2011—2017年新课标全国卷1理科数学分类汇编——8.立体几何
2017的年的高考立体几何大题(理科).doc

2017年高考立体几何大题(理科)1、(2017新课标Ⅰ理数)(12分)如图,在四棱锥P-ABCD中,AB//CD,且90BAP CDP o.(1)证明:平面PAB⊥平面PAD;APD o,求二面角A-PB-C的余弦值.(2)若PA=PD=AB=DC,902、(2017新课标Ⅱ理)(12分)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,o1,90,2ABBC AD BAD ABC E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D 的余弦值.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD=,AB=4.6(I)求证:M为PB的中点;(II)求二面角B-PD-A的大小;(III)求直线MC与平面BDP所成角的正弦值.5、(2017山东理)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120得到的,G是?DF的中点.(Ⅰ)设P是?CE上的一点,且AP BE,求CBP的大小;AD,求二面角E AG C的大小.AB,2(Ⅱ)当36、(2017江苏)(本小题满分14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E 与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.7、如图,在三棱锥P-ABC 中,PA ⊥底面ABC ,∠BAC =90°,点D 、E 、N 分别为棱PA 、PC 、BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2(1)求证:MN ∥平面BDE ;(2)求二面角C-EM-N 的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为217,求线段AH 的长。
2011年—2017年新课标全国1卷理科数学题型分类汇编(含答案)

2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编(含答案)说明:2017 年高考中,安徽、湖北、福建、湖南、山西、河北、江西、广东、河南等9 个省份选择使用新课标全国Ⅰ卷.2017 年,除了保留北京、天津、上海、江苏、浙江实行自主命题外(山东省语文、数学卷最后一年使用),大陆其他省区全部使用全国卷.研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.正所谓知己知彼,才能百战不殆,为了方便老师和同学们备考2018 年高考,本人认真研究近7 年新课标高考全国Ⅰ卷理科数学和高考数学考试说明,将2011 年—2017 年新课标全国Ⅰ卷进行了分类整理.2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编1.集合与常用逻辑用语 (2)2.函数与导数 (3)3.三角函数、解三角形 (7)4.平面向量 (10)5.数列 (11)6.不等式、推理与证明 (13)7.立体几何 (14)8.解析几何 (18)9.统计、概率分布列、计数原理 (23)10.复数及其运算 (30)11.程序框图 (31)12.坐标系与参数方程 (33)13.不等式选讲 (36)1.集合与常用逻辑用语一、选择题【2017,1】已知集合A ={x x <1},B ={x 3x <1},则()A.A B = {x | x <0}B.A B =R C.A B = {x | x >1}D.A B=∅【2016,1】设集合A = {x x2 - 4x + 3 <0},B = {x 2x - 3 > 0} ,则A B =()A.(-3,-3)2B.(-3,3)2C.(1,3)2D.(3,3)2【2015,3】设命题p :∃n∈N,n2 > 2n ,则⌝p 为()A.∀n ∈N ,n2 >2n B.∃n∈N,n2 ≤2n C.∀n ∈N ,n2 ≤2n D.∃n∈N ,n2 =2n【2014,1】已知集合A={ x | x2 - 2x - 3 ≥ 0 },B= {x -2 ≤x < 2},则A ⋂B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【2013,1】已知集合A={x|x2-2x>0},B={x|-x<,则( )A.A∩B=B.A∪B=R C.B ⊆A D.A ⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )| x∈A,y ∈A ,x -y ∈A },则B 中包含元素的个数为()A.3 B.6 C.8 D.102.函数与导数一、选择题【2017,5】函数f (x) 在(-∞, +∞) 单调递减,且为奇函数.若f (1) =-1 ,则满足-1 ≤f (x - 2) ≤1的x 的取值范围是()A.[-2, 2]B.[-1,1]C.[0, 4] D.[1, 3]【2017,11】设x, y, z 为正数,且2x = 3y = 5z ,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【2016,7】函数y =2x2 -e x 在[-2,2] 的图像大致为()A.B.C.D.【2016,8】若a >b >1,0 <c <1,则()A.a c <b c B.ab c <ba c C.a logb c <b logac D.logac <logbc【2015,12】设函数f (x) = e x (2x -1) -ax +a ,其中a <1,若存在唯一的整数x ,使得f (x ) < 0 ,00则a 的取值范围是()A.⎡-3,1⎫B.⎡-3,3 ⎫C.⎡3,3 ⎫D.⎡3,1⎫ ⎣⎢2e⎪ ⎢2e 4 ⎪ ⎢2e 4 ⎪ ⎢2e ⎪⎭⎣ ⎭ ⎣⎭⎣ ⎭【2014,3】设函数f (x) ,g(x) 的定义域都为R,且f (x) 是奇函数,g(x) 是偶函数,则下列结论正确的是()A .f (x) g(x) 是偶函数B .| f (x) | g(x) 是奇函数C .f (x) | g(x) |是奇函数D .| f (x) g(x) |是奇函数【2014,11】已知函数f (x) = ax3 - 3x2 +1 ,若f (x) 存在唯一的零点x ,且x >0,则a 的取值范围为0 0A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)⎧-x2 + 2x,x ≤ 0,【2013,11】已知函数f(x)=⎨⎩ln( x+1),x > 0.若|f(x)|≥ax,则a 的取值范围是( ) A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]【2012,10】已知函数f ( x) =1,则y =f (x) 的图像大致为()A.B.D.【2012,12】设点P 在曲线y =1e x 上,点Q 在曲线y = ln(2x) 上,则| PQ |的最小值为()2A.1- ln 2B- ln 2)C.1+ ln 2D+ ln 2)【2011,12】函数y =1x -1的图像与函数y =2s in πx(-2 ≤x ≤ 4) 的图像所有交点的横坐标之和等于()A.2 B.4 C.6 D.8【2011,2】下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y =x3B.y = x +1C.y =-x2 +1D.y = 2-x【2011,9】由曲线y =,直线y =x - 2 及y 轴所围成的图形的面积为()A.103二、填空题B.4 C.163D.6【2017,16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D、E、F 为圆O 上的点,△DBC,△ECA,△F AB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起△DBC,△ECA,△F AB,使得D,E,F 重合,得到三棱锥.当△ABC.的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【2015,13】若函数f(x)=x ln(x a=【2013,16】若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2 对称,则f(x)的最大值为.三、解答题【2017,12】已知函数f (x)=ae2 x +(a -2)e x -x .(1)讨论f ( x) 的单调性;(2)若f ( x) 有两个零点,求a 的取值范围.【2016,12】已知函数f (x) = (x -2)e x +a(x -1)2 有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x1 , x2 是f (x) 的两个零点,证明:x1 +x2 < 2 .【2015,12】已知函数f ( x) =x3 +ax +1,g(x) =-l n x .4(Ⅰ)当a 为何值时,x 轴为曲线y =f (x) 的切线;(Ⅱ)用min{m, n} 表示m, n 中的最小值,设函数h(x) = min{ f (x), g(x)} (x > 0 ),讨论h(x) 零点的个数.【2014,21】设函数f ( x0 =ae x ln x +be x-1,曲线y =f (x) 在点(1,f (1) 处的切线为y =e(x -1) + 2 .(Ⅰ) x求a,b;(Ⅱ)证明:f (x) >1.【2013,21】设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P 处有相同的切线y=4x+2.(1)求a,b,c,d 的值;(2)若x≥-2 时,f(x)≤kg(x),求k 的取值范围.【2012,21】已知函数f (x) 满足f (x) =f '(1)e x-1 -f (0)x+1x2 .2(1)求f (x) 的解析式及单调区间;(2)若f (x) ≥1x2 +ax +b ,求(a +1)b 的最大值.2【2011,21】已知函数f (x) =a ln x+b,曲线y =f (x) 在点(1, f (1)) 处的切线方程为x +2y- 3 = 0 .x +1x(Ⅰ)求a 、b 的值;(Ⅱ)如果当x > 0 ,且x ≠1时,f (x) > ln x+k,求k 的取值范围.x -1 x3.三角函数、解三角形一、选择题2π 【2017,9】已知曲线 C 1:y =cos x ,C 2:y =sin (2x +3),则下面结正确的是( )πA .把 C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 6得到曲线C 2 个单位长度,πB .把C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 12得到曲线C 2个单位长度,1 C .把 C 1 上各点的横坐标缩短到原来的 2得到曲线C 2π 倍,纵坐标不变,再把得到的曲线向右平移 6个单位长度,1D .把 C 1 上各点的横坐标缩短到原来的 2π倍,纵坐标不变,再把得到的曲线向左平移 12个单位长度,得到曲线 C 2【2016,12】已知函数 f ( x ) = sin(ωx + ϕ )(ω > 0, ϕ≤ π , x = - π为 f ( x ) 的零点, x = π 为244y = f (x ) 图像的对称轴,且 f ( x ) 在 ( π 18 , 5π单调,则ω 的最大值为()36A .11B .9C .7D .5【2015,8】函数 f ( x ) = cos(ω x + ϕ) 的部分图象如图所示,则 f ( x ) 的单调递减区间为()A . (k π - 1 , k π + 3), k ∈ ZB . (2k π - 1 , 2k π + 3), k ∈ Z4 4 4 4 C . (k - 1 , k + 3k ∈ ZD . (2k - 1 , 2k + 3), k ∈ Z4 4【2015,2】 sin 20 cos10- cos160 sin10 4 4= ( )A .BC . - 12D . 12【2014,6】如图,圆 O 的半径为 1,A 是圆上的定点,P 是圆上的动点,角 x 的始边为射线OA ,终边为射线 OP ,过点 P 作直线OA 的垂线,垂足为 M ,将点 M 到直线OP 的距离表示为 x 的函数 f ( x ) ,则y= f ( x ) 在[0, π ]上的图像大致为()【2014,8】设α ∈ (0, π ) , β ∈ (0, π) ,且 tan α =1 + sin β,则()2A . 3α - β = π2 2B . 2α - β = π2cos βC . 3α + β = π 2D . 2α + β = π2【2012,9】已知ω > 0 ,函数 f ( x ) = sin(ω x + π ) 在( π,π )上单调递减,则ω 的取值范围是()4 2A .[ 1 , 5 ]B .[ 1 , 3 ]C .(0, 1 ]D .(0,2]2 4 2 4 2【2011,5】已知角θ 的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直线 y = 2x 上,则 cos 2θ =A . - 45B . - 35C . 35D . 45【2011,11】设函数 f ( x ) = sin(ω x + ϕ ) + cos(ω x + ϕ)(ω > 0, ϕ且 f (-x ) = f (x ) ,则( )< π 的最小正周期为π , 2A . f ( x ) 在 ⎛ 0, π ⎫单调递减 B . f ( x ) 在 ⎛ π ,3π ⎫单调递减2 ⎪ 4 4 ⎪⎝ ⎭⎝ ⎭C . f ( x ) 在 ⎛ 0, π ⎫单调递增 D . f ( x ) 在 ⎛ π ,3π ⎫单调递增2 ⎪ 4 4 ⎝ ⎭⎝ ⎭二、填空题【2015,16】在平面四边形 ABCD 中,∠A = ∠B = ∠C = 75 ,BC = 2 ,则 AB 的取值范围是.【2014,16】已知 a , b , c 分别为 ∆ABC 的三个内角 A , B , C 的对边, a =2,且 (2 + b )(sin A - sin B ) = (c - b ) sin C ,则 ∆ABC 面积的最大值为.【2013,15】设当 x =θ 时,函数 f (x )=sin x -2cos x 取得最大值,则 cos θ=.【2011,16】在 ABC 中, B = 60 , AC =AB + 2BC 的最大值为 .三、解答题【2017,17】△ABC 的内角A ,B ,C 的对边分别为 a ,b ,c ,已知△ABC 的面积为 a 23sin A(1)求 sin B sin C ;(2)若 6cos B cos C =1,a =3,求△ABC 的周长【2016,17】∆ABC 的内角A, B,C的对边分别为a,b, c ,已知2c os C(a cos B +b cos A) =c .(Ⅰ)求C ;(Ⅱ)若c = 7 ,∆ABC 的面积为3 3,求∆ABC 的周长.2【2013,17】如图,在△ABC 中,∠ABC=90°,AB=BC=1,P 为△ABC 内一点,∠BPC=90°.(1)若PB=1,求P A;(2)若∠APB=150°,求tan∠PBA.2【2012,17】已知a ,b ,c 分别为△ABC 三个内角A,B,C 的对边,a cos C +s in C -b -c = 0 .(1)求A;(2)若a = 2 ,△ABC 的面积为 b ,c .⎭⎝ ⎦4.平面向量一、选择题【2015,7】设 D 为 ∆ABC 所在平面内一点 BC = 3CD ,则()A . AD = - 1 AB + 4AC3 3 C . AD =4 AB + 1AC3 3B . AD = 1 AB - 4AC3 3 D . AD =4 AB - 1AC3 3【2011,10】已知 a 与 b 均为单位向量,其夹角为θ ,有下列四个命题P : a + b > 1 ⇔ θ ∈ ⎡0, 2π ⎫P : a + b > 1 ⇔ θ ∈ ⎛ 2π ,π ⎤1 ⎢⎣ 3 ⎪⎭ 2 3⎥ ⎝ ⎦⎡ π ⎫⎛ π ⎤P 3 : a - b > 1 ⇔ θ ∈ ⎢⎣0, 3 ⎪P 4 : a - b > 1 ⇔ θ ∈ 3 ,π ⎥其中的真命题是()A . P 1 , P 4B . P 1 , P 3C . P 2 , P 3D . P 2 , P 4二、填空题【2017,13】已知向量 a ,b 的夹角为 60°,|a |=2, | b |=1,则| a +2 b |=.【2016,13】设向量 a = (m ,1) ,b = (1,2) ,且| a + b |2= | a |2+ | b |2,则 m =.【2014,15】已知 A ,B ,C 是圆 O 上的三点,若 AO = 1( A B + AC ) ,则 AB 与 AC 的夹角为 . 2【2013,13】已知两个单位向量 a ,b 的夹角为 60°,c =t a +(1-t )b .若 b ·c =0,则 t =.【2012,13】已知向量 a , b 夹角为 45°,且| a |= 1,| 2a - b |= 10 ,则| b |=.n 2 15.数列一、选择题【2017,4】记S n 为等差数列{a n } 的前 n 项和.若 a 4 + a 5 = 24 , S 6 = 48 ,则{a n } 的公差为( )A .1B .2C .4D .8【2017,12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们 推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2, 1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22,依此类推.求满足如下条件的最小整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110【2016,3】已知等差数列{a n } 前 9 项的和为 27 , a 10 = 8 ,则 a 100 = ( )A .100B . 99C .98D .97 【2013,7】设等差数列{a n }的前 n 项和为 S n ,若 S m -1=-2,S m =0,S m +1=3,则 m =( ).A .3B .4C .5D .6 【2013,12】设△A n B n C n 的三边长分别为 a n ,b n ,c n ,△A n B n C n 的面积为 S n ,n =1,2,3,….c + a b + a 若 b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1= nn,c n +1=2nn,则( ).2A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列2 1【2013,14】若数列{a n }的前 n 项和 S n =a n 3+ ,则{a n }的通项公式是 a n = .3 【2012,5】已知{ a n }为等比数列, a4 + a 7 = 2 , a 5a 6 = -8 ,则 a 1 + a 10 = ()A .7B .5C .-5D .-7二、填空题【2016,15】设等比数列{a n } 满足 a 1 + a 3 = 10 , a 2 + a 4 = 5 ,则 a 1a 2a n 的最大值为.【2012,16】数列{ a n }满足 a n +1 + (-1) a n = 2n -1 ,则{ a n }的前 60 项和为 .三、解答题【2015,17】 S n 为数列{a n } 的前 n 项和.已知 a n >0, a+ 2a n = 4S n + 3 . n(Ⅰ)求{a n } 的通项公式;(Ⅱ)设 b n =,求数列{b n } 的前n 项和. a n a n +12【2014,17】已知数列{ a n }的前 n 项和为 S n , a 1 =1, a n ≠ 0 , a n a n +1 = λS n -1,其中 λ 为常数.(Ⅰ)证明: a n +2 - a n = λ ;(Ⅱ)是否存在 λ ,使得{ a n }为等差数列?并说明理由.【2011,17】等比数列{a n } 的各项均为正数,且 2a 1 + 3a 2 = 1, a 3 = 9a 2 a 6 .(Ⅰ)求数列{a n } 的通项公式;(Ⅱ)设 ⎧ 1 ⎫ b n = log 3 a 1 + log 3 a 2 + ...... + log 3 a n , 求数列 ⎨ ⎬ 的前n 项和. ⎩ b n ⎭⎩⎨⎩⎪ ⎨ x ≥ 06.不等式、推理与证明一、选择题⎧ x + y ≥ 1 【2014,9)】不等式组 ⎨⎩ x - 2 y ≤ 4的解集记为D .有下面四个命题: p 1 : ∀(x , y ) ∈ D , x + 2 y ≥ -2 ;p 2 : ∃(x , y ) ∈ D , x + 2 y ≥ 2 ; P 3 : ∀(x , y ) ∈ D , x + 2 y ≤ 3 ; p 4 : ∃(x , y ) ∈ D , x + 2 y ≤ -1 .其中真命题是()A . p 2 , P 3B . p 1 , p 4C . p 1 , p 2D . p 1 , P 3二、填空题⎧ x + 2 y ≤ 1⎪【2017,14】设 x ,y 满足约束条件 ⎨2x + y ≥ -1,则z = 3x - 2 y 的最小值为 .⎪ x - y ≤ 0 【2016,16】某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg , 乙材料 1kg ,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时.生产一件 产品 A 的利润为 2100 元,生产一件产品 B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则 在不超过 600 个工时的条件下,生产产品 A 、产品 B 的利润之和的最大值为 元.⎧ x -1 ≥ 0【2015,15】若 x ,y 满足约束条件 ⎪x - y ≤ 0 ⎪ x + y - 4 ≤ 0,则 y 的最大值为 .x【2014,14】甲、乙、丙三位同学被问到是否去过 A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过 B 城市; 乙说:我没去过 C 城市; 丙说:我们三人去过同一个城市.由此可判断乙去过的城市为.⎧ x - y ≥ -1⎪x + y ≤ 3【2012,14】设 x , y 满足约束条件 ⎪ ⎪⎩ y ≥ 0,则 z = x - 2 y 的取值范围为 .⎧3 ≤ 2x + y ≤ 9,【2011,13】若变量 x , y 满足约束条件 ⎨⎩6 ≤ x - y ≤ 9,则 z = x + 2 y 的最小值为 .7.立体几何一、选择题【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形,该多面体的各个面中有若 干个是梯形,这些梯形的面积之和为( ) A .10B .12C .14D .16【2016,11】平面α 过正方体 ABCD - A 1 B 1C 1 D 1 的顶点 A ,α // 平面CB 1 D 1 ,α 平面 ABCD= m ,α 平面 ABB 1 A 1 = n ,则 m , n 所成角的正弦值为3A .B .2 3 1 C .D .2233【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直 的半径.若该几何体的体积是28π,则它的表面积是( )3A .17πB .18πC . 20πD . 28π【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下 问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思 为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的 弧长为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为 3,估算出堆放的米约有( )A .14 斛B .22 斛C .36 斛D .66 斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为 r )组成一个几何体,该几何体三视图中的正视 图和俯视图如图所示. 若该几何体的表面积为16 + 20π ,则 r =()A .1B .2C .4D .8【2015 年,11 题】【2014 年,12 题】 【2013 年,6 题】【2014,12】如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图,则该多面体的个 条棱中,最长的棱的长度为()A . 6 2B . 4 2C .6D .4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高 8 cm ,将一个球放在容器口,再向 容器内注水,当球面恰好接触水面时测得水深为 6 cm ,如果不计容器的厚度,则球的体积为( )A .500π cm 3B .866π cm 3C .1372π cm 3D .2048π cm 33333【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2013 年,8】【2012 年,7】【2011 年,6】【2012,7】如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为 ( )A .6B .9C .12D .15 【2012,11】已知三棱锥 S -ABC 的所有顶点都在球 O 的球面上,△ABC 是边长为 1 的正三角形,SC 为球O 的直径,且 SC =2,则此棱锥的体积为( )A6B C .3D .2【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()二、填空题【2011,15】已知矩形 ABCD 的顶点都在半径为 4 的球 O 的球面上,且 AB = 6, BC =则棱锥O - ABCD 的体积为.三、解答题【2017,18】如图,在四棱锥 P-ABCD 中,AB//CD ,且 ∠BAP = ∠CDP = 90(1)证明:平面P AB ⊥平面 P AD ;(2)若P A =PD =AB =DC , ∠APD = 90 ,求二面角 A -PB -C 的余弦值.o 【2016,18】如图,在以 A , B , C , D , E , F 为顶点的五面体中,面 ABEF 为正方形,AF = 2FD , ∠AFD = 90︒ ,C且二面角 D - AF - E 与二面角 C - BE - F 都是 60︒ .DEB(Ⅰ)证明:平面 ABEF ⊥ 平面 EFDC ; (Ⅱ)求二面角 E - BC - A 的余弦值.【2015,18】如图,四边形 ABCD 为菱形,∠ABC = 120A,E , F是平面 ABCD 同一侧的两点,BE ⊥平面 ABCD ,DF ⊥平面ABCD , BE = 2DF , AE ⊥ EC .(I )证明:平面 AEC ⊥平面 AFC ;(II )求直线 AE 与直线 CF 所成角的余弦值.【2014,19】如图三棱柱 ABC - A 1B 1C 1 中,侧面 BB 1C 1C 为菱形, AB ⊥ B 1C .(Ⅰ) 证明: AC = AB 1 ;(Ⅱ)若 AC ⊥ AB 1 , ∠CBB 1 = 60 ,AB=BC ,求二面角A - A 1B 1 -C 1 的余弦值.【2013,18】如图,三棱柱ABC-A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C 所成角的正弦值.1AA1,D 是棱AA1 的中点,DC1⊥BD.【2012,19】如图,直三棱柱ABC-A1B1C1 中,AC=BC=2(1)证明:DC1⊥BC;(2)求二面角A1-BD-C1 的大小.B1AB【2011,18】如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:P A⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C 的余弦值.C2 2 2 2 2 22 28.解析几何一、选择题【2017,10】已知F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线 l 1,l 2,直线 l 1 与 C 交于 A 、B 两点,直线 l 2 与C 交于D 、E 两点,则|AB |+|DE |的最小值为()A .16B .14C .12D .10【2016,10】以抛物线 C 的顶点为圆心的圆交 C 于 A , B 两点,交 C 的准线于 D , E 两点,已知 AB = 4 2 ,DE = 2 5 ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【2016,5】已知方程x 2 m 2+ ny 2- 3m 2 - n= 1 表示双曲线,且该双曲线两焦点间的距离为 4 ,则 n 的 取值范围是( )A . (-1,3)B . (-1, 3)C . (0,3)D . (0, 3)x 2 【2015,5】已知 M ( x 0 , y 0 ) 是双曲线 C : 2- y 2= 1上的一点,F 1 , F 2 是 C 的两个焦点,若 MF 1 ⋅ MF 2 < 0 ,则 y 0 的取值范围是()A . (- , )B . (-, )C . (-,D . (-,3 36 63 33 3【2014,4】已知 F 是双曲线 C :x 2 - my 2 = 3m (m > 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为A B .3C .D . 3m【2014,10】已知抛物线 C : y 2= 8x 的焦点为 F ,准线为 l , P 是l 上一点,Q 是直线 PF 与C 的一个 交点,若 FP = 4FQ ,则| QF | =()A . 72B . 5222C .3D .2x y 【2013,4】已知双曲线 C : - a 2 b 2 =1 (a >0,b >0)的离心率为 ,则 C 的渐近线方程为( ).2A .y = ± 1 x 4B .y = ± 1 x 3 2 2C .y = ± 1 x 2D .y =±x x y 【2013,10】已知椭圆E : + a 2 b 2=1 (a >b >0)的右焦点为 F (3,0),过点 F 的直线交 E 于 A ,B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为()A . x + y =1B . x + y =1C . x + y =1D . x + y =145 3636 2727 1818 9x 2 y 2 3a【2012,4】设 F 1 、 F 2 是椭圆 E : a 2 + b 2 ( a > b > 0 )的左、右焦点,P 为直线 x = 上一点,2∆F 2 PF 1 是底角为 30°的等腰三角形,则 E 的离心率为()A . 12B . 23C . 34D . 45【2012,8】等轴双曲线 C 的中心在原点,焦点在 x 轴上,C 与抛物线 y 2= 16x 的准线交于 A ,B 两点,| AB |=,则 C 的实轴长为( )A B .C .4 D .8【2011,7】设直线 L 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,L 与 C 交于 A ,B 两点, AB 为C 的实轴长的 2 倍,则 C 的离心率为( )A B C .2 D .3二、填空题【2017,15】已知双曲线 C : x 2y 2-= 1 (a >0,b >0)的右顶点为 A ,以 A 为圆心,b 为半径作圆 A ,圆 A a 2 b 2与双曲线 C 的一条渐近线交于 M 、N 两点.若∠MAN =60°,则 C 的离心率为 .x 2 【2015,14】一个圆经过椭圆 y 2+ = 1的三个顶点,且圆心在 x 轴的正半轴上,则该圆的标准方程为 .16 4【2011,14】在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F 1 , F 2 在 x 轴上,离心率为 .过2F 1 的直线 L 交 C 于 A , B 两点,且 ABF 2 的周长为 16,那么 C 的方程为.三、解答题【2017,20】已知椭圆 C : x 2 y 2 + =1(a >b >0),四点 P (1,1),P (0,1),P (–1 ),P (1, ) a 2 b 2 1 2 3 42 2中恰有三点在椭圆C 上.(1)求 C 的方程;(2)设直线 l 不经过 P 2 点且与 C 相交于 A ,B 两点.若直线 P 2A 与直线 P 2B 的斜率 的和为–1,证明:l 过定点.【2016,20】设圆x2 +y2 + 2x -15 = 0 的圆心为A ,直线l 过点B(1,0) 且与x 轴不重合,l 交圆A 于C, D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明EA +EB 为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C1 ,直线l 交C1 于M , N 两点,过B 且与l 垂直的直线与圆A 交于P,Q两点,求四边形MPNQ 面积的取值范围.x2【2015,20】在直角坐标系xOy 中,曲线C :y =与直线l :y =kx +a (a > 0 )交于M , N 两点.4(Ⅰ)当k = 0 时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.x 2 y 2 【2014,20】已知点 A (0,-2),椭圆 E : + a 2 b 2直线 AF 的斜率为, O 为坐标原点.3= 1(a > b > 0) 的离心率为, F 是椭圆的焦点,(Ⅰ)求 E 的方程;(Ⅱ)设过点 A 的直线l 与 E 相交于 P , Q 两点,当 ∆OPQ 的面积最大时,求l 的方程.【2013,20】已知圆 M :(x +1)2+y 2=1,圆 N :(x -1)2+y 2=9,动圆 P 与圆 M 外切并且与圆 N 内切,圆 心 P 的轨迹为曲线 C .(1)求 C 的方程;(2)l 是与圆 P ,圆 M 都相切的一条直线,l 与曲线 C 交于 A ,B 两点,当圆 P 的半径 最长时,求|AB |.【2012,20】设抛物线C:x2 =2py(p > 0 )的焦点为F,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B,D 两点.(1)若∠BFD=90°,△ABD 的面积为4 2 ,求p 的值及圆F 的方程;(2)若A,B,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【2011,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3 上,M 点满足MB / /OA ,MA⋅AB =MB ⋅BA ,M 点的轨迹为曲线C.(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.59.统计、概率分布列、计数原理一、选择题【2017,2】如图,正方形 ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部 分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()1 π 1 π A .B .C .D .4824【2017,6】(1 + 1+ x )6 展开式中 x 2 的系数为( ) x 2A .15B .20C .30D .35【2016,4】某公司的班车在 7 : 30 ,8 : 00 ,8 : 30 发车,小明在 7 : 50 至8 : 30 之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过 10 分钟的概率是( )A .1 B .1C .2 D .3 3234【2015,10】 (x 2 + x + y )5 的展开式中, x 5 y 2 的系数为()A .10B .20C .30D .60【2015,4】投篮测试中,每人投 3 次,至少投中 2 次才能通过测试.已知某同学每次投篮投中的概率为 0.6, 且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 【2014,5】4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活 动的概率( )A . 18 B . 38 C . 58 D . 78【2013,3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事 先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在 下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样 【2013,9】设 m 为正整数, ( x + y )2m 展开式的二项式系数的最大值为 a , (x + y )2m +1展开式的二项式系 数的最大值为 b .若 13a =7b ,则 m =( )A .5B .6C .7D .8 【2012,2】将 2 名教师,4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由 1 名教师和 2 名学生组成,不同的安排方案共有( )A .12 种B .10 种C .9 种D .8 种【2011,8】 ⎛ x + a ⎫ ⎛2x - 1 ⎫的展开式中各项系数的和为 2,则该展开式中常数项为( ) x ⎪ x ⎪ ⎝ ⎭ ⎝⎭ A . -40B . -20C .20D .40【2011,4】有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A . 13二、填空题B . 12C . 23D . 34【2016,14】 (2x +x )5 的展开式中, x 3 的系数是 .(用数字填写答案)【2014,13】 (x - y )(x + y )8 的展开式中 x 2 y 7 的系数为 .(用数字填写答案)【2012,15】某一部件由三个电子元件按下图方式连接而成,元件 1 或元件 2 正常工作,且元件 3 正常工作,则部件正常工作.设三个 电子元件的使用寿命(单位:小时)均服从正态分布 N (1000,502),且各个元件元件1元件2元件3 能否正常工作相互独立,那么该部件的使用寿命超过 1000 小时的概率为 . 三、解答题【2017,19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16 个零件, 并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从 正态分布N (μ,σ2). (1)假设生产状态正常,记X 表示一天内抽取的 16 个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P (X ≥1)及 X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的 生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16 个零件的尺寸:1 16经计算得 x = ∑ x i = 9.97 ,s ==≈ 0.212 ,其中 x i 为抽取 16 i =1的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为 μ 的估计值 μˆ ,用样本标准差 s 作为 σ 的估计值σˆ ,利用估计值判断是否需对当 天的生产过程进行检查?剔除(μˆ - 3σˆ , μˆ + 3σˆ ) 之外的数据,用剩下的数据估计 μ 和 σ(精确到 0.01). 附:若随机变量Z 服从正态分布 N (μ,σ2),则 P (μ–3σ<Z <μ+3σ)=0.9974,0.997416≈0.9592≈ 0.09 .【2016,19】某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(Ⅰ)求X 的分布列;(Ⅱ)若要求P( X ≤n) ≥ 0.5 ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n = 19 与n = 20 之中选其一,应选用哪个?8【2015,19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售 量 y (单位:t )和年利润 z (单位:千元)的影响,对近 8 年的年宣传费 x i 和年销售量 y i (i = 1, 2, , 8 )数据作了初步处理,得到下面的散点图及一些统计量的值.1 8表中 w i =, w =∑ wii =1(Ⅰ)根据散点图判断, y = a + bx 与 y = c + y 关于年宣传费 x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及数据,建立 y 关于 x 的回归方程;(III )已知这种产品的年利润 z 与 x , y 的关系为 z = 0.2 y - x ,根据(Ⅱ)的结果回答下列问题:(i )年宣传费 x =49 时,年销售量及年利润的预报值是多少?(ii )年宣传费 x 为何值时,年利润的预报值最大?附:对于一组数据 (u 1 , v 1 ), (u 2 , v 2 ), , (u n , v n ) ,其回归直线 v = α + β u 的斜率和截距的最小二乘估计n∑ (ui- u )(v i - v )分别为 β = i =1n,α = v - β u .∑i =1(u i- u )2【2014,18)】从某企业的某种产品中抽取500 件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500 件产品质量指标值的样本平均数x 和样本方差s 2 (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布N(μ,δ2 ) ,其中μ近似为样本平均数x ,δ2 近似为样本方差s 2 .(i)利用该正态分布,求P(187.8 <Z < 212.2) ;(ii)某用户从该企业购买了100 件这种产品,记X 表示这100 件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX .12.2.若Z ~N(μ,δ2 ) ,则P(μ-δ<Z <μ+δ) =0.6826,P(μ- 2δ<Z <μ+ 2δ) =0.9544.【2013,19】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4 件作检验,这4 件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4 件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1 件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,且各件产品是否为优质2品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100 元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X 的分布列及数学期望.【2012,18】某花店每天以每枝5 元的价格从农场购进若干枝玫瑰花,然后以每枝10 元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16 枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n N )的函数解析式;(2)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:以100 天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16 枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;②若花店计划一天购进16 枝或17 枝玫瑰花,你认为应购进16 枝还是17 枝?请说明理由.⎨ ⎩ 【2011,19】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或 等于 102 的产品为优质品,现用两种新配方(分别称为 A 配方和 B 配方)做试验,各生产了 100 件这种产 品,并测量了每件产品的质量指标值,得到下面试验结果: A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用 A 配方,B 配方生产的产品的优质品率;⎧-2, t < 94(Ⅱ)已知用 B 配方生成的一件产品的利润 y(单位:元)与其质量指标值 t 的关系式为y = ⎪2, 94 ≤ t < 102 ⎪4, t ≥ 102从用 B 配方生产的产品中任取一件,其利润记为 X (单位:元),求 X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)10.复数及其运算一、选择题【2017,3】设有下面四个命题1p 1 : 若复数 z 满足 ∈ R ,则 z ∈ R ; p 2 : 若复数 z 满足 z 2 ∈ R ,则z ∈ R ; z p 3 : 若复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ; p 4 : 若复数 z ∈ R ,则 z ∈R . 其中的真命题为( )A . p 1 , p 3B . p 1 , p 4C . p 2 , p 3D . p 2 , p 4【2016,2】设 (1 + i )x = 1 + yi ,其中 x , y 是实数,则 x + yi = ( )A .1B . 2C . 3D . 2【2015,1】设复数 z 满足1 + z= i ,则| z | =( ) 1 - zA .1B C .D .2(1 + i )3【2014,2】(1 - i )2=( )A .1 + iB .1 - iC . -1+ iD .-1- i 【2013,2】若复数 z 满足(3-4i)z =|4+3i|,则 z 的虚部为().A .-4B . - 45C .4D . 45【2012,3】下面是关于复数 z = 22 -1 + i的四个命题:p 1 :| z |= 2 ; p 2 : z = 2i ; p 3 : z 的共轭复数为1 + i ; p 4 : z 的虚部为 -1.其中的真命题为( )A . p 2 , p 3B . p 1 , p 2C . p 2 , p 4D . p 3 , p 4【2011,1】复数2 + i的共轭复数是( ) 1 - 2iA . - 3 i5B . 3 iC . -i5D .i11.程序框图一、选择题【2017,8】右面程序框图是为了求出满足3n - 2n >1000 的最小偶数n,那么在两个空白框中,可以分别填入A.A+1 B.A>1000 和n=n+2C.A ≤1000 和n=n+1 D.A ≤1000 和n=n+2【2017,8】【2016,9】【2015,9】【2016,9】执行右面的程序框图,如果输入的x = 0 ,y =1,n =1,则输出x, y 的值满足()A.y =2x B.y =3x C.y =4x D.y =5x【2015,9】执行右面的程序框图,如果输入的t =0.01,则输出的n =()A.5 B.6 C.7 D.8【2014,7】执行下图的程序框图,若输入的a,b, k 分别为1,2,3,则输出的M =()A .203B .165C .72D .158【2013,5】执行下面的程序框图,如果输入的t∈[-1,3],则输出的s 属于( ).A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]【2012,6】如果执行右边和程序框图,输入正整数N (N ≥ 2 )和实数a1 ,a2 ,…,a N ,输出A,B,则()A.A +B 为a1 ,a2 ,…,a N 的和B.A +B为a ,a ,…,a 的算术平均数2 1 2 NC.A 和B 分别是a1 ,a2 ,…,a N 中最大的数和最小的数D.A 和B 分别是a1 ,a2 ,…,a N 中最小的数和最大的数【2013,5】【2012,6】【2011,3】【2011,3】执行右面的程序框图,如果输入的N 是6,那么输出的p 是()A.120 B.720 C.1440 D.5040⎩12.坐标系与参数方程一、解答题⎧ x = 3cos θ ,【2017,22】(选修 4-4,坐标系与参数方程)在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎨(θ ⎩ y = sin θ ,⎧ x = a + 4t ,为参数),直线 l 的参数方程为 ⎨ y = 1 - t , ( t 为参数).(1)若 a = -1 ,求 C 与 l 的交点坐标;(2)若 C 上的点到 l 的距离的最大值为a .⎧x = a cos t ,【2016,23】(选修 4-4:坐标系与参数方程)在直角坐标系 xOy 中,曲线 C 1 的参数方程为 ⎨⎩ y = 1 + a sin t ,(t 为参数, a > 0) .在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C 2 : ρ = 4 c os θ .(Ⅰ)说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程;(Ⅱ)直线 C 3 的极坐标方程为θ = α 0 ,其中α 0 满足 tan α 0 = 2 ,若曲线 C 1 与 C 2 的公共点都在C 3 上, 求 a .。
【高考试题分类】2011-2017年新课标全国卷2理科数学试题分类汇编——10.立体几何

2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编10.立体几何一、选择题 (2017·4)如图,网格纸上小正方形的边长为1,学 科&网粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π (2017·10)已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A.2 B.5 C.5D.3 (2016·6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π(2015·6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81B .71C .61D .51(2015·9)已知A ,B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB .64πC .144πD .256π(2014·6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .17B .5C .1027D .1(2014·11)直三棱柱ABC -A 1B 1C 1中,∠BCA =90º,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为( ) A .110B .25CD(2013·4)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( ) A .α // β且l // αB .αβ⊥且l β⊥2016,62015,62014,6C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l(2013·7)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(2012·7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) A. 6B. 9C. 12D. 18(2012·11)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.62B.63C. 32D. 22 (2011·6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )A. B. C. D.二、填空题(2016·14)α、β是两个平面,m 、n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号.)(2011·15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==,则棱锥O -ABCD的体积为 . 三、解答题(2017·19)如图,四棱锥P -ABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点.(1)证明:直线//CE 平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为o45 ,求二面角M -AB -D 的余弦值B. C. D.(2016·19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H . 将△DEF 沿EF 折到△D ´EF的位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.(2015·19)如图,长方体ABCD -A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.(2014·18)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB // 平面AEC ; (Ⅱ)设二面角D -AE -C 为60º,AP =1,ADE -ACD 的体积.(2013·18)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,(2012·19)如图,直三棱柱ABC -A 1B 1C 1中,121AA BC AC ==,D 是棱AA 1的中点,DC 1⊥BD . (Ⅰ)证明:DC 1⊥BC ;(Ⅱ)求二面角A 1-BD -C 1的大小.(2011·18)如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD ,求二面角A -PB -C 的余弦值.C BADC 1A 1B 11AD1B1CACEBOBACFDHED '2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编10.立体几何(逐题解析版)一、选择题(2017·4)B【解析】从三视图可知:一个圆柱被一截面截取一部分而剩余的部分,剩下的体积分上下两部分阴影的体积,下面阴影的体积为V Sh=,3r=,4h=,∴136Vπ=;上面阴影的体积2V是上面部分体积3V的一半,即2312V V=,3V与1V的比为高的比(同底),即3132V V=,213274V Vπ==,故总体积02163V V Vπ=+=.方法2:354V Shπ==,其余同上,故总体积02163V V Vπ=+=.(2017·10)B【解析】解法一:在边1BB﹑11B C﹑11A B﹑AB上分别取中点E﹑F﹑G﹑H,并相互连接.由三角形中位线定理和平行线平移功能,异面直线1AB和1BC所成的夹角为FEG∠或其补角,通过几何关系求得EF=FG=FH=,利用余弦定理可求得异面直线1AB和1BC.解法二:补形通过补形之后可知:1BC D∠或其补角为异面直线1AB和1BC所成的角,通过几何关系可知:1BC1C D=BD1AB和1BC. 解法三:建系建立如左图的空间直角坐标系,()0,2,1A,()10,0,0B,()0,0,1B,11,02C⎫-⎪⎪⎝⎭,∴131,12BC⎛⎫=--⎪⎪⎝⎭,()10,2,1B A=,∴1111cos5B A BCB A BCθ⋅===⋅(2016·6)C解析:几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r,周长为c,圆锥母线长为l,。
2011-2017新课标全国卷1理科数学分类汇编

目录1、 集合与常用逻辑用语2、 函数及其性质3、 导函数及其应用4、 三角函数、解三角形5、 平面向量6、 数列7、 不等式、推理与证明 8、 立体几何 9、 解析几何10、 统计、概率分布列、计数原理 11、 复数及其运算 12、 程序框图13、 坐标系及参数方程 14、 不等式选讲2011—2017年新课标高考全国Ⅰ卷理科数学分类汇编1.集合与常用逻辑用语(含解析)一、选择题【2017,1】已知集合{}1A x x =<,{}31xB x =<,则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅【2016,1】设集合}034{2<+-=x x x A ,}032{>-=x x B ,则A B =I ( )A .)23,3(--B .)23,3(-C .)23,1(D .)3,23(【2015,3】设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n = 【2014,1】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【2013,1】已知集合A ={x |x 2-2x >0},B ={x |x ,则( )A .A ∩B =B .A ∪B =RC .B ⊆AD .A ⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( ) A .3 B .6 C .8 D .101.集合与常用逻辑用语(解析版)一、选择题【2017,1】已知集合{}1A x x =<,{}31xB x =<,则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅【解析】{}1A x x =<,{}{}310xB x x x =<=<,∴{}0A B x x =<,{}1A B x x =<,故选A【2016,1】设集合}034{2<+-=x x x A ,}032{>-=x x B ,则A B =I ( )A .)23,3(--B .)23,3(-C .)23,1(D .)3,23(【解析】{}13A x x =<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭I .故选D . 【2015,3】设命题p :n ∃∈N ,22nn >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n = 解析:命题p 含有存在性量词(特称命题),是真命题(如3n =时),则其否定(p ⌝)含有全称量词(全称命题),是假命题,故选C ..【2014,1】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【解析】∵{|13}A x x x =≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A.【2013,1】已知集合A ={x |x 2-2x >0},B ={x |x ,则( )A .A ∩B =B .A ∪B =RC .B ⊆AD .A ⊆B解析:∵x (x -2)>0,∴x <0或x >2,∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( )A .3B .6C .8D .10 【解析】由集合B 可知,x y >,因此B={(2,1),(3,2),(4,3),(5,4),(3,1),(4,2),(5,3),(4,1),(5,2),(5,1)},B 的元素10个,所以选择D .2.函数及其性质(含解析)一、选择题【2017,5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( )A .[2,2]-B . [1,1]-C . [0,4]D . [1,3]【2017,11】设,,x y z 为正数,且235x y z ==,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z 【2016,7】函数xe x y -=22在]2,2[-的图像大致为( )A .B .C .D .【2016,8】若1>>b a ,10<<c ,则( )A .c c b a <B .c c ba ab <C .c b c a a b log log <D .c c b a log log <【2014,3】设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【2013,11】已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0] 【2012,10】已知函数1()f x =,则()y f x =的图像大致为( )A .B .D .【2011,12】函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( )A .2 B .4 C .6 D .8【2011,2】下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )A .3y x =B .1y x =+C .21y x =-+D .2xy -=二、填空题【2015,13】若函数f (x )=x ln (x a =2.函数与导数(解析版)一、选择题【2017,5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( )A .[2,2]-B . [1,1]-C . [0,4]D . [1,3]【解析】因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤,等价于()()()121f f x f --≤≤,又()f x 在()-∞+∞,单调递减,121x ∴--≤≤,3x ∴1≤≤,故选D . 【2017,11】设,,x y z 为正数,且235x y z ==,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【解析】取对数:ln 2ln3ln5x y ==.ln 33ln 22x y =>,∴23x y >,ln 2ln 5x z =,则ln55ln 22x z =<,∴25x z <∴325y x z <<,故选D .【法二】取对数:5ln 3ln 2ln z y x ==,y x y x y x 3212ln 3ln 2ln 33ln 2323ln 2ln 32>⇒>==⇒=, z x z x z x 5212ln 5ln 2ln 55ln 2525ln 2ln 52<⇒<==⇒=,z x y 523<<∴,故选D ; 【2016,7】函数xe x y -=22在]2,2[-的图像大致为( )【解析】()22288 2.80f e =->->,排除A ;()22288 2.71f e =-<-<,排除B ;0x >时,()22xf x x e =-,()4x f x x e '=-,当10,4x ⎛⎫∈ ⎪⎝⎭时,()01404f x e '<⨯-= 因此()f x 在10,4⎛⎫⎪⎝⎭单调递减,排除C ;故选D .【2016,8】若1>>b a ,10<<c ,则( )A .c c b a <B .c c ba ab <C .c b c a a b log log <D .c c b a log log <【解析】由于01c <<,∴函数c y x =在R 上单调递增,因此1c c a b a b >>⇔>,A 错误;由于110c -<-<,∴函数1c y x -=在()1,+∞上单调递减,∴111c c c c a b a b ba ab -->>⇔<⇔<,B 错误; 要比较log b a c 和log a b c ,只需比较ln ln a c b和ln ln b c a ,只需比较ln ln c b b 和ln ln ca a ,只需lnb b 和ln a a , 构造函数()()ln 1f x x x x =>,则()'ln 110f x x =+>>,()f x 在()1,+∞上单调递增,因此()()110ln ln 0ln ln f a f b a a b b a a b b >>⇔>>⇔<,又由01c <<得ln 0c <, ∴ln ln log log ln ln a b c cb c a c a a b b<⇔<,C 正确; 要比较l o g a c 和log b c ,只需比较ln ln c a 和ln ln cb ,而函数ln y x =在()1,+∞上单调递增,故111ln ln 0ln ln a b a b a b >>⇔>>⇔<,又由01c <<得ln 0c <,∴ln ln log log ln ln a b c c c c a b>⇔>,D 错误;故选C .【2014,3】设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【解析】设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.【2013,11】已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0] 解析:选D ,由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C. ②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x . 故由|f (x )|≥ax 得x 2-2x ≥ax . 当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a ,∵x -2<-2,∴a ≥-2. 综上可知:a ∈[-2,0].【2012,10】已知函数1()ln(1)f xx x=+-,则()y f x=的图像大致为()【解析】()y f x=的定义域为{|1x x>-且0}x≠,排除D;因为221(1)1'()[ln(1)](1)[ln(1)]xxf xx x x x x--+==+-++-,所以当(1,0)x∈-时,'()0f x<,()y f x=在(-1,0)上是减函数;当(0,)x∈+∞时,'()0f x>,()y f x=在(0,)+∞上是增函数.排除A、C,故选择B.【2011】(12)函数11yx=-的图像与函数2sin(24)y x xπ=-≤≤的图像所有交点的横坐标之和等于A.2 B.4 C.6 D.8解析:图像法求解.11yx=-的对称中心是(1,0)也是2sin(24)y x xπ=-≤≤的中心,24x-≤≤他们的图像在x=1的左侧有4个交点,则x=1右侧必有4个交点.不妨把他们的横坐标由小到大设为1,2345678,,,,,,x x x x x x x x,则182736452x x x x x x x x+=+=+=+=,所以选D【2011,2】下列函数中,既是偶函数又在+∞(0,)单调递增的函数是()A.3y x=(B) 1y x=+C.21y x=-+(D) 2xy-=解析:由图像知选B二、填空题【2015,13】若函数f(x)=x ln(x a=解析:由函数f(x)=x ln(x()ln(g x x=为奇函数((0)0g==);由ln(ln(0x x++-+=(()()0g x g x+-=),得ln0a=,1a=,故填1.A.B.D.3.导数及其应用(含解析)一、选择题【2014,11】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 【2012,12】设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为( )A .1ln 2-B ln 2)-C .1ln 2+D ln 2)+【2011,9】由曲线y 2y x =-及y 轴所围成的图形的面积为( )A .103 B .4 C .163D .6 二、填空题【2017,16】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC , CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC .的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【2013,16】若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________. 三、解答题【2017,12】已知函数()()22xx f x aea e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【2016,12】已知函数2)1()2()(-+-=x a e x x f x 有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x .【2015,12】已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.【2014,21】设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.【2013,21】设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.【2012,21】已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-. (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值.【2011,21】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.2.导数及其应用(解析版)一、选择题【2015,12】设函数()f x =(21)x e x ax a --+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B . 33,2e 4⎡⎫-⎪⎢⎣⎭ C . 33,2e 4⎡⎫⎪⎢⎣⎭ D . 3,12e ⎡⎫⎪⎢⎣⎭解析:设()g x =(21)x e x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)x g x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,min [()]g x =122e --,当0x =时,(0)1g =-,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32e≤a <1,故选D .. 作为选择题,该题也可先找到满足0()0f x <的整数0x ,由0x 的唯一性列不等式组求解.由(0)10f a =-+<得00x =.又0x 是唯一使()0f x <的整数,所以(1)0(1)0f f -≥⎧⎨≥⎩,解得32a e ≥,又1a <,且34a =时符合题意.故选D .. 【2014,11】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意.当0a <时,()22,,()0;,0,()0;0,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞<∈>∈+∞< ⎪ ⎪⎝⎭⎝⎭要使()f x 有唯一的零点0x 且0x >0,只需2()0f a>,即24a >,2a <-.选B 【解析2】:由已知0a ≠,()f x =3231ax x -+有唯一的正零点,等价于3113a x x =- 有唯一的正零根,令1t x=,则问题又等价于33a t t =-+有唯一的正零根,即y a =与33y t t =-+有唯一的交点且交点在在y 轴右侧记3()3f t t t =-+,2()33f t t '=-+,由()0f t '=,1t =±,()(),1,()0;1,1,()0;t f t t f t ''∈-∞-<∈->,()1,,()0t f t '∈+∞<,要使33a t t =-+有唯一的正零根,只需(1)2a f <-=-,选B【2012,10】已知函数1()ln(1)f x x x=+-,则()y f x =的图像大致为( )【解析】()y f x =的定义域为{|1x x >-且0}x ≠,排除D ;因为221(1)1'()[ln(1)](1)[ln(1)]x x f x x x x x x --+==+-++-,所以当(1,0)x ∈-时,'()0f x <,()y f x =在(-1,0)上是减函数;当(0,)x ∈+∞时,'()0f x >,()y f x =在(0,)+∞上是增函数.排除A 、C ,故选择B . 【2012,12】设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为( ) A .1ln 2-B ln 2)-C .1ln 2+D ln 2)+【解析】函数12xy e =与函数ln(2)y x =互为反函数,图象关于直线y x =对称. 问题转化为求曲线12xy e =上点P 到直线y x =的距离的最小值d ,则||PQ 的最小值为2d .(用切线法):设直线y x b =+与曲线12x y e =相切于点1(,)2t P t e , 因为1'2x y e =,所以根据导数的几何意义,得112te =,ln 2t =,所以切点(ln 2,1)P ,从而1ln 2b =-,所以1ln 2y x =+- 因此曲线12xy e =上点P 到直线y x =的距离的最小值d 为直线 1ln 2y x =+-与直线y x =的距离,从而d =,所以min ||2ln2)PQ d =-,故选择B . 【2011,9】由曲线y 2y x =-及y 轴所围成的图形的面积为( )A .B .D .A .103 B .4 C .163D .6解析:用定积分求解432420021162)(2)|323s x dx x x x =+=-+=⎰,选C二、填空题【2017,16】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC , CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【解析】由题,连接OD ,交BC 与点G ,由题,OD BC ⊥,OG =, 即OG 的长度与BC 的长度或成正比,设OG x =,则BC =,5DG x =-,三棱锥的高h =2132ABC S x =⋅=△,则213ABC V S h =⋅△令()452510f x x x =-,5(0,)2x ∈,()3410050f x x x '=-,令()0f x '>,即4320x x -<,2x <,则()()280f x f =≤,则45V =,∴体积最大值为3. 【2013,16】若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________. 解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15. 由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∞)上为减函数.∴f (-2-=[1-(-2-2][(-22+8(-2+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2=[1-(-22][(-22+8(-2+15] =(-8++=80-64=16. 故f (x )的最大值为16.三、解答题【2017,12】已知函数()()22xx f x aea e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】(1)由于()()2e 2e x x f x a a x =+--,故()()()()22e 2e 1e 12e 1x x x xf x a a a '=+--=-+,①当0a ≤时,e 10x a -<,2e 10x +>.从而()0f x '<恒成立.()f x 在R 上单调递减; ②当0a >时,令()0f x '=,从而e 10x a -=,得ln x a =-.综上,当0a ≤ 当0a >时,()f x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增(2)由(1)知,当0a ≤时,()f x 在R 上单调减,故()f x 在R 上至多一个零点,不满足条件. 当0a >时,()min 1ln 1ln f f a a a =-=-+.令()11ln g a a a=-+. 令()()11ln 0g a a a a =-+>,则()211'0g a a a=+>.从而()g a 在()0+∞,上单调增,而()10g =.故当01a <<时,()0g a <.当1a =时()0g a =.当1a >时()0g a >, 若1a >,则()min 11ln 0f a g a a=-+=>,故()0f x >恒成立,从而()f x 无零点,不满足条件. 若1a =,则min 11ln 0f a a=-+=,故()0f x =仅有一个实根ln 0x a =-=,不满足条件. 若01a <<,则min 11ln 0f a a =-+<,注意到ln 0a ->.()22110e e ea a f -=++->. 故()f x 在()1ln a --,上有一个实根,而又31ln 1ln ln a a a ⎛⎫->=- ⎪⎝⎭.且33ln 1ln 133ln(1)e e2ln 1a a f a a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫-=⋅+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()3333132ln 11ln 10a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅-+---=---> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故()f x 在3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,上有一个实根. 又()f x 在()ln a -∞-,上单调减,在()ln a -+∞,单调增,故()f x 在R 上至多两个实根.又()f x 在()1ln a --,及3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,上均至少有一个实数根,故()f x 在R 上恰有两个实根.综上,01a <<.【法二】令()0f x =,则22x x xe x a e e +=+.再令0xt e =>,则22ln t t a t t +=+, 而()f x 有两个零点,则22ln t t a t t +=+有两解,即直线y a =与曲线22ln t t y t t+=+有两个交点; 令()22ln (0)t t g t t t t +=>+,则()()()()()2222211ln 2ln t t t t t g t t t t t +--+'==++, 令()1ln h t t t =--,则()110h t t'=--<,注意到()10h =,所以()g t 在()0,1上单调递增,在()1,+∞上单调递减,即()()max 11g t g ==;而0lim (),lim ()0t t g t g t →→+∞→-∞→,所以当()0,1t ∈时,()(),1g t ∈-∞;当()0,1t ∈时,()()0,1g t ∈, 所以,当22ln t ta t t+=+有两解时,a 的取值范围为()0,1.【2016,12】已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x .【解析】:⑴ 由已知得:()()()()()'12112x x f x x e a x x e a =-+-=-+① 若0a =,那么()()0202x f x x e x =⇔-=⇔=,()f x 只有唯一的零点2x =,不合题意; ② 若0a >,那么20x x e a e +>>,所以当1x >时,()'0f x >,()f x 单调递增;当1x <时,()'0f x <,()f x 单调递减; 即:由于()20f a =>,()10f e =-<,则()()210f f <, 根据零点存在性定理,()f x 在()1,2上有且仅有一个零点. 而当1x <时,x e e <,210x -<-<,故()()()()()()()222212111x f x x e a x e x a x a x e x e =-+->-+-=-+--则()0f x =的两根11t +,21t =+, 12t t <,因为0a >,故当1x t <或2x t >时,()()2110a x e x e -+--> 因此,当1x <且1x t <时,()0f x >又()10f e =-<,根据零点存在性定理,()f x 在(),1-∞有且只有一个零点. 此时,()f x 在R 上有且只有两个零点,满足题意.③ 若02ea -<<,则()ln 2ln 1a e -<=,当()ln 2x a <-时,()1ln 210x a -<--<,()ln 2220a x e a e a -+<+=,即()()()'120x f x x e a =-+>,()f x 单调递增;当()ln 21a x -<<时,10x -<,()ln 2220ax e a e a -+>+=,即()()()'120x f x x e a =-+<,()f x 单调递减;当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()'0f x >,()f x 单调递增.即:()()()(){}22ln 22ln 22ln 21ln 2210f a a a a a a a -=---+--=--+<⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦故当1x ≤时,()f x 在()ln 2x a =-处取到最大值()ln 2f a -⎡⎤⎣⎦,那么()()ln 20f x f a -<⎡⎤⎣⎦≤恒成立,即()0f x =无解而当1x >时,()f x 单调递增,至多一个零点 此时()f x 在R 上至多一个零点,不合题意.④ 若2ea =-,那么()ln 21a -=当()1ln 2x a <=-时,10x -<,()ln 2220a x e a ea -+<+=,即()'0f x >,()f x 单调递增 当()1ln 2x a >=-时,10x ->,()ln 2220a x e a ea -+>+=,即()'0f x >,()f x 单调递增又()f x 在1x =处有意义,故()f x 在R 上单调递增,此时至多一个零点,不合题意.⑤ 若2ea <-,则()ln 21a ->当1x <时,10x -<,()ln 212220a x e a e a ea -+<+<+=,即()'0f x >,()f x 单调递增当()1ln 2x a <<-时,10x ->,()ln 2220a x e a ea -+<+=,即()'0f x <,()f x 单调递减当()ln 2x a >-时,()1ln 210x a ->-->,()ln 2220a x e a ea -+>+=,即()'0f x >,()f x 单调递增 即:0e -<恒成立,即()0f x =无解当()ln 2x a >-时,()f x 单调递增,至多一个零点,此时()f x 在R 上至多一个零点,不合题意. 综上所述,当且仅当0a >时符合题意,即a 的取值范围为()0,+∞. ⑵ 由已知得:()()120f x f x ==,不难发现11x ≠,21x ≠,故可整理得:()()()()121222122211x x x e x e a x x ---==--,()()()221xx e g x x -=-,则()()12g x g x = ()()()2321'1x x g x e x -+=-,当1x <时,()'0g x <,()g x 单调递减;当1x >时,()'0g x >,()g x 单调递增.设0m >,构造代数式: ()()111222*********m m m m m m m m g m g m e e e e m m m m +-----+-⎛⎫+--=-=+ ⎪+⎝⎭设()2111m m h m e m -=++,0m >,则()()2222'01m m h m e m =>+,故()h m 单调递增,有()()00h m h >=. 因此,对于任意的0m >,()()11g m g m +>-.由()()12g x g x =可知1x 、2x 不可能在()g x 的同一个单调区间上,不妨设12x x <,则必有121x x << 令110m x =->,则有()()()()()1111211112g x g x g x g x g x +->--⇔->=⎡⎤⎡⎤⎣⎦⎣⎦ 而121x ->,21x >,()g x 在()1,+∞上单调递增,因此:()()121222g x g x x x ->⇔-> 整理得:122x x +<.【2015,12】已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.解:(Ⅰ)2()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足00()0,()0f x f x '==,也就是2030x a +=且300104x ax ++=,解得012x =,34a =-,因此,当34a =-时,x 轴为曲线()y f x =的切线;(Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点; 当1x =时,若54a ≥-,则5(1)04f a =+≥,min{,(1)(1)(1)}(1)0h fg g ===,故1x =是()h x 的零点;当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数. 对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得23a x =-,那么(i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上是单调函数,且15(0),(1)44f f a ==+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零点;当0a ≥时,()y f x =在区间(0,1)上没有零点;(ii )当30a -<<时,()0f x '<(0x <<且()0f x '>1x <),所以x =最小值点,且14f =.显然,若0f >,即304a -<<时,()y f x =在区间(0,1)上没有零点;若0f =,即34a =-时,()y f x =在区间(0,1)上有1个零点;若0f <,即334a-<<-时,因为15(0),(1)44f f a ==+,所以若5344a -<<-,()y f x =在区间(0,1)上有2个零点;若534a -<≤-,()y f x =在区间(0,1)上有1个零点. 综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或54a =-时,()h x 有2个零点;当5344a -<<-时,()h x 有3个零点. 【2014,21】设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+.(Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.【解析】(Ⅰ) 函数()f x 的定义域为()0,+∞,112()ln xx x x a b b f x ae x e e e x x x--'=+-+ 由题意可得(1)2,(1)f f e '==,故1,2a b == ……………6分(Ⅱ)由(Ⅰ)知,12()ln x xe f x e x x-=+,从而()1f x >等价于2ln xx x xe e ->-设函数()ln g x x x =,则()l n g x x x'=+,所以当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,故()g x 在10,e ⎛⎫ ⎪⎝⎭单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,从而()g x 在()0,+∞的最小值为11()g e e =-. 设函数2()xh x xe e-=-,则()()1xh x e x -'=-,所以当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<,故()h x 在()0,1单调递增,在()1,+∞单调递减,从而()h x ()g x 在()0,+∞的最小值1(1)h e=-. 综上:当0x >时,()()g x h x >,即()1f x >. ……………12分【2013,理21】设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围. 解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ),故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1).设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2,则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1). 由题设可得F (0)≥0,即k ≥1. 令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0. 故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立. ②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增. 而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立. ③若k >e 2,则F (-2)=-2k e -2+2=-2e -2(k -e 2)<0. 从而当x ≥-2时,f (x )≤kg (x )不可能恒成立. 综上,k 的取值范围是[1,e 2]. 【2012】21.(本小题满分12分)已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-. (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值.【解析】(1)因为2121)0()1(')(x x f e f x f x +-=-,所以1'()'(1)(0)x f x f e f x -=-+,所以1(0)'(1)'(1)'(1)(0)1f f ef f f ⎧=⋅⎪⎨⎪=-+⎩,解得(0)1f =,'(1)f e =. 所以)(x f 的解析式为21()2xf x e x x =-+,由此得'()1x f x e x =-+. 而'()1xf x e x =-+是R 上的增函数,且'(0)0f =,因此,当(0,)x ∈+∞时,'()'(0)0f x f >=,)(x f 在(0,)+∞上是增函数; 当(,0)x ∈-∞时,'()'(0)0f x f <=,)(x f 在(,0)-∞上是减函数. 综上所述,函数)(x f 的增区间为(0,)+∞,减区间为(,0)-∞.(2)由已知条件得(1)x e a x b -+≥. ①(i )若10a +<,则对任意常数b ,当0x <,且11bx a -<+, 可得(1)x e a x b -+<,因此①式不成立. (ii )若10a +=,则(1)0a b +=.(iii )若10a +>,设()(1)x g x e a x =-+,则'()(1)x g x e a =-+.当(,ln(1))x a ∈-∞+,'()0g x <;当(ln(1),)x a ∈++∞,'()0g x > 从而()g x 在(,ln(1))a -∞+单调递减,在(ln(1),)a ++∞单调递增. 所以b ax x x f ++≥221)(等价于1(1)ln(1)b a a a ≤+-++. ② 因此22(1)(1)(1)ln(1)a b a a a +≤+-++.设22()(1)(1)ln(1)h a a a a =+-++,则'()(1)(12ln(1))h a a a =+-+. 所以()h a 在12(1,1)e --单调递增,在12(1,)e -+∞单调递减, 故()h a 在121a e =-在处取得最大值,从而()2e h a ≤,即(1)2e a b +≤. 当121a e =-,122e b =时,②式成立,故b ax x x f ++≥221)(.综合得,b a )1(+的最大值为2e.【2011,21】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. (21)解:(I )()()221ln 1x a x b x f x x x +⎛⎫- ⎪⎝⎭'=-+ 由于直线230x y +-=的斜率为12-,且过点()1,1,故()()11112f f =⎧⎪⎨'=-⎪⎩,即1122b ab =⎧⎪⎨-=-⎪⎩,解得1a =,1b =.(II )由(I )知()ln 11x f x x x =++,所以()()()2211ln 12ln 11k x x k f x x x x x x ⎛⎫--⎛⎫ ⎪-+=+ ⎪ ⎪--⎝⎭⎝⎭考虑函数()()()()2112ln 0k x h x x x x--=+>,则()()()22112k x xh x x -++'=(i )设0k ≤,由()()()22211k x x h x x+--'=知,当1x ≠时,()0h x '<. 而()10h =,故当()0,1x ∈时,()0h x <,可得()2101h x x >-; 当()1,x ∈+∞时,()0h x <,可得()2101h x x >- 从而当0x >,且1x ≠时,()ln 01x k f x x x ⎛⎫-+> ⎪-⎝⎭,即()ln 1x k f x x x ⎛⎫>+ ⎪-⎝⎭.(ii )设01k <<,由于当11,1x k ⎛⎫∈ ⎪-⎝⎭时,()()21120k x x -++>,故()0h x '>,而()10h =,故当11,1x k ⎛⎫∈ ⎪-⎝⎭时,()0h x >,可得()2101h x x <-,与题设矛盾. (iii )设1k ≥,此时()0h x '>,而()10h =,故当()1,x ∈+∞时,()0h x >,得()2101h x x <-,与题设矛盾.综合得,k 的取值范围为(],0-∞.4.三角函数、解三角形一、选择题【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈Z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z【2015,2】sin 20cos10cos160sin10-=( )A .BC .12-D .12【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【2012,9】已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( ) A .[12,54] B .[12,34] C .(0,12] D .(0,2]【2011,5】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=A .45-B .35-C .35D .45【2011,11】设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 二、填空题【2015,16】在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 . 【2014,16】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 . 【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.【2011,16】在ABC V 中,60,B AC ==2AB BC +的最大值为 . 三、解答题【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【2016,17】ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2. (Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长.【2013,17】如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,△ABC b ,c .3.三角函数、解三角形(解析版)一、选择题【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x . 注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D ; 【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【解析】:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈ZC .13(,),44k k k -+∈ZD .13(2,2),44k k k -+∈Z解析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k πππππ<+<+∈Z ,解得124k -<x <324k +,k ∈Z ,故单调减区间为(124k -,324k +),k ∈Z ,故选D . 【2015,2】sin 20cos10cos160sin10-=( )A.2-B.2C .12-D .12解析:sin 20cos10cos160sin10sin 20cos10cos 20sin10sin30-=+=,选D .. 【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【解析】:如图:过M 作MD ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x x OM PM OP =cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. 【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【解析】∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B【2012,9】已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( ) A .[12,54] B .[12,34] C .(0,12] D .(0,2]【解析】因为0ω>,2x ππ<<,所以2444x ππππωωωπ⋅+<+<⋅+,因为函数()sin()4f x x πω=+在(2π,π)上单调递减,所以242342πππωππωπ⎧⋅+≥⎪⎪⎨⎪⋅+≤⎪⎩,解得1524ω≤≤,故选择A. 【2011,11】设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 解析:())4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,())2f x x x π∴=+=,选A.。
2017年高考新课标Ⅰ卷理数试题解析(正式版)(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,学科网然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<< {|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π4【答案】B【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B.3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A.13,p p B .14,p p C .23,p p D .24,p p 【答案】B 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D.6.621(1)x x++展开式中2x 的系数为A .15B .20C .30D .35【答案】C 【解析】因为6662211(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B 【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.8.下面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D【解析】由题意,因为321000n n ->,且框图中在“否”时输出,所以判定框内不能输入1000A >,故填1000A ≤,又要求n 为偶数且初始值为0,所以矩形框内填2n n =+,故选D.9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2cos(2cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .10【答案】A11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z 【答案】D【解析】令235(1)x y z k k ===>,则2log x k =,3log y k =,5log z k=∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >,22lg lg 5lg 2515lg 25lg lg 32x k z k =⋅=<,则25x z <,故选D.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是A .440B .330C .220D .110【答案】A【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++= 项和为11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=,所以对应满足条件的最小整数293054402N ⨯=+=,故选A.二、填空题:本题共4小题,每小题5分,共20分。
高三数学立体几何历年高考题(2011年-2017年)完整版.doc

高三数学立体几何高考题1.(2012年7)如图,网格纸上小正方形的边长为1,粗线画出 的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )182.(2012年8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π3.(2013年11)某几何体的三视图如图所示, 则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π4.(2013年15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.5.(2014年8)如图,网格纸的各小格都是正方形,粗实线画出的 事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱6.(2014年10)正四棱锥的顶点都在同一球面上.若该棱锥的高为4, 底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π47.(2015年6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛8.(2015年11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) (A )1 (B )2 (C )4 (D )89(2016年7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π10(2016年11)平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为(A )32 (B )22 (C )33 (D )1311.(2017年6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是12.(2017年16)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
2011年—2018年新课标全国卷1理科数学分类汇编——9.立体几何

2
3
(C)
3
1
( D)
3
【 2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂
直的半径.若该几何体的体积是 28 ,则它的表面积是(
)
3
( A) 17
( B) 18 ( C) 20
( D) 28
【 2015 ,6 】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问
A. 6
B.9
C. 12
D. 15
【 2012, 11】已知三棱锥 S-ABC的所有顶点都在球 O 的球面上,△ ABC是边长为 1 的正三角形, SC为球
O 的直径,且 SC=2,则此棱锥的体积为(
)
2
A.
6
3
B.
6
2
C.
3
2
D.
2
【 2011, 6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可
个是梯形,这些梯形的面积之和为(
)
截此正方体所得截
A.10
B.12
C. 14 D. 16
【 2016,11】平面 过正方体 ABCD A1 B1C1D1 的顶点 A , // 平面 CB1D1 , I 平
面 ABCD m , 平面 ABB1A1 n ,则 m, n 所成角的正弦值为(
)
3
( A)
2
2
(D) 28
【解析】:原立体图如图所示:是一个球被切掉左上角的
1 后的三视图 8
表面积是 7 的球面面积和三个扇形面积之和 8
S= 7 4 8
22 +3 1 4
22 =17 ,故选 A .
2011-2017全国1卷分类汇编 立体几何

2011-2017高考全国I 卷分类汇编——立体几何【2011年全国】(19)如图,四棱锥S ABCD -中,AB CD ,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====. (Ⅰ)证明:SD SAB ⊥;(Ⅱ)求AB 与平面SBC 所成角的大小.【2012年全国】(19)(本小题满分12分) 如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥。
(Ⅰ)证明:1DC BC ⊥(Ⅱ)求二面角11A BD C --的大小。
【2013年全国】18、(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°. (Ⅰ)证明AB ⊥A【2014年全国】19. (本小题满分12分)如图三棱锥111ABC AB C -中,侧面11BB C C 为菱形,A 11AB B C ⊥.(Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=Bc ,求二面角111A A B C --的余弦值.【2015年全国】(18)如图,,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC 。
(1)证明:平面AEC ⊥平面AFC(2)求直线AE 与直线CF 所成角的余弦值【2016年全国】(18)(本题满分为12分)如图,在已A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (I )证明;平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【2017年全国】18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.立体几何(含解析)一、选择题【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,α平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为A .23 B .22 C .33 D .31 【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) A .π17 B .π18 C .π20 D .π28【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )A .1B .2C .4D .8【2015年,11题】 【2014年,12题】 【2013年,6题】【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A .500π3cm 3 B .866π3cm 3 C .1372π3cm 3 D .2048π3cm 3【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2013年,8】 【2012年,7】 【2011年,6】【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15 【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A .26B .36C .23D .22【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )二、填空题【2011,15】已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 .三、解答题【2017,18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.【2016,18】 如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60.(Ⅰ)证明:平面⊥ABEF 平面EFDC ; (Ⅱ)求二面角A BC E --的余弦值.【2015,18】如图,四边形ABCD 为菱形,120ABC ∠=,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.(I )证明:平面AEC ⊥平面AFC ; (II )求直线AE 与直线CF 所成角的余弦值.【2014,19】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC ,求二面角111A A B C --的余弦值.ABCDE F【2013,18】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.【2012,19】如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.【2011,18】如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD .(Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.A 17.立体几何(解析版)一、选择题【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16(7)【解析】由三视图可画出立体图,该立体图平面内只有两个相同的梯形的面,()24226S =+⨯÷=梯,6212S =⨯=全梯,故选B ;【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,α平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为A .23 B .22 C .33 D .31 【解析】如图所示:αAA 1B1DCC 1D 1∵11CB D α∥平面,∴若设平面11CB D 平面1ABCD m =,则1m m ∥又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D =∴111B D m ∥,故11B D m ∥,同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111B C B D CD ==(均为面对交线),因此113CD B π∠=,即113sin CD B ∠=. 故选A .【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的 表面积是( )A .π17B .π18C .π20D .π28【解析】:原立体图如图所示:是一个球被切掉左上角的18后的三视图表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S ⨯⨯⨯⨯πππ,故选A .【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:284R π=,圆锥底面半径16R π=,米堆体积21320123V R h ππ==,堆放的米约有221.62V≈,选B ..【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )A .1B .2C .4D .8解析:由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱的半径与球的半径都r ,圆柱的高为2r ,其表面积为2222142225416202r r r r r r r r πππππ⨯+⨯++⨯=+=-,解得2r =,故选B ..【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )A .62B .42C .6D .4【解析】如图所示,原几何体为三棱锥D ABC -, 其中4,42,25AB BC AC DB DC =====,()24246DA =+=,故最长的棱的长度为6DA =,选C【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A .500π3cm 3 B .866π3cm 3 C .1372π3cm 3 D .2048π3cm 3解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5,所以球的体积为34500π5π33=(cm 3),故选A. 【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π 答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A.【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15 【解析】由三视图可知,该几何体为三棱锥A-BCD , 底面△BCD 为底边为6,高为3的等腰三角形, 侧面ABD ⊥底面BCD ,AO ⊥底面BCD ,因此此几何体的体积为11(63)3932V =⨯⨯⨯⨯=,故选择B .【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A .26B .36C .23D .22【解析】如图所示,根据球的性质,知⊥1OO 平面ABC ,则C O OO 11⊥.在直角C OO ∆中,1=OC ,3=C O , OD A所以36)33(122121=-=-=C O OC OO . 因此三棱锥S -ABC 的体积6236433122=⨯⨯⨯==-ABC O V V ,故选择A .【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的.故选D 二、填空题【2011,15】已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 .解析:设ABCD 所在的截面圆的圆心为M,则AM=221(23)6232+=,OM=224(23)2-=,16232833O ABCD V -=⨯⨯⨯=.三、解答题【2017,18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.【解析】(1)证明:∵90BAP CDP ∠=∠=︒,∴PA AB ⊥,PD CD ⊥, 又∵AB CD ∥,∴PD AB ⊥,又∵PD PA P =,PD 、PA ⊂平面PAD , ∴AB ⊥平面PAD ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAD . (2)取AD 中点O ,BC 中点E ,连接PO ,OE ,∵AB CD ,∴四边形ABCD 为平行四边形,∴OEAB ,由(1)知,AB ⊥平面PAD ,∴OE ⊥平面PAD ,又PO 、AD ⊂平面PAD ,∴OE PO ⊥,OE AD ⊥, 又∵PA PD =,∴PO AD ⊥,∴PO 、OE 、AD 两两垂直, ∴以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,设2PA =,∴()002D -,、)220B ,、(002P ,,、()202C -,, ∴(022PD =-,、(222PB =,,、()2200BC =-,,设()n x y z =,,为平面PBC 的法向量,由00n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,得2220220x y z x ⎧+=⎪⎨-=⎪⎩,令1y =,则2z =,0x =,可得平面PBC 的一个法向量(012n =,,, ∵90APD ∠=︒,∴PD PA ⊥,又知AB ⊥平面PAD ,PD ⊂平面PAD ,∴PD AB ⊥,又PA AB A =,∴PD ⊥平面PAB ,即PD 是平面PAB 的一个法向量,(022PD =-,,,∴3cos 23PD n PD n PD n⋅===⋅,, 由图知二面角A PB C --为钝角,所以它的余弦值为3. 【2016,18】 如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60. (Ⅰ)证明:平面⊥ABEF 平面EFDC ;(Ⅱ)求二面角A BC E --的余弦值.【解析】:⑴ ∵ABEF 为正方形,∴AF EF ⊥,∵90AFD ∠=︒,∴AF DF ⊥,∵=DFEF F∴AF ⊥面EFDC ,AF ⊂面ABEF ,∴平面ABEF ⊥平面EFDC⑵ 由⑴知60DFE CEF ∠=∠=︒,∵AB EF ∥,AB ⊄平面EFDC ,EF ⊂平面EFDC ∴AB ∥平面ABCD ,AB ⊂平面ABCD ∵面ABCD 面EFDC CD = ∴AB CD ∥,∴CD EF ∥ ∴四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD a =,()()000020E B a ,,,,()302202a C A a a ⎛⎫⎪ ⎪⎝⎭,,,,, ()020EB a =,,,322a BC a ⎛⎫=- ⎪ ⎪⎝⎭,,,()200AB a =-,,,设面BEC 法向量为()m x y z =,,,00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩,即1111203202a y a x ay z ⋅=⎧⎪⎨⋅-⋅=⎪⎩,111301x y z ===-,,()301m =-,,ABCDE设面ABC 法向量为()222n x y z =,,,=00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩.即2222320220a x ay az ax ⎧-+=⎪⎨⎪=⎩ 222034x y z ===,,,()034n =,,,设二面角E BC A --的大小为θ. 219cos 31316m n m n⋅===-+⋅+⋅θ,∴二面角E BC A --的余弦值为219-【2015,18】如图,四边形ABCD 为菱形,120ABC ∠=,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.(I )证明:平面AEC ⊥平面AFC ; (II )求直线AE 与直线CF 所成角的余弦值. 解:(Ⅰ)证明:连接BD ,设BDAC G =,连接EG ,FG ,EF .在菱形ABCD 中,不妨设1GB =,由120ABC ∠=,可得3AG GC ==,由BE ⊥平面ABCD ,AB BC =,可知AE EC =.又AE EC ⊥,所以3EG =,且EG AC ⊥.在Rt EBG ∆中,可得2BE =,故22DF =.在Rt FDG ∆中,可得6FG =. 在直角梯形BDFE 中,由2BD =,2BE =,2DF =,可得32EF =.因为222EG FG EF +=,所以EG FG ⊥,又AC FG G =,则EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AFC ⊥平面AEC . ……6分(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G xyz -,由(Ⅰ)可得(0,3,0)A -,(1,0,2)E ,2(1,0,)2F -,(0,3,0)E ,(1,3,2)AE =,2(1,3,)2CF =--.故3cos ,3||||AE CF AE CF AE CF ⋅<>==-. 所以直线AE 与直线CF 所成的角的余弦值为33. ……12分 【2014,19】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC求二面角111A A B C --的余弦值.【解析】:(Ⅰ)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以1B C 1BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO ⊥又 1B O CO =,故1AC AB =(Ⅱ)因为1AC AB ⊥且O 为1B C 的中点,所以AO=CO 又因为AB=BC ,所以BOA BOC ∆≅∆ 故OA ⊥OB ,从而OA ,OB ,1OB 两两互相垂直.以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O-xyz . 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又AB=BC ,则30,0,3A ⎛⎫ ⎪ ⎪⎝⎭,()1,0,0B ,130,,03B ⎛⎫ ⎪ ⎪⎝⎭,30,,03C ⎛⎫- ⎪ ⎪⎝⎭ 1330,,33AB ⎛⎫=- ⎪ ⎪⎝⎭,1131,0,,A B AB ⎛⎫==- ⎪ ⎪⎝⎭1131,,0B C BC ⎛⎫==-- ⎪ ⎪⎝⎭ 设(),,n x y z =是平面的法向量,则11100nAB nA B ⎧=⎪⎨=⎪⎩,即33030y z x z ⎧-=⎪⎨⎪-=⎪⎩所以可取()1,3,3n =设m 是平面的法向量,则11110m A B n B C ⎧=⎪⎨=⎪⎩,同理可取(1,m =则1cos ,7n m n m n m==,所以二面角111A A B C --的余弦值为17. 【2013,18】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. 证明:(1)取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB . 由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C . (2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0),B (-1,0,0).则BC =(1,0),1BB =1AA =(-10),1AC =(0,). 设n=(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩nn 即0,0.x x ⎧+=⎪⎨-+=⎪⎩可取n =,1,-1).故cos 〈n ,1AC 〉=11A C A C⋅n n =. 所以A 1C 与平面BB 1C 1C . 【2012,19】如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.【解析】(1)在Rt DAC ∆中,AD AC =,得:45ADC ︒∠=,A 1同理:1114590A DC CDC ︒︒∠=⇒∠=,得:1DC DC ⊥.又DC 1⊥BD ,DCBD D =,所以1DC ⊥平面BCD .而BC ⊂平面BCD ,所以1DC BC ⊥.(2)解法一:(几何法)由11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC ABC AC ⇒⊥.取11A B 的中点O ,连接1C O ,OD . 因为1111AC B C =,所以111C O A B ⊥,因为面111A B C ⊥面1A BD ,所以1C O ⊥面1A BD ,从而1C O BD ⊥,又DC 1⊥BD ,所以BD ⊥面1DC O ,因为OD ⊂平面1DC O ,所以BD OD ⊥. 由BD OD ⊥,BD ⊥DC 1,所以1C DO ∠为二面角A 1-BD -C 1的平面角. 设12AA a =,AC BC a ==,则12aC O =,12CD a =,在直角△1C OD ,1C O OD ⊥,1112C O CD =, 所以130C DO ︒∠=. 因此二面角11C BD A --的大小为30︒.解法二:(向量法)由11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC ABC AC ⇒⊥.又1C C ⊥平面ABC ,所以1C C AC ⊥,1C C BC ⊥,以C 点为原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -.不妨设AA 1=2,则AC=BC=21AA 1=1,从而A 1(1,0,2),D (1,0,1), B (0,1,0),C 1(0,0,2), 所以1(0,0,1)DA =,(1,1,1)DB =--,1(1,0,1)DC =-.设平面1A BD 的法向量为1111(,,)n x y z =, 则11n DA ⊥,1n DB ⊥, 所以111100z x y z =⎧⎨-+-=⎩,即111z x y =⎧⎨=⎩,令11y =,则1(1,1,0)n =.设平面1C BD 的法向量为2222(,,)n x y z =≤,则21n DC ⊥,2n DB ⊥, 所以2222200x z x y z -+=⎧⎨-+-=⎩,即22222x z y z =⎧⎨=⎩,令21z =,则2(1,2,1)n =.所以121212cos ,2||||2n n n n n n ⋅<>===⋅12,30n n <>=︒.因为二面角11C BD A --为锐角,因此二面角11C BD A --的大小为30︒.【2011,18】如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.解:(I )因为60DAB ∠=︒,2AB AD =,由余弦定理得BD =.从而222BD AD AB +=,故BD AD ⊥. 又PD ⊥底面ABCD ,可得BD PD ⊥. 所以BD ⊥平面PAD . 故PA BD ⊥.(II )如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D xyz -,则()1,0,0A,()B,()C -,()0,0,1P ,()AB =-,()1PB =-,()1,0,0BC =-设平面PAB 的法向量为(),,xy z =n ,则00AB PB ⎧⋅=⎪⎨⋅=⎪⎩n n,即x z ⎧-⎪-=因此可取=n .设平面PBC 的法向量为m ,则00PB BC ⎧⋅=⎪⎨⋅=⎪⎩m m ,可取(0,1,m =-. cos ,〈〉==m n 故二面角A PB C --的余弦值为.。