四种命题相互关系-PPT课件

合集下载

四种命题、四种命题间的相互关系 课件

四种命题、四种命题间的相互关系 课件
答案 B
其中真命题的个数是( )
A.0
B.1
C.2
D.3
解析 ①逆命题:“若x,y互为相反数,则x+y=0”是 真命题.
②∵原命题是假命题,∴其逆否命题是假命题. ③否命题:“若x>-3,则x2+x-6≤0”,例如x=4>- 3,则有x2+x-6=16+4-6>0.∴为假命题. ④逆命题:“若a,b是无理数,则ab是无理数.”举反 例,取a=( 2 ) 2 ,b= 2 ,则ab=2是有理数,故为假命 题.
原命题:若p,则q(p⇒q); 逆命题:若q,则p(q⇒p); 否命题:若綈p,则綈q(綈p⇒綈q); 逆否命题:若綈q,则綈p(綈q⇒綈p).
2.四种命题间的关系
3.四种命题的真假关系 (1)一个命题总可以改写为“若p,则q”的形式.其中p 为命题的条件,q为命题的结论.如“正数的平方根不等于 0”.可改写为:“若a为正数,则a的平方根不等于0”.这 里增加了一个字母a,以便表达更清楚.
四种命题 四种命题间的相互关系
1.一般地,对于两个命题,如果一个命题的条件和结论 分别是另一个命题的结论和条件,那么我们把这样的两个命 题叫做________,其中一个叫________,另一个叫原命题的 ________.
2.对于两个命题,其中一个命题的条件和结论恰好是 另一个命题的条件的否定和结论的否定,我们把这样的两个 命题叫做________.如果把其中的一个叫做原命题,那么另 一个叫做原命题的________.
∴f(a)+f(b)<f(-a)+f(-b). 即逆否命题为真命题,故原命题为真命题.
题型三 判断命题的真假
例4 有下列四个命题:
①“若x+y=0,则x,y互为相反数”的逆命题;

11.09.26高二数学《四种命题的相互关系》(课件).ppt

11.09.26高二数学《四种命题的相互关系》(课件).ppt

制作 12
2011年下学期
求证:圆的两条不是直径的相交 弦不能互相平分。
湖南长郡卫星远程学校制作 源自22011年下学期《学法大视野》P4-P6
湖南长郡卫星远程学校
制作 12
2011年下学期
四种命题的相互关系
湖南长郡卫星远程学校
制作 12
2011年下学期
研读教材P6-P7;
1. 利用教材P6思考,完成四种命题之间的 相互关系表:
若p则q 原命题
()
若q则p 逆命题
(
(
)
)
否命题 若¬p, 则¬q
()
湖南长郡卫星远程学校
逆否命题
若¬q, 则¬p
制作 12
2011年下学期
2.利用教材P7探究,完成四种命题间 的真假关系表:
制作 12
2011年下学期
运 用 2. 已知a, b R,若a b 1,则
a、b之中至少有一个不小于1 ,试证明 2
之。
湖南长郡卫星远程学校
制作 12
2011年下学期
求 证:一元二次方程ax2 bx c 0(a 0)最多有两个不相等的根。
湖南长郡卫星远程学校
原命题 逆命题 否命题 逆否命题
湖南长郡卫星远程学校
制作 12
2011年下学期
证明:若x2 y2 0,则x y 0.
湖南长郡卫星远程学校
制作 12
2011年下学期
运 用 1. 证明: 若a2 b2 2a 4b 3 0,则a b 1.
湖南长郡卫星远程学校

高中数学《四种命题 四种命题间的相互关系》课件

高中数学《四种命题   四种命题间的相互关系》课件

课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
答案 (1)若 ab=0,则 a=0 (2)“若 p,则綈 q” (3)若|a|≠|b|,则 a≠b (4)若 a≤-4,则 a≤-3 真命题
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
答案
课堂互动探究
课前自主学习
课堂合作研究
随堂基础巩固
课后课时精练
探究 1 四种命题的定义 例 1 把下列命题写成“若 p,则 q”的形式,并写出它们的逆命题、否 命题与逆否命题. (1)正数的平方根不等于 0; (2)当 x=2 时,x2+x-6=0; (3)垂直于同一平面的两直线平行; (4)当 mn<0 时,方程 mx2-x+n=0 有实数根.
课前自主预习
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
答案
(3)原命题:若两条直线垂直于同一平面,则这两条直线平行. 逆命题:若两条直线平行,则这两条直线垂直于同一个平面. 否命题:若两条直线不垂直于同一平面,则这两条直线不平行. 逆否命题:若两条直线不平行,则这两条直线不垂直于同一平面. (4)原命题:若 mn<0,则方程 mx2-x+n=0 有实数根. 逆命题:若方程 mx2-x+n=0 有实数根,则 mn<0. 否命题:若 mn≥0,则方程 mx2-x+n=0 没有实数根. 逆否命题:若方程 mx2-x+n=0 没有实数根,则 mn≥0.
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
【跟踪训练 3】 证明:若 a2-4b2-2a+1≠0,则 a≠2b+1.
证明 “若 a2-4b2-2a+1≠0,则 a≠2b+1”的逆否命题为“若 a=2b +1,则 a2-4b2-2a+1=0”.

高二数学四种命题的相互关系PPT优秀课件

高二数学四种命题的相互关系PPT优秀课件
由于原命题和它的逆否命题有相同的真假 性,所以在直接证明某一个命题为真命题有困难 时,可以通过证明它的逆否命题为真命题,来间接 地证明原命题为真命题.
例4 证明:若p2+q2=2,则p+q 2
分析: 将若“p2+q2=2,则p+q2”视为原命
题.要证明原命题为真,可以考虑证明它的
逆否命题“若p+q>2,则p2+q22”为真命
=(b+2)2-(b+2)2=0 这表明,原命题的逆否命题为真命 题,从而原命题也为真命题.
小结:
1、四种命题的相互关系
2、四种命题的真假判断
原命题
逆命题
否命题












逆否命题 真 真 假 假
P10 习题1.1A组 4
若p,则q
原命题
互逆
若q,则p
逆命题




否命题
若¬p,则¬q
我们发现,命题(2)(3)是互 为逆否命题,命题(2)(4)是互否 命题,命题(3)(4)是互逆命题。
一般地,原命题、逆命题、否命 题与逆否命题这四种命题之间的相互关 系如下图所示:
若p,则q
原命题
互逆
若q,则p
逆命题




否命题
若¬p,则¬q
互逆
逆否命题
若¬q,则¬p
前面考察了四种命题之间的相互关系。
题,从而达到证明原命题为真命题的目的.
例4 证明:若p2+q2=2,则p+q 2
证明: 若p+q>2,则

四种命题间的相互关系 课件

四种命题间的相互关系  课件

它们之间的关系为:
互逆命题
互否命题
互为逆否命题
原命题与逆命题 原命题与否命题 原命题与逆否命题 否命题与逆否命题 逆命题与逆否命题 逆命题与否命题
2.对四种命题真假关系的两点说明 (1)由于一个命题与其逆否命题具有相同的真假性,四种命题中 有两对互为逆否命题,所以四种命题中真命题的个数必须是偶 数,即真命题可能有4个、2个或0个. (2)由于原命题与其逆否命题的真假性相同,所以原命题与其逆 否命题是等价命题,因此,当直接证明原命题困难时,可以转化为 证明与其等价的逆否命题,这种证法是间接证明命题的方法,也 是反证法的一种变通形式.
【拓展提升】原命题与逆否命题等价关系的应用 (1)若一个命题的条件或结论含有否定词时,直接判断命题的真 假较为困难,这时可以转化为判断它的逆否命题的真假. (2)当证明某一个命题有困难时,可以证明它的逆否命题为真 (假)命题,来间接地证明原命题为真(假)命题.
【互动探究】若题2(2)的命题变为: 若a>1,则方程x2+2ax+a2+a-1=0无实数根,如何判断此命题的 真假? 【解析】命题“若a>1,则方程x2+2ax+a2+a-1=0无实数根” 的逆否命题为“若方程x2+2ax+a2+a-1=0有实数根,则 a≤1”,由于Δ=(2a)2-4(a2+a-1)=4(1-a)≥0,得a≤1,故原命 题是真命题.
提示:(1)错误.两个互逆命题的真假性没有关系,可能一个真命 题也没有. (2)正确.原命题的逆命题与原命题的否命题互为逆否命题,真 假性相同,为等价命题. (3)正确.一个命题的四种命题中,可能都是假命题,如若0<x<1, 则x>1,此命题的四种命题均为假命题. 答案:(1)× (2)√ (3)√

四种命题的关系 PPT课件

四种命题的关系 PPT课件

四种命题的相互关系: 回顾
四种命题的真假性之间的关系:
(1)两个命题互为逆否命题,它们有相同的真 假性;
(2)两个命题为互逆命题或互否命题,它们的 真假性没有关系.
回顾:
• 交__题__。_
• 同否时命否题定。原命题的条件和结论,所得的命 题是________
• 交换原命逆题否的命条题件。和结论,并且同时否定, • 所原得命的题命: 题若是p,__则__q______ 逆命题:若q,则
p
四种命题之间的相互关系
原命题 若p 则q
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
四种命题中的真假性有什么规律?
原命题 凡质数都是奇数 假
逆命题 凡奇数都是质数 假
否命题 不是质数就不是奇数 假
逆否命题 不是奇数就不是质数 假
几条结论:
1、真假个数一定是偶数,即0个,2个,4个。 2、两个命题互为逆否命题,它们有相同的真假性。 3、两个命题为互逆命题或互否命题,它们的真假性没有关系。
离不相等.

四种命题中的真假性有什么规律?
原命题 两个三角形全等,则它们的面积相等. 真 逆命题 两个三角形的面积相等,则它们全等. 假 否命题 两个三角形不全等,则它们的面积不相等.
假 逆否命题 两个三角形的面积不相等,则它们不全等.

四种命题中的真假性有什么规律?
原命题“若m ≤ 0,或n ≤ 0,则m+n ≤ 0”假
反证法的一般步骤:
(1)假设命题的结论不成立,即假
反设
设结论的反面成立;
(2)从这个假设出发,经过推理
归谬
论证,得出矛盾;
(3) 由矛盾判定假设不正确,

《四种命题的关系》课件

《四种命题的关系》课件
范畴命题
根据主语对它的属性或成员进行判断。范畴命 题分为 A、E、I、O 四种类型。
陈述命题
对客观事实或事件进行陈述。
定义命题
用于说明一个概念或对象的定义。
命题函数
包含变量的命题,可为真或假,取决于变量的 赋值。
命题的关系
1 等价命题
具有相同真值的命题,它们的真值表完全一 致。
2 逆命题
若 p → q,则 q → p 为逆命题。
《四种命题的关系》PPT 课件
探索四种命题之间的关系,了解命题的定义、类型和逻辑关系图等。让我们 一起深入了解命题逻辑。
命题的定义
陈述性语句
命题是可以为真或假的陈述性语句,由主语和谓语组成。
语法结构
命题是一种特定的语法结构,通常由主语和谓语组成。
符号表示
命题可以用符号表示,如 p真,则 ¬p 为假。
4 逆否命题
若 p → q,则 ¬q → ¬p 为逆否命题。
关系图
逻辑关系图
用图形表示命题的相互关系,包 括等价、逆、否、逆否关系。
圆形图示
用圆形、箭头等图形形式展示命 题之间的关系。
线段图示
利用线段将命题相关性表示出来, 形成直观的逻辑关系图。

四种命题间的相互关系课件PPT

四种命题间的相互关系课件PPT

2.与命题“已知点A,直线l0,l,A∈l0,若l0∥l,则l0唯一”为 互否命题的是( ) (A)已知点A,直线l0,l,A∈l0,若l0唯一,则l0∥l (B)已知点A,直线l0,l,A∈l0,若l0不唯一,则l0∥l (C)已知点A,直线l0,l,A∈l0,若l0不平行于l,则l0不唯一 (D)已知点A,直线l0,l,A∈l0,若l0∥l,则l0不唯一
【想一想】解题2用的什么方法?此种方法的思路是什么? 提示:用的方法是排除法,这种方法的思路是:首先将选择支 进行合理分类,再选择比较简单的一类作出判断,依此判断进 行排除.
互为逆否的命题同真同假的应用 【技法点拨】
命题真假判断的一种策略 当判断一个命题的真假比较困难,或者在判断真假时涉及到分 类讨论时,通常转化为判断它的逆否命题的真假,因为互为逆 否命题的真假是等价的,也就是我们讲的“正难则反”的一种 策略.
互 否
逆否命题 若﹁ q,则﹁p
2.四种命题的真假性 (1)两个命题为互逆命题或互否命题,它们的真假性的关系是: _没__有__关__系__. (2)①原命题与它的逆否命题真假性的关系是:有_相__同__的__真假 性; ②逆命题与否命题真假性的关系是:有_相__同__的__真假性. 综上,互为逆否命题具有相同的_真__假__性__.
1.在四种命题中,只有命题“若p,则q”和“若 p,则 q” 是互否命题吗? 提示:不是,如命题“若q,则p”和“若q,则 p”也是互 否命题.
2.互逆命题的真假性一定不等价吗? 提示:不一定,如命题“若一条直线垂直于一个平面内的任意一 条直线,则这条直线就垂直于这个平面”就和它的逆命题同真.
1.1.3 四种命题间的相互关系
1.认识四种命题间的相互关系及真假关系. 2.会利用命题真假的等价性解决简单问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则 ( p q) 2 4 , ∴ p2 q 2 2 pq 4 ,
2 2
假设原命题结 论的反面成立 看能否推出原命题 条件的反面成立
∵ p q ≥ 2 pq , 2 2 2 2 ∴ 2( p q ) 4 , ∴ p q 2 , 尝试成功 2 2 ∴ p q 证:a也能被2整除.
证:假设a不能被2整除,则a必为奇数, 故可令a=2m+1(m为整数), 由此得 a2=(2m+1)2=4m2+4m+1=4m(m+1)+1, 此结果表明a2是奇数, 这与题中的已知条件( a2能被2整除)相矛 盾, ∴a能被2整除.
1.1.3四种命题的 相互关系
高二数学 选修2-1
第一章
常用逻辑用语
反证法:
• 要证明某一结论A是正确的,但不直接证 明,而是先去证明 A 的反面(非 A )是错 误的,从而断定A是正确的。 • 即反证法就是通过否定命题的结论而导出 矛盾来达到肯定命题的结论,完成命题的 论证的一种数学证明方法。
例 证明:若p2+q2=2,则p+q≤2.
分析:直接证不好下手.
将“若p2+q2=2,则p+q≤2”看成原命题。 由于原命题和它的逆否命题具有相同的真 假性,要证原命题为真命题,可以证明它 的逆否命题为真命题。
2 2 即证明 为真命题 “ 若 pq 2 , 则 p q 2 . ”
例 证明:若p2+q2=2,则p+q≤2.
证明: 假设 p q 2 ,
奎屯
新疆
可能出现矛盾四种情况:
与题设矛盾; 与反设矛盾; 与公理、定理矛盾; 在证明过程中,推出自相矛盾的结论。




圆的两条不是直径的相交弦不能互相平分。
已知:如图,在⊙O中,弦AB、CD交于P,且AB、 CD不是直径.求证:弦AB、CD不被P平分.
证明: 假设弦AB 、CD被P平分, ∵P点一定不是圆心O,连接OP, 有 根据垂径定理的推论, OP⊥AB, OP⊥CD 即 过点P有两条直线与OP都垂直, 这与垂线性质矛盾, ∴弦AB、CD不被P平分。
这表明原命题的逆否命题为真命题 , 从而原命 题也为真命题.
反证法的步骤:
1. 假设命题的结论不成立,即假设结论的
反面成立。 推理过程中一定要用到才行 2. 从这个假设出发,通过推理论证,得出 矛盾。 显而易见的矛盾(如和已知条件矛盾). 3. 由矛盾判定假设不正确,从而肯定命题 的结论正确。
王新敞
相关文档
最新文档