((完整版))《导数及其应用》经典题型总结,推荐文档
(完整版)导数知识点总结及应用

《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。
函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。
3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。
由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。
当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。
特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。
5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。
导数题型总结

导数题型总结导数题型总结导数及其应用题型总结题型一:切线问题①求曲线在点(xo,yo)处的切线方程②求过曲线外一点的切线方程③求已知斜率的切线方程④切线条数问题例题1:已知函数f(x)=x+x-16,求:(1)曲线y=f(x)在点(2,-6)处的切线方程(2)过原点的直线L是曲线y=f(x)的切线,求它的方程及切点坐标(3)如果曲线y=f(x)的某一切线与直线y=-(1/4)x+3垂直,求切线方程及切点坐标例题2:已知函数f(x)=ax+2bx+cx在xo处去的极小值-4.使其导数f”(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式;(2)若过点P (-1,m)的曲线y=f(x)有三条切线,求实数m的取值范围。
题型二:复合函数与导数的运算法则的综合问题例题3:求函数y=xcos (x+x-1)sin(x+x-1)的导数题型三:利用导数研究函数的单调区间①求函数的单调区间(定义域优先法则)②求已知单调性的含参函数的参数的取值范围③证明或判断函数的单调性例题4:设函数f(x)=x+bx+cx,已知g(x)=f(x)-f”(x)是奇函数,求y=g (x)的单调区间例题5:已知函数f(x)=x3-ax-1,(1)若f(x)在实数集R上单调递增,求实数a的取值范围(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的范围;若不存在,说明理由。
例题6:证明函数f(x)=lnx/x2在区间(0,2)上是减函数。
题型四:导数与函数图像问题例1:若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在[a,b]上的图象可能是y题型五:利用导数研究函数的极值和最值例题7:已知函数f(x)=-x3+ax2+bx在区间(-2,1)上x=-1时取得极小值,x=2/3时取得极yy32323oaoobxoabxbxabxaA.B.C.D.大值。
求(1)函数y=f(x)在x=-2时的对应点的切线方程(2)函数y=f(x)在[-2,1]上的最大值和最小值。
高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

′
解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−
即
8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得
即
(x0 − 2)2 (x0 + 1) = 0.
高中数学选修1-1(人教B版)第三章导数及其应用3.3知识点总结含同步练习题及答案

三、知识讲解
1.利用导数研究函数的单调性 描述: 一般地,函数的单调性与其导数的正负有如下关系: 在某个区间 (a, b) 内,如果 f ′ (x) > 0 ,那么函数 y = f (x) 在这个区间内单调递增;如果 f ′ (x) < 0 ,那么函数 y = f (x) 在这个区间内单调递减. 注:在 (a, b) 内可导的函数 f (x) 在 (a, b) 上递增(或递减)的充要条件是 f ′ (x) ⩾ 0 (或 f ′ (x) ⩽ 0 ),x ∈ (a, b) 恒成立,且 f ′ (x) 在 (a, b) 的任意子区间内都不恒等于 0 . 例题: 求下列函数的单调区间: (1)f (x) = x 3 − 3x 2 − 9x + 5 ;(2)f (x) = x 函数的极值定义 已知函数 y = f (x) ,设 x 0 是定义域 (a, b) 内任一点,如果对 x0 附近的所有点 x,都有 f (x) < f (x0 ) 成立,则称函数 f (x) 在点 x0 处取得极大值,记作
y 极大 = f (x0 ).
并把 x 0 称为函数 f (x) 的一个极大值点. 如果在 x 0 附近都有 f (x) > f (x0 ) 成立,则称函数 f (x) 在点 x0 处取得极小值,记作
1 3 x − x2 + 2x + 1 . 3 解:(1)函数的定义域为 R.
(3)f (x) =
f ′ (x) = 3x2 − 6x − 9 = 3(x − 3)(x + 1),
令 f ′ (x) > 0 ,解得
x < −1或x > 3,
令 f ′ (x) < 0 ,解得
−1 < x < 3.
高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(
)
函数)(x f 有1个极大值点,1个极小值点
y。
(完整word)导数有关知识点总结、经典例题及解析、近年高考题带答案,推荐文档

导数及其应用【考纲说明】1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。
3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
【知识梳理】一、导数的概念函数y=f(x),如果自变量X在X0处有增量X ,那么函数y相应地有增量y=f( X0+ X)- f (X0),比值X叫做函y f (x o x) f(x o) y数y=f (x)在x o到x o+ x之间的平均变化率,即x= x 。
如果当X 0时,x有极限,我们就说函数y=f(x)在点x o处可导,并把这个极限叫做 f (x)在点x o处的导数,记作f' (x o)或y' x|勺。
r. y .. f (X o X) f (X o) lim — lim即 f (x o) = x o X= x o X 。
说明:yy(1)函数f (x )在点X 0处可导,是指 x 0时, x 有极限。
如果 x 不存在极限,就说函数在点 X 0处不可导,或说无导数。
(2)X 是自变量x 在X 0处的改变量,X 0时,而 y 是函数值的改变量,可以是零。
由导数的定义可知,求函数 y=f (x )在点x o 处的导数的步骤: (1) 求函数的增量 y =f ( x o + X ) — f (x o );y f(X o X ) f(X o )(2)求平均变化率 x =X ;lim —(3) 取极限,得导数f '(x= x o x 。
二、 导数的几何意义函数y=f (x )在点x o 处的导数的几何意义是曲线 y=f (x )在点p (x o , f (x o ))处的切线的斜率。
第五章:一元函数的导数及其应用 重点题型复习(解析版)

第五章:一元函数的导数及其应用重点题型复习题型一导数定义的理解与运用【例1】已知()f x '是函数()f x 的导函数,若()24f '=,则()()222limx f x f x→+-=()A.4B.2C.8D.8-【答案】C 【解析】()()()()()020222222lim2lim 2282x x f x f f x f f x x→→+-+-'===.故选:C .【变式1-1】已知函数()f x 在0x x =处的导数为()0f x ',则000(2)()lim x f x x f x x∆→+∆-=∆()A.()02f x 'B.()02f x '-C.()012f x -'D.()12f x '【答案】A【解析】由导数的定义和极限的运算法则,可得:000000000(2)()(2)()()()limlim lim x x x f x x f x f x x f x x f x x f x x x x∆→∆→∆→+∆-+∆-+∆+∆-=+∆∆∆()()()0002f x f x f x '''=+=.故选:A.【变式1-2】已知函数()f x 可导,且满足()()3Δ3Δlim2Δx f x f x x→--+=,则函数()y f x =在3x =处的导数为()A.1-B.2-C.1D.2【答案】A【解析】因为()()()()003333lim 2lim 2(3)22x x f x f x f x f x f x x→→-∆-+∆-∆-+∆'=-=-=∆-∆△△,所以(3)1f '=-,故选:A.【变式1-3】若函数()f x 在0x 处可导,且()()0002lim 12x f x x f x x∆→+∆-=∆,则()0f x '=()A.1B.1-C.2D.12【答案】A【解析】由导数定义可得()()()00002lim 2x f x x f x f x x∆→+∆-'=∆,所以()01f x '=.故选:A.【变式1-4】设函数()y f x =在R 上可导,则()()00lim x f f x x∆→-∆=∆()A.()0f 'B.()0f '-C.()f x 'D.以上都不对【答案】B【解析】由导数的定义可知()()()()()000lim lim0x x f f x f x f f xx∆→∆→-∆∆-'=-=-∆∆.故选:B.题型二导数的几何意义与应用【例2】函数()()e sin cos xf x x x =+在0x =处切线的斜率为()A.1B.2C.3D.4【答案】B【解析】因为函数()()e sin cos xf x x x =+,则()()e sin cos cos sin 2e cos x xf x x x x x x =++-=',所以()02f '=,也即函数()()e sin cos xf x x x =+在0x =处切线的斜率2k =,故选:B .【变式2-1】已知函数()32f x x =+.(1)曲线()y f x =在点1x =处的切线方程;(2)曲线()y f x =过点()0,4B 的切线方程.【答案】(1)30x y -=;(2)340x y -+=【解析】(1)因为2()3f x x '=,所以(1)3f '=,又(1)3f =,所以曲线()y f x =在1x =处的切线方程为()331y x -=-,即30x y -=;(2)设切点为()300,2x x +,则()()3200002,3f x x f x x =='+,所以切线方程为()()3200023y x x x x -+=-,因为切线过点()0,4B ,所以()()320004230x x x -+=-,即322x =-,解得01x =-,故所求切线方程为340x y -+=.【变式2-2】已知()3f x x x =-,如果过点()2,m 可作曲线()y f x =的三条切线,则m 的取值范围是______.【答案】()2,6-【解析】()231f x x '=-,则过()(),t f t 的切线为()()()y f t f t x t '-=-,即()23312y t x t =--.由过点()2,m 可作曲线()y f x =的三条切线得32262m t t =-+-有3个不等实根.令()32262g t t t m =-++,()2612g t t t '=-,由()0g t '=得0=t 或2t =.当0t <或2t >,()0g t '>,()g t 单调递增;当02t <<,()0g t '<,()g t 单调递减;故当0=t 时,函数()g t 取得极大值为2m +;当2t =时,函数()g t 取得极小值为6m -.要使()0g t =有3个不等实根,则26m -<<,即所求m 的取值范围是()2,6-.【变式2-3】(多选)设b 为实数,直线3y x b =+能作为曲线()f x 的切线,则曲线()f x 的方程可以为()A.()1f x x=-B.()214ln 2f x x x=+C.()3f x x=D.()exf x =【答案】ACD【解析】因为直线3y x b =+能作为曲线()f x 的切线,所以()3f x '=有解,对于A,由()1f x x=-,得()21f x x '=,由()3f x '=,得213x =,解得33x =,所以直线3y x b =+能作为曲线()1f x x =-的切线,所以A 正确,对于B,由()214ln 2f x x x =+,得()4(0)f x x x x '=+>,由()3f x '=,得43x x +=,化简得2340x x -+=,因为2(3)440∆=--⨯<,所以方程无解,所以直线3y x b =+不能作为曲线()214ln 2f x x x =+的切线,所以B 错误,对于C,由()3f x x =,得2()3f x x '=,由()3f x '=,得233x =,解得1x =±,所以直线3y x b =+能作为曲线()3f x x =的切线,所以C 正确,对于D,由()e xf x =,得()e xf x '=,由()3f x '=,得e 3x =,解得ln 3x =,所以直线3y x b =+能作为曲线()e xf x =的切线,所以D 正确,选:ACD【变式2-4】(多选)若两曲线21y x =-与ln 1y a x =-存在公切线,则正实数a 的取值可能是()A.1.2B.4C.5.6D.2e【答案】ABD【解析】由21y x =-,则2y x '=,由ln 1y a x =-,则ay x'=设切线与曲线21y x =-相切于点()11,A x y ,则斜率为12x ,所以切线方程为()()211112y x x x x --=-,即21121y x x x =--①设切线与曲线ln 1y a x =-相切于点()22,B x y ,则斜率为:2ax ,则切线方程为()()222ln 1ay a x x x x --=-,即22ln 1a y x a x a x=+--,②根据题意方程①,②表示同一条直线,则122212ln a x x a x a x ⎧=⎪⎨⎪-=-⎩所以()2224ln 1a x x =--,令()2244ln g x x x x =-(0x >),则()()412ln g x x x '=-,所以()g x在(上单调递增,在)+∞上单调递减,()max 2g x ge ==,由题意(]0,2e a ∈.题型三导数的基本运算【例3】求下列函数的导数.(1)ln(21)y x =+;(2)sin cos xy x=;(3)1()23()()y x x x =+++.【答案】(1)221y x '=+;(2)21cos y x'=;(3)231211y x x =++'【解析】(1)因为ln(21)y x =+,所以221y x '=+;(2)因为sin cos x y x =,所以()2222cos sin 1cos cos x x y x x +'==;(3)因为1()23()()y x x x =+++,326116x x x =+++,所以231211y x x =++'.【变式3-1】已知()tan f x x =,则=3f π⎛⎫ ⎪⎝⎭'()A.43B.43-C.4D.4-【答案】C【解析】因为()tan f x x =,所以2222sin cos sin 1()(tan )()cos cos cos x x x f x x x x x+''====',所以21(43cos 3f ππ'==.故选:C.【变式3-2】已知()()21220222022ln 2f x x xf x '=+-,则()2022f '=()A.2021B.2021-C.2022D.2022-【答案】B【解析】因为()()21220222022ln 2f x x xf x '=+-,所以()()202222022f x x f x''=+-,所以()()202220222022220222022f f ''=+-,解得()20222021f '=-,故选:B【变式3-3】已知函数(),()f x g x 的定义域为R ,()g x '为()g x 的导函数,且()()2f x g x '+=,()()42f x g x '--=,若()g x 为偶函数,则下列结论不一定成立的是()A.(4)2f =B.()20g '=C.(1)(3)f f -=-D.(1)(3)4f f +=【答案】C【解析】对A:∵()g x 为偶函数,则()=()g x g x -,两边求导可得()()g x g x ''=--∴()g x '为奇函数,则()00g '=令=4x ,则可得()0(4)2f g '-=,则(4)2f =,A 成立;对B:令=2x ,则可得()()(2)+2=2(2)2=2f g f g ''⎧⎪⎨-⎪⎩,则()(2)=22=0f g '⎧⎨⎩,B 成立;∵()()2f x g x '+=,则可得()(2)22f xg x '+++=()()42f x g x '--=,则可得()(2)22f x x g '+--=两式相加可得:()(2)42x x f f ++=-,∴()f x 关于点()2,2成中心对称,则(1)(3)4f f +=,D 成立又∵()()2f x g x '+=,则可得()()(4)4(4)42f xg x f x g x ''-+-=---=()()42f x g x '--=,则可得()()4f x f x =-∴()f x 以4为周期的周期函数根据以上性质只能推出(1)(3)4f f -+-=,不能推出(1)(3)f f -=-,C 不一定成立.题型四用导数求函数的单调性【例4】函数()e xf x x =的单调递增区间是()A.(),1-∞-B.(),0∞-C.()0,∞+D.()1,-+∞【答案】D【解析】()()e e e 1x x xf x x x '+=+=,由()0f x '>,得1x >-,所以函数()f x 的单调递增区间是()1,-+∞.故选:D.【变式4-1】函数()2ln f x x x =的单调递增区间为()A.(B.⎫+∞⎪⎪⎝⎭C.)+∞D.⎛⎝⎭【答案】B【解析】函数()f x 的定义域为()0,∞+,()()212ln 2ln 2ln 1f x x x x x x x x x x'=+⋅=+=+,令()0f x '>,得2ln 10x +>,解得x >故函数()2ln f x x x =的单调递增区间为e ⎛⎫+∞ ⎪⎪⎝⎭.故选:B.【变式4-2】下列函数中,既是奇函数,又在()0,+∞上是单调函数的是()A.()sin x x x f -=B.()3exf x x =C.()2f x x=D.()cos f x x x=-【答案】A【解析】A:()sin()sin ()x x x f x x x f --=-+=--=-且定义域为R,为奇函数,又()1cos 0f x x '=-≥,故()f x 单调递增,满足要求;B:()33()e ()exx x x f x f x -=-≠--=-,不满足;C:()22())(f x x x f x ==-=-且定义域为R,为偶函数,不满足;D:()cos()cos ()f x x x x x f x -=---=--≠-,不满足.故选:A【变式4-3】已知函数()()()2212ln R f x ax a x x a =+--∈.(1)当0a =时,求曲线()y f x =在点()()e,e f 的切线方程;(2)讨论函数()y f x =的单调性.【答案】(1)22ey x ⎛⎫=- ⎪⎝⎭;(2)答案见解析【解析】(1)由0a =,则()22ln f x x x =-,()e 2e 2f =-,()22f x x '=-,()2e 2ef '=-,切线方程:()()22e 22e e y x ⎛⎫--=-- ⎪⎝⎭,则22e y x ⎛⎫=- ⎪⎝⎭.(2)由()()2212ln f x ax a x x =+--,求导得()()()()1222221x ax f x ax a xx-+'=+--=,①当0a =时,()22x f x x-'=,()0f x '<,解得()0,1x ∈,()0f x '>,解得()1,x ∈+∞,则()f x :单减区间:()0,1,单增区间:()1,+∞;②当0a >时,令()0f x '=,解得1x =或1x a=-(舍去)当()0,1x ∈时,()0f x '<,当()1,x ∈+∞时,()0f x '>,则()f x :单减区间:()0,1,单增区间:()1,+∞;③当1a <-时,令()0f x '=,解得1x =或1x a=-,当()10,1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '<,当1,1x a ⎛⎫∈-⎪⎝⎭时,()0f x '>,则()f x :单减区间:10,a ⎛⎫- ⎪⎝⎭和()1,+∞,单增区间:1,1a⎛⎫- ⎪⎝⎭;④当1a =-时,()()221x f x x--'=,则()f x :单减区间:()0,∞+;⑤当10a -<<时,令()0f x '=,解得1x =或1x a=-,当()10,1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '<,当11,x a ⎛⎫∈- ⎪⎝⎭时,()0f x '>,则()f x :单减区间:()0,1和1,a∞⎛⎫-+ ⎪⎝⎭,单增区间:11,a ⎛⎫- ⎪⎝⎭;综上,当0a ≥时,单减区间:()0,1,单增区间:()1,+∞当1a <-时,单减区间:10,a ⎛⎫- ⎪⎝⎭和()1,+∞,单增区间:1,1a ⎛⎫- ⎪⎝⎭当1a =-时,单减区间:()0,∞+当10a -<<时,单减区间:()0,1和1,a∞⎛⎫-+ ⎪⎝⎭,单增区间:11,a ⎛⎫- ⎪⎝⎭.题型五由函数的单调性求参数【例5】若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是()A.[)3,+∞B.(],3-∞C.23,e 1⎡⎤+⎣⎦D.(2,e 1⎤-∞+⎦【答案】B【解析】依题意()120f x x a x'=-+≥在区间()1,e 上恒成立,即12a x x≤+在区间()1,e 上恒成立.令()()121e g x x x x =+<<,则()22212120x g x x x -'=-=>,所以()g x 在()1,e 上单调递增,则()3g x >,所以3a ≤.故选:B.【变式5-1】设函数()23ln h x x x x =-+,若函数()h x 在区间1,12m ⎡⎤-⎢⎥⎣⎦上是单调函数,求实数m 的取值范围.【答案】3,22⎛⎤⎥⎝⎦【解析】()()()211123x x h x x xx --'=+-=,()0x >,令()0h x '>,解得102x <<或1x >,令()0h x '<,解得112x <<.故()h x 在10,2⎛⎫ ⎪⎝⎭上严格增,在1,12⎛⎫⎪⎝⎭上严格减,在()1,+∞上严格增.又()h x 在区间1,12m ⎡⎤-⎢⎥⎣⎦上是单调函数,则只需1112m <-≤,解得(3,22m ⎤∈⎥⎦.故实数m 的取值范围为3,22⎛⎤⎥⎝⎦.【变式5-2】已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【答案】(3,--【解析】由()3212132a g x x x x =-++,得()22g x x ax '=-+,当()g x 在()2,1--内为减函数时,则()220g x x ax '=-+≤在()2,1--内恒成立,所以2a x x≤+在()2,1--内恒成立,当()g x 在()2,1--内为增函数时,则()220g x x ax '=-+≥在()2,1--内恒成立,所以2a x x≥+在()2,1--内恒成立,令2y x x=+,因为2y x x=+在(2,-内单调递增,在()1-内单调递减,所以2y x x =+在()2,1--内的值域为(3,--,所以3a ≤-或a ≥-,所以函数()g x 在()2,1--内单调时,a 的取值范围是(]),3⎡-∞-⋃-+∞⎣,故()g x 在()2,1--上不单调时,实数a 的取值范围是(3,--.【变式5-3】已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是()A.51,2⎡⎫⎪⎢⎣⎭B.31,2⎛⎫⎪⎝⎭C.51,2⎛⎫ ⎪⎝⎭D.31,2⎡⎫⎪⎢⎣⎭【答案】A【解析】由题意得29239(3)(23)()23,(0)x x x x f x x x x x x +-+-'=-+==>,令()0f x '=,解得32x =或3x =-(舍),当30,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,则()f x 为减函数,当3,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,则()f x 为增函数,所以()f x 在32x =处取得极小值,所以3112m m -<<+,解得1522m <<,又()1,1m m -+为定义域的一个子区间,所以10m -≥,解得m 1≥,所以实数m 的取值范围是51,2⎡⎫⎪⎢⎣⎭.故选:A题型六用导数求函数的极值【例6】函数2ln ()xf x x =的极大值为___________.【答案】12e【解析】()f x 的定义域是()0,∞+,()432ln 12ln x x x xf x x x -='-=,令()0f x '=解得x所以,()f x 在区间(()(),0,f x f x '>递增;在区间)()(),0,f x f x '+∞<递减;所以()f x 的极大值为12ef=.【变式6-1】已知函数2()(15)e x f x x =-(1)求()f x 在0x =处的切线的方程.(2)求()f x 的单调区间和极值.【答案】(1)15150x y ++=;(2)增区间为(,5),(3,)-∞-+∞,减区间()5,3-;(3)极大值为5(5)10e ,f --=极小值3(3)6e f =-.【解析】(1)因为2()(15)e x f x x =-,故可得()015f =-,()f x '()()()2e 215e 53x xx x x x =+-=+-,(0)f '15=-,故()f x 在0x =处的切线的方程为:1515y x +=-,即15150x y ++=.(2)因为()f x '()()e 53xx x =+-,令()f x '0>,解得()(),53,x ∈-∞-⋃+∞;令()f x '0<,解得()5,3x ∈-;则()f x 在(),5-∞-单调递增,在()5,3-单调递减,在()3,+∞单调递增,故()f x 的单调增区间为(,5),(3,)-∞-+∞,单调减区间()5,3-,且()f x 的极大值为5(5)10e ,f --=()f x 的极小值为3(3)6e f =-.【变式6-2】设函数()233f x x x =--(1)求曲线()y f x =在4x =处的切线方程;(2)设()()e xg x f x =,求函数()g x 的极值.【答案】(1)5190x y --=;(2)极大值为27e -;极小值为33e -.【解析】(1)∵()233f x x x =--,∴()23f x x '=-∴切线的斜率()42435f '=⨯-=又切点的坐标为()()4,4f ,即()4,1∴切线的方程()154y x -=-,即5190x y --=(2)∵()()()2e e33x xg x f x x x =⋅=--⋅∴()()()()2223e 33e 6ex x xg x x x x x x '=-⋅+--⋅=--⋅令()0g x '=,则260x x --=,解得2x =-或3x =列表:x(),2-∞-2-()2,3-3()3,+∞()g x '正0负0正()g x 单调递增27e -单调递减33e -单调递增∴当2x =-时,()g x 取得极大值为27e -;当3x =时,()g x 取得极小值为33e -.【变式6-3】已知函数()2ln f x x a x bx =++在()()1,1f 处的切线方程为30x y ++=.(1)求a 、b 的值;(2)求()f x 的极值点,并计算两个极值之和.【答案】(1)2a =,=5b -(2)极大值点为112x =,极小值点为22x =,极大值与极小值的和为334-【解析】(1)因为()2ln f x x a x bx =++的定义域为()0,∞+,()2a f x x b x'=++,因为,曲线()y f x =在()()1,1f 处的切线方程为30x y ++=,()114f b =+=-,可得=5b -,()121f a b '=++=-,可得2a =.(2)由()()22ln 50f x x x x x =+->,得()()()2212225225x x x x f x x x x x---+'=+-==,列表如下:x 10,2⎛⎫⎪⎝⎭121,22⎛⎫ ⎪⎝⎭2()2,+∞()f x '+-+()f x 增极大值减极小值增所以,函数()f x 的极大值点为112x =,极大值为192ln 224f ⎛⎫=-- ⎪⎝⎭,极小值点为22x =,极小值为()22ln 26f =-,所以,函数()f x 的极大值和极小值为()133224f f ⎛⎫+=-⎪⎝⎭.题型七由函数的极值求参数【例7】已知2x =是函数()323f x ax x a =-+的极小值点,则()f x 的极大值为()A.3-B.0C.1D.2【答案】C【解析】因为()323f x ax x a =-+,则()236f x ax x '=-,由题意可得()212120f a '=-=,解得1a =,()3231f x x x ∴=-+,()()32f x x x '=-,列表如下:x (),0∞-0()0,22()2,+∞()f x '+-+()f x 增极大值减极小值增所以,函数()f x 的极大值为()01f =.故选:C.【变式7-1】函数()322f x x ax bx a =+++在1x =处有极值为10,那么a ,b 的值为()A.4,11-B.3-,3C.4,11-或3-,3D.3,3【答案】A【解析】()232f x x ax b '=++,由题意可知()()10110f f ⎧=⎪⎨='⎪⎩即2320110a b a b a ++=⎧⎨+++=⎩,则232120b a a a =--⎧⎨--=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,当33a b =-⎧⎨=⎩时,()()2310f x x '=-≥,∴在1x =处不存在极值,不符合题意;②当411a b =⎧⎨=-⎩时,()()()238113111f x x x x x '=+-=+-,11,13x ⎛⎫∴∈- ⎪⎝⎭,()0f x '<,()1,x ∈+∞,()0f x ¢>,符合题意.411a b =⎧∴⎨=-⎩,故选:A .【变式7-2】已知函数322()f x x ax bx a =--+,则“7a b +=”是“函数()f x 在=1x 处有极值10”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B【解析】因为322()f x x ax bx a =--+,所以2()32f x x ax b '=--,所以()()21=32=01=1+=10f a b f a b a ----⎧'⎪⎨⎪⎩,解得=3=3a b -⎧⎨⎩或=4=11a b -⎧⎨⎩;当=3=3a b -⎧⎨⎩时32()339f x x x x =-++,()22()363310f x x x x '=-+=-≥,即函数在定义域上单调递增,无极值点,故舍去;当=4=11a b -⎧⎨⎩时32()41116f x x x x =+-+,()()2()31131118f x x x x x '=++=--,当1x >或113x <-时()0f x '>,当1113x -<<时()0f x '<,满足函数在=1x 处取得极值,所以7a b +=,所以由7a b +=推不出函数()f x 在=1x 处有极值10,即充分性不成立;由函数()f x 在=1x 处有极值10推得出7a b +=,即必要性成立;故“7a b +=”是“函数()f x 在=1x 处有极值10”的必要不充分条件;故选:B【变式7-3】已知()()3261f x x ax a x =++++有极大值和极小值,则a 的取值范围为()A.()1,2-B.()3,6-C.()(),12,-∞-+∞D.()(),36,-∞-+∞U 【答案】D【解析】由()()3261f x x ax a x =++++可得()2326f x x ax a '=+++,因为()f x 有极大值和极小值,所以()23260f x x ax a '=+++=有两个不相等的实数根,所以()()224360a a ∆=-⨯⨯+>,即23180a a -->,解得:3a <-或6a >,所以a 的取值范围为()(),36,-∞-+∞U ,故选:D.【变式7-4】已知函数()ln ex axf x x x =+-有唯一的极值点t ,则()f t 的取值范围是()A.[)2,-+∞B.[)3,∞-+C.[)2,+∞D.[)3,+∞【答案】A【解析】求导有()()1e e x x xf x ax x -'=+⋅,因为函数()ln e x axf x x x =+-有唯一的极值点t ,所以,()()1e 0ex x xf x ax x -'=+=⋅有唯一正实数根,因为()10f '=,所以e 0x ax +=在()0,x ∈+∞上无解,所以,e xa x -=在()0,x ∈+∞上无解,记()e xg x x =,则有()()2e 1x x g x x -'=,所以,当()0,1x ∈时,()0g x '<,()g x 在()0,1上递减,当()1,x ∈+∞时,()0g x '>,()g x 在()1,+∞上递增.此时1x =时,()e xg x x=有最小值()1e g =,所以,e a -≤,即e a -≥,所以()()112ea f t f ==-≥-,即()f t 的取值范围是[)2,-+∞,故选:A题型八用导数求函数的最值【例8】函数()12cos f x x x x =+-的最小值为()A.1πB.2πC.-1D.0【答案】C【解析】由题意,函数()12cos f x x x x =+-的定义域为R ,关于原点对称,且满足()()()1122cos cos f x x x x x x x f x -=-+---=+-=,所以()f x 为偶函数,当0x ≥时,()12cos f x x x x =+-,可得()1sin 110f x x =+≥+'>,()f x 在单调递增,又由()f x 为偶函数,所以()f x 在(),0∞-单调递减,[)0,∞+单调递增,所以()()min 01f x f ==-.故选:C.【变式8-1】已知函数()()cos ,R f x ax b x a b =++∈,若()f x 在点()()0,0f 处的切线方程为122y x =+.(1)求a ,b 的值;(2)求函数()f x 在[]0,2π上的最大值.【答案】(1)12a =,1b =;(2)2π+【解析】(1)因为()()cos ,R f x ax b x a b =++∈,所以()sin f x a x '=-,由题意得()()0cos 01210sin 02f b b f a a ⎧=+=+=⎪⎨=-='=⎪⎩,所以12a =,1b =;(2)由(1)得()11cos 2f x x x =++,()1sin 2f x x '=-,因为[]02πx ∈,,当π06x ≤≤时,()0f x '≥,函数()f x 单调递增,当π5π66x <<时,()0f x '<,函数()f x 单调递减,当5π2π6x ≤≤时,()0f x '≥,函数()f x 单调递增,故当6x π=时,函数取得极大值π1πππ1cos 16266122f ⎛⎫=⨯++=++ ⎪⎝⎭,又()02f =,()12π2π1cos 2π1π12π2f =⨯++=++=+,因为π212π12<+<+故函数()f x 在[]02π,上的最大值为2π+.【变式8-2】已知函数()321313f x x x x =-+++.(1)求()f x 的单调区间及极值;(2)求()f x 在区间[]0,6上的最值.【答案】(1)单调增区间为[]1,3-,单调减区间为(),1-∞-和()3,+∞;极小值23-;极大值10(2)最大值为10;最小值为17-【解析】(1)函数()f x 的定义域为R ,()()()22331f x x x x x '=-++=--+.令()0f x '=,得=1x -或3x =.当x 变化时,()f x ',()f x 的变化情况如表所示.x(),1-∞-1-()1,3-3()3,+∞()f x '-+-()f x 单调递减23-单调递增10单调递减故()f x 的单调增区间为[]1,3-,单调减区间为(),1-∞-和()3,+∞.当=1x -时,()f x 有极小值()213f -=-;当3x =时,()f x 有极大值()310f =.(2)由(1)可知,()f x 在[]0,3上单调递增,在[]3,6上单调递减,所以()f x 在[]0,6上的最大值为()310f =.又()01f =,()617f =-,()()60f f <,所以()f x 在区间[]0,6上的最小值为()617f =-.【变式8-3】已知函数31()312f x x ax a ⎛⎫=-+> ⎪⎝⎭.(1)若函数f (x )在x =-1处取得极值,求实数a 的值;(2)当[2,1]x ∈-时.求函数f (x )的最大值.【答案】(1)a =1;(2)答案见解析【解析】(1)由题意可知2()33f x x a '=-,所以(1)0f '-=,即3-3a =0解得a =1,经检验a =1,符合题意.所以a =1.(2)由(1)知2()33f x x a '=-,令()0f x '=,x =212<<即112a <<时,f (x )和()f x '随x 的变化情况如下表:由上可知,所以()f x 的最大值为21.当12≤<即14≤<a 时,f (x )和()f x '随x 的变化情况如下表:(21f =+,由上可知,所以f (x )的最大值为21.2≥即4a ≥时,2()330f x x a '=-≤恒成立,即f (x )在[-2,1]上单调递减,所以f (x )的最大值为f (-2)=-7+6a ,综上所述,当142a <<时,f (x )的最大值为21;当4a ≥时,f (x )的最大值为-7+6a .题型九由函数的最值求参数【例9】若函数32()52f x x x x =+--在区间(,5)m m +内有最小值,则实数m 的取值范围是()A.(4,1)-B.(4,0)-C.[3,1)-D.(3,1)-【答案】C【解析】由题得,2()325(35)(1)f x x x x x '=+-=+-.令()0f x '>,解得53x <-或1x >;令()0f x '<,解得531x <-<,所以()f x 在区间5,3⎛⎫-∞- ⎪⎝⎭内单调递增,在区间5,13⎛⎫- ⎪⎝⎭内单调递减,在区间(1,)+∞内单调递增,所以函数的极小值(1)5f ==-.若()f x 在区间(,5)m m +内有最小值,则极小值即最小值,所以15m m <<+,解得41m -<<,令()5f x =-,可得32530x x x +-+=,可得2(1)(3)0x x -+=,解得3x =-或1,由题得3m - ,综上31m -< .故选:C.【变式9-1】(多选)若函数f (x )=3x -x 3在区间(a 2-12,a )上有最小值,则实数a 的可能取值是()A.0B.1C.2D.3【答案】ABC【解析】因为函数f (x )=3x -x 3,所以()233f x x '=-,令()0f x '=,得1x =±,当1x <-或1x >时,()0f x '<,当11x -<<时,()0f x '>,所以当=1x -时,()f x 取得极小值()12f =-,则21211a a ⎧-<-⎨>-⎩,解得1a -<<又因为()f x 在()1,+∞上递减,且()22f =-,所以2a ≤,综上:12a -<≤,所以实数a 的可能取值是0,1,2故选:ABC【变式9-2】已知函数()()()2e 21251x x x x x f x x x ⎧--≤⎪=⎨->⎪⎩,当(],x m ∈-∞时,()1,1e f x ⎛⎤∈-∞- ⎥⎝⎦,则实数m 的取值范围是__________.【答案】11,32e ⎡⎤--⎢⎥⎣⎦【解析】当1x ≤时,()()()1e 2xf x x =+-',令()0f x '>,则ln21x <<或1x <-;()0f x '<,则1ln2x -<<,∴函数()f x 在()1,ln2-上单调递减,在()(),1,ln2,1-∞-单调递增,∴函数()f x 在=1x -处取得极大值为()111ef -=-,在ln2x =出的极小值为()()()2ln2ln21,e 3f f =-=-.当1x >时,令()1251e f x x =-≤-,解得1132ex <≤-综上所述,m 的取值范围为11,32e ⎡⎤--⎢⎣⎦【变式9-3】已知函数()ln a f x x x=-(1)若a ∈R ,求()f x 在定义域内的极值;(2)若()f x 在[]1,e 上的最小值为32,求实数a 的值.【答案】(1)答案见解析;(2)a e 【解析】(1)由题意得()f x 的定义域是()0+∞,,且()2x af x x +'=,因为0a ≥,所以()0f x '>,故()f x 在()0+∞,上单调递增,无极值;当a<0,x a >-时()0f x '>,()f x 单调递增,0x a <<-时()0f x '<,()f x 单调递减,所以()f x 在x a =-有极小值()ln 1a -+,无极大值;(2)由(1)可得()2x af x x +'=,因为[]1,e x ∈,①若1a ≥-,则0x a +≥,即()0f x '≥在[]1,e 上恒成立,此时()f x 在[]1,e 上单调递增,所以()()min 312f x f a ==-=,所以32a =-(舍去);②若e a -≤,则0x a +≤,即()0f x '≤在[]1,e 上恒成立,此时()f x 在[]1,e 上单调递减,所以()()min 3e 1e 2a f x f ==-=,所以e2a =-(舍去).③若e<1a -<-,令()0f x '=,得x a =-,当1x a <<-时,()0f x '<,所以()f x 在()1,a -上单调递减;当e a x -<<时,()0f x '>,所以()f x 在(),e a -上单调递增,所以()()()min 3ln 12f x f a a =-=-+=,所以a =a =题型十造法解函数不等式【例10】设()f x '是函数()f x 的导函数,且()()()()R 1e f x f x x f <∈'=,,则不等式(ln )f x x >的解集为__________.【答案】(0,e)【解析】令()()e x f x g x =,则2()e ()e ()()()(e )e x x x xf x f x f x f xg x '-=''-=,()()f x f x '<,()0g x '∴<,()()e xf xg x ∴=在R 上单调递减,由(ln )f x x >可得ln (ln )(ln )(1)1e ex f x f x f x =>=,即(ln )(1)g x g >,ln 1x ∴<,解得0e x <<.故不等式的解集为(0,e).【变式10-1】已知定义在R 上的连续偶函数()y f x =的导函数为()y f x '=,当0x >时,()()0f x f x x'+<,且(2)3f =-,则不等式6(21)21f x x --<-的解集为()A.13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭B.13,22⎛⎫⎪⎝⎭C.3,2⎛⎫+∞ ⎪⎝⎭D.1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎝⎭⎝⎭【答案】A【解析】当0x >时,()()()()()()0xf x f x xf x f x f x xxx''+'+==<,∴()()0xf x '<,令()()g x xf x =,∴()g x 在()0,∞+上单调递减,又()y f x =是定义在R 上的连续偶函数,∴()g x 是R 上的奇函数,即()g x 在R 上单调递减,∵(2)3f =-,∴()26g =-,当210x ->,即12x >时,()6(21)21(21)(21)2616f x x f x g x x --<⇒--<-⇒-<--,∴22123x x ⇒>->;当210x -<,即12x <时,()6(21)21(21)(21)2616f x x f x g x x --<⇒-->-⇒->--,∴22123x x ⇒<-<,则12x <.故不等式6(21)21f x x --<-的解集为13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭.故选:A.【变式10-2】已知函数()f x 是定义在()()-00+∞∞,,的奇函数,当()0x ∈+∞,时,()()xf x f x '<,则不等式()()()52+25<0f x x f --的解集为()A.()()33-∞-⋃+∞,,B.()()3003-⋃,,C.()()3007-⋃,,D.()()327-∞-⋃,,【答案】D 【解析】令()()=f xg x x,当()0x ∈+∞,时,()()xf x f x '<,∴当()0x ∈+∞,时,()()()2=<0xf x f x g x x -'',()g x ∴在()0+∞,上单调递减;又()f x 为()()-00+∞∞,,的奇函数,()()()()()====f x f x f x g x g x x x x--∴---,即()g x 为偶函数,()g x ∴在()0-∞,上单调递增;又由不等式()()()52+25<0f x x f --得()()()52<25f x x f --,当20x ->,即2x <时,不等式可化为()()25<25f x f x --,即()()2<5g x g -,由()g x 在()0+∞,上单调递减得2>5x -,解得3x <-,故3x <-;当20x -<,即2x >时,不等式可化为()()25>25f x f x --,即()()()2>5=5g x g g --,由()g x 在()0-∞,上单调递增得2>5x --,解得7x <,故27x <<;综上所述,不等式()()()52+25<0f x x f --的解集为:()()327-∞-⋃,,.故选:D.【变式10-3】定义在()0,∞+上的函数()f x 满足()10xf x x '-->,且()()1010ln 10ef =,则不等式()e e x xf x >+的解集为()A.()10,+∞B.()ln10,+∞C.()ln 5,+∞D.(),5-∞【答案】B【解析】令()()ln g x f x x x =--,因为定义在()0,∞+上的函数()f x 满足()10xf x x '-->,所以()()()1110xf x x g x f x xx'--''=--=>,所以()g x 在()0,∞+上单调递增,因为()()1010ln 10e10ln10f ==+,所以(10)0g =,所以不等式()e e xxf x >+可转化为()()0e e exxxg f x =-->,即())e (10xg g >,所以e x >10,所以x >ln10,所以不等式()e e x xf x >+的解集为()ln10,+∞.故选:B.题型十一导数与函数零点的综合问题【例11】已知函数()e 2axf x x =-()a ∈R ,()cosg x x =.(1)求函数()f x 的极值;(2)当1a =时,判断函数()()()F x f x g x =-在3π,2∞⎛⎫-+ ⎪⎝⎭上零点个数.【答案】(1)答案见解析;(2)两个【解析】(1)由()e 2ax f x x =-知定义域为R ,()e 2axf x a '=-①当0a ≤时,在R 上()0f x '<,故()f x 单调递减,所以无极值.②当0a >时,由e 20ax a -=得:12ln x a a=,当12,ln x a a ∞⎛⎫∈- ⎪⎝⎭时,()0f x '<当12ln ,x a a∞⎛⎫∈+ ⎪⎝⎭时,()0f x '<.所以函数()f x 有极小值为2ln 121222ln 2ln 1ln a f e a a a a a a ⎛⎫⎛⎫=-⋅=- ⎪ ⎪⎝⎭⎝⎭,无极大值.(2)当1a =时,()e 2cos x F x x x =--,()e 2sin xF x x =-+',当3π,02x ⎛⎫∈-⎪⎝⎭时,()0F x '<,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()F x '单调递增,且()01210F =-=-<',π2πe 2102F ⎛⎫='-+> ⎪⎝⎭,故在π0,2⎛⎫⎪⎝⎭上存在0x 使得0()0F x '=,而当π,2x ⎡⎫∈+∞⎪⎢⎣⎭时,()0F x '>.所以()F x 在03π,2x ⎛⎫-⎪⎝⎭上单调递减,在()0,x +∞上单调递增,且3π23πe 3π>02F -⎛⎫-=+ ⎪⎝⎭,()00F =,所以()00F x <,又()ππe 2π+1>0F =-,故由零点的存在性定理()F x 在03,2x π⎛⎫- ⎪⎝⎭上存在一个零点,在0(,)x +∞上也存在一个零点.所以()F x 在3,2π∞⎛⎫-+ ⎪⎝⎭上有两个零点.【变式11-1】若函数()36f x x x m =-+恰有2个不同的零点,则实数m 的值是_________.【答案】-【解析】因为()36f x x x m =-+恰有2个不同零点,故函数()316f x x x =-与()2f x m =-,恰有2个交点,对于()316f x x x =-,()2136f x x '=-,由()10f x '>,得2x 或2x <-,由()10f x '<,得22x -<所以当x 变化时()1f x ',()1f x 变化如下:x(),2-∞-2-()2,2-2()2,+∞()1f x '+0-+()1f x 极大值极小值因为1f x 与()2f x 恰有两个交点,又()122222f =-,(22f -=故12m f -=,或(12m f -=-,所以2m =42m =-【变式11-2】已知函数()()32ln 1,033,0x x f x x x x x ⎧-+>=⎨++≤⎩,若函数()y f x ax =-恰有三个零点,则实数a 的取值范围是__________.【答案】3,34a ⎛⎫∈ ⎪⎝⎭【解析】当0x ≤时,()3233f x x x x =++,()()22363310f x x x x '=++=+≥,在0x ≤上恒成立,且在=1x -时,等号成立,所以()3233f x x x x =++在0x ≤上单调递增,且()00f =,当0x >时,()()ln 1f x x =-+单调递减,且()ln 010-+=,函数()y f x ax =-恰有三个零点,可转化为函数()y f x =与y ax =有三个交点,画出()()32ln 1,033,0x x f x x x x x ⎧-+>=⎨++≤⎩的图象,所图所示:设直线y ax =与()3233f x x x x =++,0x ≤相切时切点为()32,33A m m m m ++,则()()231f m m a '=+=,又根据斜率公式可得:3223333m m ma m m m++==++,所以()223133m m m +=++,解得:0m =或32-,当0m =时,3a =,当32m =-时,2333124a ⎛⎫=⨯-+= ⎪⎝⎭,所以要想函数()y f x =与y ax =有三个交点,直线斜率要介于两切线斜率之间,故3,34a ⎛⎫∈ ⎪⎝⎭【变式11-3】已知函数2()ln (1)f x x a x x a =-+++.(1)若0a =,求()f x 的极大值;(2)若()f x 在区间[1,)+∞上有两个零点,求实数a 的取值范围.【答案】(1)0;(2)(1,0)-.【解析】(1)当0a =时,2()ln f x x x x =-+,且0x >则1(21)(1)()21x x f x x xx'+-=-+=-.当(0,1)x ∈时,()0f x '>,所以()f x 在(0,1)上单调递增;当(1,)x ∈+∞时,()0f x '<,所以()f x 在(1,)+∞上单调递减,所以()f x 的极大值为2(1)ln1110f =-+=.(2)由题意得212(1)1()2(1)1a x x f x a x x x-+++=++='-当1a ≤-时,()0f x '>对1x ≥恒成立,所以()f x 在区间[1,)+∞上单调递增,又(1)0f =,所以()f x 在区间[1,)+∞上仅有一个零点,不符合题意.当1a >-时,令22(1)10a x x -+++=,得12110,04(1)4(1)x a x a =<=>++,若21x ≤,即0a ≥时,()0f x '≤对1x ≥恒成立,()f x 在区间[1,)+∞上单调递减,又(1)0f =,所以()f x 在区间[1,)+∞上仅有一个零点,不符合题意.若21x >,即10a -<<时,()f x 在区间[)21,x 上单调递增,在区间[)2,x +∞上单调递减.令()ln 1,1g x x x x =-->,则1()0xg x x-'=<,所以()g x 在区间[1,)+∞上单调递减,所以()(1)20g x g ≤=-<,即ln 1x x <+,所以2()(1)21f x a x x a <-++++,其中1(1)0a -<-+<,因为函数2(1)21y a x x a =-++++的图像开口向下,所以01x ∃>,使()00f x <,即()f x 在区间[1,)+∞上有两个零点.综上,实数a 的取值范围为(1,0)-.题型十二导数与不等式综合问题【例12】已知函数1()e (1)x f x x -=-+.(1)求()f x 的极值;(2)设()()11f x g x x =++,求证:当1x ≥时,1()4x g x +≥.【答案】(1)极小值1-,无极大值;(2)证明见解析【解析】(1)1()e 1x f x -'=-,由()0f x '=得1x =.当x 变化时,()f x ',()f x 的变化如下表所示:x(,1)-∞1(1,)+∞()f x '-0+()f x ↙极小值↗由上表可知()f x 在1x =处取得极小值(1)1f =-,无极大值.(2)1e ()1x g x x -=+,令21(1)()(1)4ex x h x x -+=≥,22112(1)(1)1()04e 4ex x x x x h x --+-+-'==≤,所以()h x 在[1,)+∞单调递减,所以当1x ≥时,()(1)1h x h ≤=.所以当1x ≥时,21(1)14e x x -+≤,即1e 114x x x -+≥+,故当1x ≥时,1()4x g x +≥.【变式12-1】已知函数()ln f x x x =,()23g x x ax =-+-(1)求()f x 在()()e,e f 处的切线方程(2)若存在[]1,e x ∈时,使()()2f x g x ≥恒成立,求a 的取值范围.【答案】(1)2e y x =-;(2)32e ea £++【解析】(1)由()ln f x x x =,可得()ln 1f x x '=+,所以切线的斜率()e 2k f '==,()e e f =.所以()f x 在()()e,e f 处的切线方程为()e 2e y x -=-,即2e y x =-;(2)令()()()20l 223n h x x f x g x x ax x =+-=-+³,则max32ln a x x x ⎡⎤≤++⎢⎥⎣⎦,令()32ln x x x xj =++,[]1,e x ∈,在[]1,e x ∈上,()()()2130x x x x -+¢j =,()x ϕ∴在[]1,e 上单调递增,()()max 3e 2e +ex \j =j =+,32e ea \£++.【变式12-2】已知函数()ln 1(R)f x a x x a =-+∈.(1)当0a >时,求函数()f x 的单调区间;(2)对任意的12,(0,1]x x ∈,当12x x <时都有121211()()4f x f x x x ⎛⎫-<- ⎪⎝⎭,求实数a 的取值范围.【答案】(1)在(0,)a 上单调递增,在(,)a +∞上单调递减;(2)[3,)-+∞【解析】(1)定义域为(0,)+∞,()1a a xf x xx'-=-=.当0a >时,由()0f x '<,解得:x a >,由()0f x '>,解得:0x a <<.即()f x 在(0,)a 上单调递增,在(,)a +∞上单调递减.(2)121211()()4()f x f x x x -<-,即()()121244f x f x x x -<-.令4()()g x f x x=-,则可知函数()g x 在(0,1]上单调递增.所以2244()()10a g x f x x x x ''=+=-+≥在(0,1]上恒成立.即4a x x ≥-在(0,1]上恒成立,只需max 4()a x x ≥-,设4y x x=-,2410y x '=+>,∴4y x x=-在(0,1]单调递增.所以max 4(143a x x≥-=-=-.综上所述,实数a 的取值范围为[3,)-+∞.【变式12-3】已知函数()()21ln 12f x x ax a x =+++,a ∈R .(1)讨论函数()f x 的单调性;(2)若()0,x ∀∈+∞,不等式()21e 12x f x x ax ≤+-恒成立,求实数a 的取值范围.【答案】(1)答案见解析;(2)(],0-∞【解析】(1)函数()()21ln 12f x x ax a x =+++的定义域为()0,∞+,所以()()()()2111111ax a x ax x f x ax a x x x++++'+=+++==.当0a ≥时,()0f x '>,所以()f x 在()0,∞+上单调递增;。
数学导数及其应用多选题知识点总结及答案

数学导数及其应用多选题知识点总结及答案一、导数及其应用多选题1.已知函数()1ln f x x x x=-+,()()1ln x x x x g --=,则下列结论正确的是( ) A .()g x 存在唯一极值点0x ,且()01,2x ∈ B .()f x 恰有3个零点C .当1k <时,函数()g x 与()h x kx =的图象有两个交点D .若120x x >且()()120f x f x +=,则121=x x 【答案】ACD 【分析】根据导数求得函数()g x '在(0,)+∞上为单调递减函数,结合零点的存在性定,可判定A 正确;利用导数求得函数 ()f x 在(,0)-∞,(0,)+∞单调递减,进而得到函数 ()f x 只有2个零点,可判定B 不正确;由()g x kx =,转化为函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象的交点个数,可判定C 正确;由()()120f x f x +=,化简得到 ()121()f x f x =,结合单调性,可判定D 正确. 【详解】由函数()()1ln x x x x g --=,可得 ()1ln ,0g x x x x '=-+>,则()2110g x x x''=--<,所以()g x '在(0,)+∞上为单调递减函数,又由 ()()110,12ln 202g g '=>=-+<, 所以函数()g x 在区间(1,2)内只有一个极值点,所以A 正确; 由函数()1ln f x x x x=-+, 当0x >时,()1ln f x x x x=-+,可得 ()221x x f x x -+-'=, 因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(0,)+∞单调递减;又由()10f =,所以函数在(0,)+∞上只有一个零点, 当0x <时,()1ln()f x x x x =--+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(,0)-∞单调递减; 又由()10f -=,所以函数在(,0)-∞上只有一个零点, 综上可得函数()1ln f x x x x=-+在定义域内只有2个零点,所以B 不正确;令()g x kx =,即()1ln x x x kx --=,即 ()1ln (1)x x k x -=-, 设()()1ln x x x ϕ-=, ()(1)m x k x =-, 可得()1ln 1x x x ϕ'=+-,则 ()2110x x xϕ''=+>,所以函数()x ϕ'(0,)+∞单调递增, 又由()01ϕ'=,可得当(0,1)x ∈时, ()0x ϕ'<,函数()x ϕ单调递减, 当(1,)x ∈+∞时,()0x ϕ'>,函数 ()x ϕ单调递增, 当1x =时,函数()x ϕ取得最小值,最小值为()10ϕ=, 又由()(1)m x k x =-,因为1k <,则 10k ->,且过原点的直线,结合图象,即可得到函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象有两个交点,所以C 正确;由120x x >,若120,0x x >>时,因为 ()()120f x f x +=,可得()()12222222211111ln ln 1f x f x x x f x x x x x ⎛⎫⎛⎫=-=--+=+-= ⎪ ⎪⎝⎭⎝⎭,即()121()f x f x =,因为()f x 在(0,)+∞单调递减,所以 121x x =,即121=x x , 同理可知,若120,0x x <<时,可得121=x x ,所以D 正确. 故选:ACD.【点睛】函数由零点求参数的取值范围的常用方法与策略:1、分类参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;2、分类讨论法:一般命题情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各个小范围并在一起,即可为所求参数的范围.2.若直线l 与曲线C 满足下列两个条件:(i )直线l 在点()00,P x y 处与曲线C 相切;(ii )曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C . 下列命题正确的是( )A .直线:0l y =在点()0,0P 处“切过”曲线3:C y x =B .直线:1l x =-在点()1,0P -处“切过”曲线()2:1C y x =+C .直线:l y x =在点()0,0P 处“切过”曲线:sin C y x =D .直线:l y x =在点()0,0P 处“切过”曲线:tan C y x = 【答案】ACD 【分析】分别求出每个选项中命题中曲线C 对应函数的导数,求出曲线C 在点P 处的切线方程,再由曲线C 在点P 处两侧的函数值对应直线上的点的值的大小关系是否满足(ii ),由此可得出合适的选项. 【详解】对于A 选项,由3y x =,可得23y x '=,则00x y ='=,所以,曲线C 在点()0,0P 处的切线方程为0y =,当0x >时,0y >;当0x <时,0y <,满足曲线C 在点()0,0P 附近位于直线0y =两侧, A 选项正确;对于B 选项,由()21y x =+,可得()21y x '=+,则10x y =-'=,而直线:1l x =-的斜率不存在,所以,直线l 在点()1,0P -处不与曲线C 相切,B 选项错误;对于C 选项,由sin y x =,可得cos y x '=,则01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,设()sin x x x f -=,则()1cos 0f x x '=-≥,所以,函数()f x 为R 上的增函数, 当0x <时,()()00f x f <=,即sin x x <; 当0x >时,()()00f x f >=,即sin x x >.满足曲线C 在点()0,0P 附近位于直线y x =两侧,C 选项正确; 对于D 选项,由sin tan cos xy x x ==,可得21cos y x'=,01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,当,22x ππ⎛⎫∈- ⎪⎝⎭时,设()tan g x x x =-,则()2221sin 10cos cos xg x x x=-=-≤',所以,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减.当02x π-<<时,()()00g x g >=,即tan x x >;当02x π<<时,()()00g x g <=,即tan x x <.满足曲线C 在点()0,0P 附近位于直线y x =两侧,D 选项正确. 故选:ACD. 【点睛】关键点点睛:本题考查导数新定义,解题的关键就是理解新定义,并把新定义进行转化,一是求切线方程,二是判断在切点两侧函数值与切线对应的函数值的大小关系,从而得出结论.3.阿基米德是伟大的物理学家,更是伟大的数学家,他曾经对高中教材中的抛物线做过系统而深入的研究,定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线C :2yx 上两个不同点,A B 横坐标分别为1x ,2x ,以,A B 为切点的切线交于P 点.则关于阿基米德三角形PAB 的说法正确的有( )A .若AB 过抛物线的焦点,则P 点一定在抛物线的准线上B .若阿基米德三角形PABC .若阿基米德三角形PAB 为直角三角形,则其面积有最小值14D .一般情况下,阿基米德三角形PAB 的面积212||4x x S -=【答案】ABC 【分析】设出直线AB 的斜截式方程、点,A B 的坐标,根据导数的几何意义求出切线,PA PB 的方程,进而求出点P 的坐标,将直线AB 的方程和抛物线方程联立,得到一元二次方程以及该方程两根的和、积的关系.A :把抛物线焦点的坐标代入直线AB 的斜截式方程中,根据抛物线的准线方程进行判断即可;B :根据正三角形的性质,结合正三角形的面积公式进行判断即可;C :根据直角三角形的性质,结合直角三角形的面积公式进行判断即可;D :根据点到直线距离公式、两点间距离公式进行求解判断即可.. 【详解】由题意可知:直线AB 一定存在斜率, 所以设直线AB 的方程为:y kx m =+,由题意可知:点221122(,),(,)A x x B x x ,不妨设120x x <<,由2'2yx y x ,所以直线切线,PA PB 的方程分别为:221112222(),2()y x x x x y x x x x -=--=-,两方程联立得:211122222()2()y x x x x y x x x x ⎧-=-⎨-=-⎩, 解得:12122x x x y x x +⎧=⎪⎨⎪=⎩,所以P 点坐标为:1212(,)2x x x x +,直线AB 的方程与抛物线方程联立得:2121220,y kx m x kx m x x k x x m y x=+⎧⇒--=⇒+==-⎨=⎩. A :抛物线C :2y x 的焦点坐标为1(0,)4,准线方程为 14y =-,因为AB 过抛物线的焦点,所以14m =,而1214x x m =-=-,显然P 点一定在抛物线的准线上,故本选项说法正确;B :因为阿基米德三角形PAB 为正三角形,所以有||||PA PB =,= 因为 12x x ≠,所以化简得:12x x =-,此时221111(,),(,)A x x B x x -, P 点坐标为:21(0,)x -, 因为阿基米德三角形PAB 为正三角形,所以有||||PA AB =,112x x =-⇒=, 因此正三角形PAB, 所以正三角形PAB的面积为11sin 6022︒==, 故本选项说法正确;C :阿基米德三角形PAB 为直角三角形,当PA PB ⊥时, 所以1212121222121122122114PAPBx x x xx x kk x x x x x x x x ++--⋅=-⇒⋅=-⇒=---, 直线AB 的方程为:14y kx =+所以P 点坐标为:1(,)24k -,点 P 到直线AB 的距离为:=||AB ===,因为12121,4x x k x x +==-,所以21AB k =+, 因此直角PAB的面积为:2111(1)224k ⨯+=≥, 当且仅当0k =时,取等号,显然其面积有最小值14,故本说法正确; D :因为1212,x x k x x m +==-,所以1||AB x x ===-,点P 到直线AB 的距离为:212== 所以阿基米德三角形PAB的面积32121211224x x S x x -=⋅-=, 故本选项说法不正确. 故选:ABC 【点睛】关键点睛:解决本题的关键就是一元二次方程根与系数关系的整体代换应用,本题重点考查了数学运算核心素养的应用.4.已知函数()21ln 2f x ax ax x =-+的图象在点()()11,x f x 处与点()()22,x f x 处的切线均平行于x 轴,则( )A .()f x 在1,上单调递增B .122x x +=C .()()121212x x x x f x f x ++++的取值范围是7,2ln 24⎛⎫-∞-- ⎪⎝⎭D .若163a =,则()f x 只有一个零点 【答案】ACD 【分析】求导,根据题意进行等价转化,得到a 的取值范围;对于A ,利用导数即可得到()f x 在()1,+∞上的单调性;对于B ,利用根与系数的关系可得121x x =+;对于C ,化简()()121212x x x x f x f x ++++,构造函数,利用函数的单调性可得解;对于D ,将163a =代入()f x ',令()0f x '=,可得()f x 的单调性,进而求得()f x 的极大值小于0,再利用零点存在定理可得解. 【详解】 由题意可知,函数()f x 的定义域为()0,∞+,且()211ax ax ax a x x xf -+=-+=',则1x ,2x 是方程210ax ax -+=的两个不等正根,则212401a a x x a ⎧∆=->⎪⎨=>⎪⎩,解得4a >, 当()1,x ∈+∞时,函数210y ax ax =-+>,此时()0f x '>,所以()f x 在()1,+∞上单调递增,故A 正确;因为1x ,2x 是方程210ax ax -+=的两个不等正根,所以121x x =+,故B 错误; 因为()()221212121112221111ln ln 22x x x x f x f x x ax ax x ax ax a ++++=+++-++- 1112111ln 1ln 22a a a a a a a a⎛⎫=+++--=--+ ⎪⎝⎭, 易知函数()11ln 2h a a a a=--+在()4,+∞上是减函数, 则当4a >时,()()742ln 24h a h <=--,所以()()121212x x x x f x f x ++++的取值范围是7,2ln 24⎛⎫-∞-- ⎪⎝⎭,故C 正确; 当163a =时,()1616133f x x x '=-+,令()0f x '=,得14x =或34, 则()f x 在10,4⎛⎫ ⎪⎝⎭上单调递增,在13,44⎛⎫⎪⎝⎭上单调递减,在3,4⎛⎫+∞ ⎪⎝⎭上单调递增, 所以()f x 在14x =取得极大值,且104f ⎛⎫< ⎪⎝⎭,()2ln 20f =>, 所以()f x 只有一个零点,故D 正确. 故选:ACD. 【点睛】关键点点睛:导数几何意义的应用主要抓住切点的三个特点: ①切点坐标满足原曲线方程;②切点坐标满足切线方程;③切点的横坐标代入导函数可得切线的斜率.5.已知()2sin x f x x x π=--.( )A .()f x 的零点个数为4B .()f x 的极值点个数为3C .x 轴为曲线()y f x =的切线D .若()12()f x f x =,则12x x π+=【答案】BC 【分析】首先根据()0f x '=得到21cos xx π-=,分别画出21xy π=-和cos y x =的图像,从而得到函数的单调性和极值,再依次判断选项即可得到答案. 【详解】()21cos xf x x π'=--,令()0f x '=,得到21cos xx π-=.分别画出21xy π=-和cos y x =的图像,如图所示:由图知:21cos xx π-=有三个解,即()0f x '=有三个解,分别为0,2π,π. 所以(),0x ∈-∞,()21cos 0xf x x π'=-->,()f x 为增函数,0,2x π⎛⎫∈ ⎪⎝⎭,()21cos 0x f x x π'=--<,()f x 为减函数,,2x ππ⎛⎫∈ ⎪⎝⎭,()21cos 0x f x x π'=-->,()f x 为增函数,(),x π∈+∞,()21cos 0xf x x π'=--<,()f x 为减函数.所以当0x =时,()f x 取得极大值为0,当2x π=时,()f x 取得极小值为14π-,当x π=时,()f x 取得极大值为0,所以函数()f x 有两个零点,三个极值点,A 错误,B 正确.因为函数()f x 的极大值为0,所以x 轴为曲线()y f x =的切线,故C 正确. 因为()f x 在(),0-∞为增函数,0,2π⎛⎫⎪⎝⎭为减函数, 所以存在1x ,2x 满足1202x x π<<<,且()()12f x f x =,显然122x x π+<,故D 错误.故选:BC 【点睛】本题主要考查导数的综合应用,考查利用导数研究函数的零点,极值点和切线,属于难题.6.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是( ). A .2- B .1-C .0D .1【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,.当1x >时,恒成立,令()()3ln ln 1xF x x x x x=++>,利用导数法研究其最小值即可. 【详解】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立,所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立,令()()3ln ln 1xF x x x x x=++>, 则()222131ln 2ln x x x F x x x x x---'=-+=. 令()ln 2x x x ϕ=--, 因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增, 所以()()000min 00ln 3ln x F x F x x x x ==++.(*) 因为()1ln 3309F -'=<,()()21ln 22ln 4401616F --'==>,所以()03,4x ∈,且002ln 0x x --=, 将00ln 2x x =-代入(*)式, 得()()0000min 00023121x F x F x x x x x x -==-++=+-,()03,4x ∈. 因为0011t x x =+-在()3,4上为增函数, 所以713,34t ⎛⎫∈⎪⎝⎭,即()min 1713,41216F x ⎛⎫∈ ⎪⎝⎭.因为k 为整数,所以0k ≤. 故选:ABC 【点睛】本题主要考查函数与不等式恒成立问题,还考查了转化化归的思想和运算求解的能力,属于较难题.7.在单位圆O :221x y +=上任取一点()P x y ,,圆O 与x 轴正向的交点是A ,将OA 绕原点O 旋转到OP 所成的角记为θ,若x ,y 关于θ的表达式分别为()x fθ=,()y g θ=,则下列说法正确的是( )A .()x f θ=是偶函数,()y g θ=是奇函数;B .()x f θ=在()0,π上为减函数,()y g θ=在()0,π上为增函数;C .()()1fg θθ+≥在02πθ⎛⎤∈⎥⎝⎦,上恒成立; D .函数()()22t f g θθ=+的最大值为2.【答案】ACD 【分析】依据三角函数的基本概念可知cos x θ=,sin y θ=,根据三角函数的奇偶性和单调性可判断A 、B;根据辅助角公式知()()4f g πθθθ⎛⎫+=+ ⎪⎝⎭,再利用三角函数求值域可判断C ;对于D ,2cos sin2t θθ=+,先对函数t 求导,从而可知函数t 的单调性,进而可得当1sin 2θ=,cos 2θ=时,函数t 取得最大值,结合正弦的二倍角公式,代入进行运算即可得解. 【详解】由题意,根据三角函数的定义可知,x cos θ=,y sin θ=, 对于A ,函数()cos fθθ=是偶函数,()sin g θθ=是奇函数,故A 正确;对于B ,由正弦,余弦函数的基本性质可知,函数()cos f θθ=在()0,π上为减函数,函数()sin g θθ=在0,2π⎛⎫⎪⎝⎭为增函数,在,2ππ⎛⎫⎪⎝⎭为减函数,故B 错误; 对于C ,当0θπ⎛⎤∈ ⎥2⎝⎦,时,3,444πππθ⎛⎤+∈ ⎥⎝⎦()()cos sin 4f g πθθθθθ⎛⎫+=+=+∈ ⎪⎝⎭,故C 正确;对于D ,函数()()222cos sin2t fg θθθθ=+=+,求导22sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)t θθθθθθ'=-+=-+-=--+, 令0t '>,则11sin 2θ-<<;令0t '<,则1sin 12θ<<, ∴函数t 在06,π⎡⎤⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦上单调递增,在5,66ππ⎛⎫⎪⎝⎭上单调递减,当6πθ=即1sin 2θ=,cos 2θ=时,函数取得极大值1222t =⨯=又当2θπ=即sin 0θ=,cos 1θ=时,212012t =⨯+⨯⨯=,所以函数()()22t f g θθ=+,故D 正确.故选:ACD. 【点睛】方法点睛:考查三角函数的值域时,常用的方法:(1)将函数化简整理为()()sin f x A x ωϕ=+,再利用三角函数性质求值域; (2)利用导数研究三角函数的单调区间,从而求出函数的最值.8.已知函数()ln f x x mx =-有两个零点1x 、2x ,且12x x <,则下列结论不正确的是( ) A .10m e<<B .21x x -的值随m 的增大而减小C .101x <<D .2x e >【答案】C 【分析】由()0f x =得出ln xm x =,构造函数()ln x g x x=,利用导数分析函数()g x 的单调性与极值,数形结合可判断ACD 选项的正误;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<,利用函数()g x 的单调性结合不等式的基本性质得出2121ξξηη->-,可判断B 选项的正误. 【详解】令()0f x =,可得ln xm x =,构造函数()ln x g x x=,定义域为()0,∞+,()1ln xg x x-'=. 当0x e <<时, ()0g x '>,此时函数()g x 单调递增; 当x e >时,()0g x '<,此时函数()g x 单调递减. 所以,()()max 1g x g e e==,如下图所示:由图象可知,当10m e <<时,直线y m =与函数()ln x g x x=的图象有两个交点,A 选项正确;当1x >时,()0g x >,由图象可得11x e <<,2x e >,C 选项错误,D 选项正确;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<.由于函数()g x 在区间()1,e 上单调递增,且()()11g g ξη<,11ξη∴<; 函数()g x 在区间(),e +∞上单调递减,且()()22g g ξη<,22ξη∴>. 由不等式的基本性质可得1212ξξηη-<-,则2121ξξηη->-. 所以,21x x -的值随m 的增大而减小,B 选项正确. 故选:C. 【点睛】在利用导数研究函数的零点问题个数中,可转化为判定()m g x =有两个实根时实数m 应满足的条件,并注意()g x 的单调性、奇偶性、最值的灵活应用.另外还可作出函数()y g x =的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型四 函数的最值
例1
求函数
f (x)
4x , x 2,2的最大值与最小值。(不含参求最值)
x2 1
例 2 已知函数 f(x)=ax3-6ax2+b,试问是否存在实数 a、b,使 f(x)在[-1,2]上取得最大值 3,最小 值-29,若存在,求出 a,b 的值;若不存在,请说明理由.(最值的逆向应用)
33
题型二 函数单调性的应用 考点一 利用导函数的信息判断 f(x)的大致形状 例 1 如果函数 y=f(x)的图象如图,那么导函数 y=f(x)的图象可能是( )
考点二 求函数的单调区间及逆向应用
例 1 求函数 y x4 2x2 5 的单调区间.(不含参函数求单调区间)
1 例 2 已知函数 f(x)=2x2+alnx(a∈R,a≠0),求 f(x)的单调区间.(含参函数求单调区间)
9、求解函数极值的一般步骤: (1)确定函数的定义域 (2)求函数的导数 f’(x) (3)求方程 f’(x)=0 的根 (4)用方程 f’(x)=0 的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由 f’(x)在方程 f’(x)=0 的根左右的符号,来判断 f(x)在这个根处取极值的情况
(2)f(x)=ax3-3x+1 对于 x∈[-1,1]恒有 f(x)≥0 成立,则 a=________.
二、知识点
1、函数
f
x从 x1 到 x2 的平均变化率:
f
x2 f x1 .
x2 x1
2、导数定义: f
x
在点 x0 处的导数记作 y
x x0
f
( x0
)
lim
x0
f (x0
x) x
3. 已知函数 f(x)=ax3+3x2-x+1 在 R 上为减函数,求实数 a 的取值范围。
总结:已知函数 y f (x) 在 (a, b) 上的单调性,求参数的取值范围方法:
1、利用集合间的包含关系
2、转化为恒成立问题(即 f / (x) 0或f / (x) 0 )(分离参数)
3、利用二次方程根的分布(数形结合)
例 4 求证 sin x x ,( x )(证明不等式)
练习:已知 x>1,证明 x>ln(1+x).
题型三 函数的极值与最值
考点一 利用导数求函数的极值。 1
lnx+1
例 1 求下列函数的极值:(1)f(x)=x+4x;(2)f(x)= x .(不含参函数求极值)
a
例 2 设 a>0,求函数 f(x)=x2+x(x>1)的单调区间,并且如果有极值时,求出极值.(含参函数求极 值)
5、导数运算法则:
⑦ (loga
x)'
1 x ln a
;⑧ (ln x)'
1 x
1
f
x g x
f x gx
;
2
f
x g x
f xg x
f
xgx
;
f x
3
g
x
f
x
g
x g x
f x 2
g
x
Hale Waihona Puke gx0.
6、在某个区间 a,b内,若 f x 0 ,则函数 y f x在这个区间内单调递增;
若 f x 0 ,则函数 y f x在这个区间内单调递减.
7、求解函数 y f (x) 单调区间的步骤:
(1)确定函数 y f (x) 的定义域; (2)求导数 y' f ' (x) ;
(3)解不等式 f ' (x) 0 ,解集在定义域内的部分为增区间;
(4)解不等式 f ' (x) 0 ,解集在定义域内的部分为减区间.
8、求函数 y f x的极值的方法是:解方程 f x 0 .当 f x0 0 时: 1如果在 x0 附近的左侧 f x 0 ,右侧 f x 0 ,那么 f x0 是极大值; 2如果在 x0 附近的左侧 f x 0 ,右侧 f x 0 ,那么 f x0 是极小值.
a 例 3 设函数 f(x)=3x3+bx2+cx+d(a>0),且方程 f′(x)-9x=0 的两个根分别为 1,4.若 f(x)在 (-∞,+∞)内无极值点,求 a 的取值范围.(函数极值的逆向应用)
例 4 已知函数 f(x)=x3-3ax-1,a≠0. (利用极值解决方程的根的个数问题) (1)求 f(x)的单调区间; (2)若 f(x)在 x=-1 处取得极值,直线 y=m 与 y=f(x)的图象有三个不同的交点,求 m 的取值范 围.
练习:求函数 f (x) x a 的单调区间。 x
例 3 若函数 f(x)=x3-ax2+1 在(0,2)内单调递减,求实数 a 的取值范围.(单调性的逆向应用)
练习 1:已知函数 f (x) 2ax x3, x (0,1], a 0 ,若 f (x) 在 (0,1] 上是增函数,求 a 的取值范围。 2. 设 a>0,函数 f (x) x3 ax 在(1,+∞)上是单调递增函数,求实数 a 的取值范围。
例 3 已知 f(x)=xlnx,g(x)=x3+ax2-x+2. (1)求函数 f(x)的单调区间. (2)若对任意 x∈(0,+∞),2f(x)≤g′(x)+2 恒成立,求实数 a 的取值范围.(利用极值处理恒成立 问题)
1 练习 1 已知 f(x)=x3-2x2-2x+5,当 x∈[-1,2]时,f(x)<m 恒成立,求实数 m 的取值范围。
《导数及其应用》经典题型总结
一、知识网络结构
导数的概念
导数的几何意义、物理意义
导数
导数的运算
常见函数的导数 导数的运算法则
函数的单调性
导数的应用
函数的极值
函数的最值
题型一 求函数的导数及导数的几何意义
考点一 导数的概念,物理意义的应用
例 1.(1)设函数 f (x) 在 x 2 处可导,且 f (2) 1,求 lim f (2 h) f (2 h) ;
h0
2h
(2)已知 f (x) x(x 1)(x 2)(x 2008) ,求 f (0) .
考点二 导数的几何意义的应用
例 2:
已知抛物线 y=ax2+bx+c 通过点 P(1,1),且在点 Q(2,-1)处与直线 y=x-3 相切,求实数
a、b、c 的值
例 3:已知曲线 y= 1 x3 4 . (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程.
f (x0 ) .
3、函数 y
f x在点 x0 处的导数的几何意义是曲线 y
f x 在点
x0, f x0
处的切线的斜
率.
4、常见函数的导数公式:
① C ' 0 ;② (x )' x 1 ;
③ (sin x)' cos x ;④ (cos x)' sin x ;
⑤ (a x )' a x ln a ;⑥ (e x )' e x ;