 情景2 情景3图示计算假设物、带能共速时物的位移x 0 计算假设物体速度为零时,物的位移x 0 v 0与v 同向 v 0与v 反向 比较x 0与带长L 的大小,确定能否共速,再展开后续讨论 比较x 0与带长L 的大小,确定物体是否返回,再展开后续讨论 摩擦力f 方向 合力F 、加速度a 方向 计算a 大小 分析速度变化情况情景思考:滑块可能的运动情况一共有哪些? (1)可能滑块一直加速; (2)可能滑块先加速后匀速。
传送带问题解题方法及探讨

传送带问题解题方法及探讨在现代化工厂及日常生活中,传送带的应用随处可见,有关传送带问题的题目也能考查学生对力学知识的综合运用能力。
因此这类问题常能出现在高考题中,其中涉及的主要知识点有:1、对物体进行受力分析,特别是摩擦力方向的判断2、运动学和动力学的相关知识,如:相对静止,相对运动,运动的位移、速度的相对性、匀变速直线运动的特点,牛顿的三个定律等等,甚至于涉及功能关系。
因此,解决传送带问题要特别注重物理过程的理解和分析,关键是对传送带上的随行物进行分析。
抓住接触面的摩擦因数,两个相对运动,及随行物速度与传递带速度的比较,这三者往往作为讨论摩擦力存在与否,摩擦力大小及方向的关键因数。
一、日常生活中的传送带类型常有两大类1、水平方向匀速运转的传送带,包括顺时方向转动和逆时方向转动2、倾斜的传送带中有顺时针方向转动和逆时针方向转动两类传送带的转动速度大小一般恒定,不受外界干扰,传送带上的物块一般与传送带之间有较大的摩擦因数。
放在传送带上的物体一般为无初速释放,当然在工厂生产流水线上,有些物体是以一定初速度释放的,也不得不引起重视。
二、解决传送带问题的基本方法对物体受力情况进行正确分析,分清摩擦力的方向,摩擦力的突变。
解题要对传送带上的物体在各运动阶段受力情况分析清楚①传送带与物体相对静止,两者间的摩擦力为恒定的静摩擦力或为零;②找到摩擦力突变的临界点,当V 物=V 带时刻,摩擦力往往会发生突变,即由滑动摩擦力变为静摩擦力或变为零或滑动摩擦力的方向发生改变等。
例1:水平传送带A 、B 以V=4m/s 的速度匀速运动,如图所示,A 、B 相距16m ;一木块(可视为质点)以A 点由静止释放,木块与传送带间的动摩擦因数u=0.2则木块从A 沿传送带运动到B 所需的时间为多少?(g=10m/s 2)物块在传送带上若能留下滑痕,其滑痕在物块那一侧?滑痕长度为多少?解析,物体无初速释放即相对地的速度为零,而传送带相对地面向右运动,因此物块相对传送带向左运动,所受滑动摩擦力方向向右,释放后物块做匀加速运动,当物块速度与传送带速度相等时,物块不再受滑动摩擦力作用,以后做匀速直线运动,以物块为研究对象进行受力分析。
牛顿第二定律的运用—传送带问题

由于物体与传送带之间的摩擦
产生的热量.
A a
h c
传送带问题解题题策略: 1.受力分析。分清物体所受摩擦力的种类及大 小和方向,注意当物体的速度等于传送带的速 度时,摩擦力会发生突变;
2.运动分析。根据初速度和合外力两个条件分
析物体的运动性质。对于倾斜传送带问题,考
虑μ和tanθ的大小关系。
b
A a
解:过程一.物体放在传送带后,受到滑动摩擦力的方 向沿斜面向下,物体沿传送带向下做初速度为零的匀加 速运动
mg sin 37 0 mg cos37 0 ma1
a1 g(sin 37 0 cos37 0 ) 10m / s2
物体加速到与传送带速度相等所用的时间
t1
v a1
1s
物体在t1时间内的位移
L
s
v
t2
1 2
a2t22
(1)μ<tanθ 物体继续做加速运动 (2)μ≥tanθ 物体与传送带一起匀速运动
解得:t2=1s t2= - 11s(舍去)
总结
传送带问题的分析思路: 初始条件→相对运动→判断滑动摩擦力的大小和 方向→分析出物体受的合外力和加速度大小和方 向→由物体速度变化再分析相对运动来判断以后 的受力及运动状态的改变。
(sin37°=0.6,cos37°=0.8)
解:物体做匀加速运动过程中,由牛顿第二定律
μmg cos37°-mg sin37°=ma ① 得a=0.4m/s2
②
加速至10m/s位移为x1=v2/2a=20m 接着做匀速运动,因此物体先做匀加速直线运动,再做匀速
直线运动。
(2)匀加速运动的时间t1=
考点三、水平、变速传送带
【例4】(2006全国I)一水平的浅色长传送带上放置一煤块( 可视为质点),煤块与传送带之间的动摩擦因数为μ。初 始时,传送带与煤块都是静止的。现让传送带以恒定的加 速度a0开始运动,当其速度达到v0后,便以此速度做匀速 运动。经过一段时间,煤块在传送带上留下了一段黑色痕 迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度 。
动力学问题专题训练:传送带问题(教案)

动力学问题专题训练:传送带问题(教案)教学目标:1.理解传送带问题的特点;2.会分析传送带上物体的受力情况;3.能运用动力学规律分析和解决传送带问题。
教学重、难点:1、对于物体相对地面、相对传送带分别做什么样的运动,判断错误。
2、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;画好要【例1练习v =2m/s的速度向右匀速运动。
传送带两端之间的距离L=10m,现有一物件以向右4m/s的初速度从左端滑上传送带,物件与传送带之间的动摩擦因数μ=0.2。
求物件从传送带的左端运动到右端所用的时间(g=10m/s2)。
解析:s5.4。
因〉=m/s4v v=2m/s,物件在传送带上做匀减速运动,当速度减小到与传送带速度相同后,随传送带匀速运动。
由牛顿第二定律maF=得2m/s2===gmmgaμμ,减速所经过的位移m 322021=--=a v v s ,所用时间s 101=--=a v v t ,物件到达右端还需时间s 5.312=-=vs L t ,物件到达右端共需时间 s 5.421=+=t t t 。
练习2、如图所示,一平直的传送带以速度v=2 m / s 匀速运动,传送带把A 处的工件运送到B 处,A 、B 相距L=10 m 。
从A 处把工件无初速地放到传送带上,经过时间t=6 s 能传送到B 处。
欲用最短的时间把从A 处传送到B 处,求传送带的运行速度至少多大?【解析】 因,所以工件在6 s 内先匀加速运动,后匀速运动,有, 同上理有 ∴ 化简得∵ ∴当,即时,B处,传送带的运行速度至少为。
例2的),做匀加速运动。
当物体加速到与传送带有相同速度时,摩擦力情况要发生变化,同速的瞬间可以看成二者间相对静止,无滑动摩擦力,但物体此时还受到重力的下滑分力作用,因此相对于传送带有向下的运动趋势,若重力的下滑分力大于物体和传送带之间的最大静摩擦力,此时有μ<tan θ,则物体将向下加速,所受摩擦力为沿斜面向上的滑动摩擦力;若重力的下滑分力小于或等于物体和传送带之间的最大静摩擦力,此时有μ≥tan θ,则物体将和传送带相对静止一起向下匀速运动,所受静摩擦力沿斜面向上,大小等于重力的下滑分力。
16传送带问题及解题方法

16传送带问题及处理方法一、传送带问题1.传送带:物体在传送带上运动2.传送带题型(1)传送带水平放置(2)传送带倾斜放置二、处理方法1.摩擦力的分析是此类型题目的突破点,一定要分清静摩擦还是滑动摩擦,弄清楚摩擦力的方向;当物体速度与皮带速度一样(大小方向均相同)时,往往是摩擦力的突变位置,此位置的分析是解题的关键点。
2.传送带水平放置例1.水平方向的传送带以v=2m/s的速度匀速运转,A、B两端间距10m,将质量为m的零件轻轻放在传送带的A端,物体与传送带之间动摩擦因数为0.2,求物体从A端运动到B端所用的时间。
3.传送带水平放置例2.如图所示,传送带与水平面的夹角θ=37°,传送带以10m/s的速度逆时针转动。
在传送带上端的A点放一质量为0.5kg的小物体,它与传送带之间的摩擦系数为0.5。
若传送带的长度为16m,则物体由A运动到B所用的时间。
练习题1.水平方向的传送带以v=6m/s的速度匀速运转,A、B两端间距10m,将质量为m的零件轻轻放在传送带的A端,物体与传送带之间动摩擦因数为0.2,求物体从A端运动到B端所用的时间。
2.水平方向的传送带以v=6m/s的速度匀速运转,A、B两端间距9m,将质量为m的零件轻轻放在传送带的A端,物体与传送带之间动摩擦因数为0.2,求物体从A端运动到B端所用的时间。
3.水平方向的传送带以v=6m/s的速度匀速运转,A、B两端间距4m,将质量为m的零件轻轻放在传送带的A端,物体与传送带之间动摩擦因数为0.2,求物体从A端运动到B端所用的时间。
4.如图所示,在竖直平面有一个光滑的圆弧轨道MN ,其下端(即N 端)与表面粗糙的水平传送带左端相切,轨道N 端与传送带左端的距离可忽略不计。
当传送带不动时,将一质量为m 的小物块(可视为质点)从光滑轨道上的P 位置由静止释放,小物块以速度v 1滑上传送带,从它到达传送带左端开始计时,经过时间t 1,小物块落到水平地面的Q 点;若传送带以恒定速率v 2沿逆时针方向运行,仍将小物块从光滑轨道上的P 位置由静止释放,同样从小物块到达传送带左端开始计时,经过时间t 2,小物块落至水平地面。
高中物理传送带问题(有答案)

高中物理传送带问题(有答案)传送带问题一水平传送带长度为20m,以2m/s的速度做匀速运动,已知某物体与传送带间动摩擦因数为0.1.求从把该物体由静止放到传送带的一端开始,到达另一端所需时间。
解:物体加速度a=μg=1m/s²。
经过t1=v/a=2s与传送带相对静止,所发生的位移S1=1/2 at1²=2m。
然后和传送带一起匀速运动经过t2=l-S1/v=9s。
所以共需时间t=t1+t2=11s。
练:在物体和传送带达到共同速度时,物体的位移、传送带的位移、物体和传送带的相对位移分别是多少?(S1=1/2vt1=2m,S2=vt1=4m,Δs=s2-s1=2m)如图2-1所示,传送带与地面成夹角θ=37°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5kg的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A 到B的长度L=16m,则物体从A到B需要的时间为多少?解析:物体放上传送带以后,开始一段时间,其运动加速度a=(mgsinθ+μmgcosθ)/m=10m/s²。
这样的加速度只能维持到物体的速度达到10m/s为止,其对应的时间和位移分别为:t1=1s,S1=5mμmgcosθ)a2=(mgsinθ-μmgcosθ)/m=2m/s²。
设物体完成剩余的位移s2所用的时间为t2,则s2=vt2+1/2a2t2²,11m=10t2+t2²,解得:t2=1s或t2=-11s(舍去),所以总时间t总=t1+t2=2s。
如图2-2所示,传送带与地面成夹角θ=30°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5kg的物体,它与传送带间的动摩擦因数μ=0.6,已知传送带从A 到B的长度L=16m,则物体从A到B需要的时间为多少?解析:物体放上传送带以后,开始一段时间,其运动加速度a=(mgsinθ+μmgcosθ)/m=8.46m/s²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:传送带问题的解题技巧
【考纲解读】
新课程标准:理解牛顿运动定律,能用牛顿运动定律解释生产生活中的有关现象、解决有关问题。
考试大纲:牛顿运动定律及其应用(属Ⅱ级要求,是高中物理主干知识)
一、学习目标:通过本专题的学习,能综合运用动力学观点(牛顿运动定律、运动学规律)处理水平及倾斜传送带问题。
二、方法指导:
1.模型特征:一个物体以速度v 0(v 0≥0)在另一个匀速运动的物
体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)
所示.
2.难点透视:主要表现在两方面:其一,传送带问题往往存在
多种可能结论的判定,即需要分析确定到底哪一种可能情况会发生;其二,决定因素多,包括滑块与传送带动摩擦因数大小、斜面倾角、滑块初速度、传送带速度、传送方向、滑块初速度方向等.这就需要考生对传送带问题能做出准确的动力学过程分析。
3.建模指导
(1)受力分析:传送带模型中要注意摩擦力f 的突变(发生在v 物与v 带相同的时刻),对于倾斜传送带模型要分析mgsin θ与f 的大小与方向。
突变有下面三种:
1.滑动摩擦力消失;
2.滑动摩擦力突变为静摩擦力;
3.滑动摩擦力改变方向;
(2)运动分析:
a.注意参考系的选择,传送带模型中选择地面为参考系;
b.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?
c.判断传送带长度—临界之前是否滑出?
4.解题流程
三、情景归纳
(一)水平传送带
项目
情景1 情景2 情景3
图示
情景思考:滑块可能的运动情况一共有哪些?
(1)可能滑块一直加速; (2)可能滑块先加速后匀速。
(1)v 0<v 时,可能一直加速,也可能先加速再匀速;
(2)v 0>v 时,可能一直减速,也可能先减速再匀速。
(1)传送带较短时,滑块一直减速达到左端; (2)传送带较长时,滑块还要被传送带传回右端.其中v 0<v 返回右端时速度为v 0,当v 0>v 返回时速度为v 计算假设
物、带能
共速时物的位移x 0 计算假设物体速度为零时,物的位移x 0
v 0与v 同向 v 0与v 反向 比较x 0与带长L 的大小,确定能否共速,再展开后续讨论 比较x 0与带长L 的大小,确定物体是否返回,再展开后续讨论 摩擦力f 方向 合力F 、加速度a 方向 计算a 大小 分析速度变化情况
动力学过程分析:
情景1:f方向与物体运动方向,物体先速,a = ,假设物、带能共速时物的位移x0= ,(1)如x0L,则物体一直加速;(2)如x0L,则物体先速后速,即物、带最终共速,共速时,f= 。
情景2:(1)v0<v时,f方向与物体运动方向,物体先速,a = ,假设物、带能共速时物的位移x0= ,a.如x0L,则物体一直加速;b.如x0L,则物体先速后速,即物、带最终共速。
(2)v0>v时,f方向与物体运动方向,物体先速,a = ,假设物、带能共速时物的位移x0= ,a.如x0L,则物体一直减速;b.如x0L,则物体先速后速,即物、带最终共速。
情景3:f方向与物体运动方向,物体先速,假设物体速度减为零时,物的位移x0= ,(1)如x0L,滑块一直减速达到左端,离开传送带;(2)如x0L,当物体速度减为零时,动摩擦力f方向,物体反向速,被传送带传回右端。
当v0<v时,一直加速返回,至右端时速度为;当v0>v时,返回时会与带共速,即传回右端时速度为。
(二)倾斜传送带
当μ≥tanθ时,物块在加速至与传送带速度相同后,物块将与传送带相对静止,并同传送带一起匀速运动;当μ<tanθ时,物块在获得与传送带相同的速度后仍继续加速.
动力学过程分析:(假设最大静摩擦力等于滑动摩擦力)
情景4:动摩擦力f沿斜面,当μ>tanθ时,物体先向上加速,a = ,假设物、带能共速时物的位移x0= ,(1)如x0L,则物体一直加速;(2)如x0L,则物体先速后速,即物、带最终共速,共速时,动摩擦力f发生突变,变为静摩擦力,且f= ;(3)当μ=tanθ时,滑块静止在起点;当μ<tanθ时,滑块直接掉落。
情景5:动摩擦力f沿斜面,物体先向下加速,a1 = ,假设物、带能共速时物的位移x0= ,(1)如x0L,则物体一直加速;(2)如x0L,则物体先速,物块在加速至与传送带速度相同,a.如μ≥tanθ时,动摩擦力f发生突变,变为静摩擦力,且为,随后物块将与传送带相对静止,并同传送带一起匀速运动至底端;b.如μ<tanθ时,物块在获得与传送带相同的速度时,动摩擦力方向发生突变,变为沿斜面,大小不变,物块加速度大小变为a2=,且a2a1,物块继续沿斜面向下加速,直至底端。
课前预学要求:仔细研读以上三个学习环节,并初步完成“三、情景归纳”中的“水平传送带、倾斜传送带- 动力学过程分析”中情景1-5的填空部分。
情景6、7请选择性的自主分析。
四、实战演练
1.水平传送带被广泛地应用于车站、码头,工厂、车间。
如图所示为水平传送带装置示意图,绷紧的传送带AB始终保持v0=2 m/s的恒定速率运行,一质量为m的工件无初速度地放在A处,传送带对工件的滑动摩擦力使工件开始做匀加速直线运动,设工件与传送带间的动摩擦
因数为μ=0.2 ,AB的之间距离为L=10m ,g取10m/s2.求工件从A
处运动到B处所用的时间?如果传送带长为0.81m,则工件传送时间为
多少?
2.(多选)如图所示,绷紧的长为6 m的水平传送带,沿顺时针方向以恒定速率v1=2 m/s运行.一小物块从与传送带等高的光滑水平台面滑上传送带,其速度大小为v2=5 m/s.若小物块与传送带间的动摩擦因数μ=0.2,重力加速度g=10 m/s2,下列说法中正确的是() (优化方案P53:7)A.小物块在传送带上先向左做匀减速直线运动,然后向右做匀加速直线运动
B.若传送带的速度为5 m/s,小物块将从传送带左端滑出
C.若小物块的速度为4 m/s,小物块将以2 m/s的速度从传送带右端滑出
D.若小物块的速度为1 m/s,小物块将以2 m/s的速度从传送带右端滑出
3.变式 (多选)如图所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4m/s,到达B端的瞬时速度设为v B,g=10m/s2。
下列说法中正确的是()
A.若传送带不动,v B=3m/s
B.若传送带逆时针匀速转动,v B一定等于3m/s
C.若传送带顺时针匀速转动,v B一定等于3m/s
D.若传送带顺时针匀速转动,v B有可能等于3m/s
4.如图所示为粮袋的传送装置,已知A、B两端间的距离为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g.关于粮袋从A到B的运动,以下说法正确的是()
A.粮袋到达B端的速度与v比较,可能大,可能小或也可能相等
B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以
速度v做匀速运动
C.若μ≥tan θ,则粮袋从A端到B端一定是一直做加速运动
D.不论μ大小如何,粮袋从A端到B端一直做匀加速运动,且加速度a≥g sin θ
五、课堂检测题
1. (2011福建卷)如图所示,绷紧的水平传送带始终以恒定速率 v 1运行。
初速度大小为v 2 的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带。
若从小物块滑上传送带开始计时,小物块在传送带上运动的v - t 图像(以地面为参考系)如图乙所示。
已知 v 2 > v 1 ,则 ( )
A. t 2时刻,小物块离A 处的距离达到最大
B. t 2时刻,小物块相对传送带滑动的距离
达到最大
C. 0~ t 2时间内,小物块受到的摩擦力方向
先向右后向左
D. 0~ t 3时间内,小物块始终受到大小不变
的摩擦力作用
2.如图甲所示的传送带,其水平部分ab 的长度为2 m ,倾斜部分bc 的长度为4 m ,bc 与水平面的夹角θ=37°,现将一小物块A (可视为质点)轻轻放在传送带的a 端,物块A 与传送带之间的动摩擦因数μ=0.25.传送带沿图甲所示方向以v =2 m/s 的速度匀速运动,若物块A 始终未脱离传送带,试求小物块A 从a 端被传送到c 端所用的时间?(取g =10m/s 2 ,sin37°=0.6 ,cos37°=0.8 )
(选做题)3.如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m .现每隔1 s 把质量m =1 kg 的工件(视为质点)轻放在传送带上,工件在传送带的带动下向上
运动,工件与传送带间的动摩擦因数μ=235
,取g =10 m/s 2,结果保留两位有效数字.求:相邻工件间的最小距离和最大距离?(2)满载与空载相比,传送带需要增加多大的牵引力?(优化方案 P51迁移2) 答案:(1)0.50 m 3.0 m (2)33 N
六、课外作业:教辅“优化方案”P57页:例3、迁移1;P59页:跟踪训练4;P61页:2、3。