人教A版高中数学必修4第二章平面向量2.3.1平面向量基本定理导学案

合集下载

人教A版高中必修4数学2.3《平面向量的基本定理及坐标表示》同步练习课件(共3课时)

人教A版高中必修4数学2.3《平面向量的基本定理及坐标表示》同步练习课件(共3课时)

新知探究
题型探究
感悟提升

(1)∵△ABC为等边三角形,
∴∠ABC=60° . 如图,延长AB至点D,使AB=BD, → → 则AB=BD, → → ∴∠DBC为向量AB与BC的夹角. ∵∠DBC=120° , → → ∴向量AB与BC的夹角为120° .
(2)∵E为BC的中点, ∴AE⊥BC, → → ∴AE与EC的夹角为90° .
新知探究 题型探究 感悟提升
1 → → → → → 1→ BC=FD=AD-AF=AD-2AB=a-2b, → → → → → → 1→ EF=DF-DE=-FD-DE=-BC-2DC
1 1 1 1 =-a-2b-2×2b=4b-a.
新知探究
题型探究
感悟提升
类型二 向量的夹角问题
→ → → → 提示 不相同,它们互补.AC与AB的夹角为∠CAB,而CA与AB 的夹角为π-∠CAB.
新知探究 题型探究 感悟提升
类型一
用基底表示向量
【例1】 如图,四边形OADB是以 → → OA=a,OB=b为边的平行四边形, 1 1 又BM=3BC,CN=3CD,试用a、b → → → 表示OM、ON、MN.
【例2】 已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹
角是多少?a-b与a的夹角又是多少? [思路探索] 以a,b为邻边作平行四边形,则a+b,a-b分别表示 对角线向量,利用平行四边形的知识求解.
新知探究
题型探究
感悟提升

→ → 如图所示,作 OA =a, OB =b,且∠
AOB=60° . → → 以 OA , OB 为邻边作平行四边形OACB,则 → → OC=a+b,BA=a-b. 因为|a|=|b|=2,所以平行四边形OACB是菱形,又∠AOB= → → → → 60° ,所以OC与OA的夹角为30° ,BA与OA的夹角为60° . 即a+b与a的夹角是30° ,a-b与a的夹角是60° .

新人教A版必修4高中数学2.3.1 平面向量基本定理学案

新人教A版必修4高中数学2.3.1 平面向量基本定理学案

高中数学 2.3.1 平面向量基本定理学案新人教A版必修4【学习目标】1知识与技能(1)了解平面向量基本定理及其意义,会利用向量基本定理解决简单问题;(2)培养学生分析、抽象、概括的推理能力。

2过程与方法(1)通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法;(2)通过本节学习,体会用基底表示平面内任一向量的方法。

3情感.态度与价值观(1)通过本节学习,培养学生的理性思维,培养学生独立思考及勇于探求、敢于创新的精神、培养主动学习的意识;(2)通过平面向量基本定理的探求过程,培养学生观察能力、抽象概括能力、独立思考的能力,激发学生学习数学的兴趣。

【重点难点】重点:平面向量基本定理的应用难点:对平面向量基本定理的发现和形成过程,数学思想的渗透。

【学习内容】一【知识链接】1. 向量加法与减法有哪几种几何运算法则?2.怎样理解向量的数乘运算λa? (1)模:|λa|=|λ||a|;(2)方向:λ>0时λa 与a方向相同;λ<0时λa与a方向相反;λ=0时λa=03. 向量共线定理 :向量b 与非零向量a共线则:有且只有一个非零实数λ,使b =λa.二【新课导入】情景展示:在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,就会形成一个新的数学理论. 三、小组合作、自主探究 探究(一):平面向量的基本定理探究1:给定平面内任意两个不共线的非零向量1e 、2e ,请你作出向量b =31e +22e 、c =1e -22e .探究2:由探究1可知可以用平面内任意两个不共线的非零向量1e 、2e 来表示向量b ,c 那么平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示呢?【定理解读】1 、1e 、2e 必须是平面向量的基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ11e +λ22e .2、λ1,λ2是被a,1e ,2e 的数量 3、基底不唯一,关键是不共线;4、由定理可将任一向量a 在给出基底1e 、2e 的条件下进行分解;5、基底给定时,分解形式唯一.6、λ 1 =0时 ; λ2=0时 ;λ1=0、λ2=0时 。

《平面向量基本定理》教案、导学案、课后作业

《平面向量基本定理》教案、导学案、课后作业

《6.3.1 平面向量基本定理》教案【教材分析】本节内容是学生在学习平面向量实际背景及基本概念、平面向量的线性运算(向量的加法、减法、数乘向量、共线向量定理)之后的又一重点内容,它是引入向量坐标表示,将向量的几何运算转化为代数运算的基础,使向量的工具性得到初步的体现,具有承前启后的作用。

【教学目标与核心素养】课程目标1、了解平面向量基本定理;2、理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;3、能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.数学学科素养1.数学抽象:平面向量基底定理理解;2.逻辑推理:用基底表示向量;3.数学建模:利用数形结合的思想运用相等向量,比例等知识来进行转换.【教学重点和难点】重点:平面向量基本定理;难点:平面向量基本定理的理解与应用.【教学过程】一、情景导入已知平面内一向量a是该平面内两个不共线向量b,c的和,怎样表达?问题:如果向量b与e1共线、c与e2共线,上面的表达式发生什么变化?根据作图进行提问、引导、归纳,板书表达式:a=λ1e1+λ2e2要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本25-27页,思考并完成以下问题1、平面向量基本定理的内容是什么?2、如何定义平面向量的基底?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ1e 1+λ2e 2.注意:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,e1、e2唯一确定的数量. 四、典例分析、举一反三 题型一 正确理解向量基底的概念例1例1 设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④D .③④ 【答案】B【解析】①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.解题技巧(基底向量满足什么条件)考查两个向量能否作为基底,主要看两向量是否为非零向量且不共线.此外,一个平面的基底一旦确定,那么平面内任意一个向量都可以由这组基底唯一表示.注意零向量不能作基底.跟踪训练一1、设e 1,e 2是平面内一组基底,则下面四组向量中,不能作为基底的是( ) A .e 1+e 2和e 1-e 2 B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 2+e 1【答案】B.【解析】∵4e 2-6e 1=-2(3e 1-2e 2),∴两个向量共线,不能作为基底. 题型二 用基底表示向量例2 如图,在平行四边形ABCD 中,设对角线AC ―→=a ,BD ―→=b ,试用基底a ,b 表示AB ―→,BC ―→.【答案】AB ―→=12a -12b ,BC ―→=12a +12b.【解析】 由题意知,AO ―→=OC ―→=12AC ―→=12a ,BO ―→=OD ―→=12BD ―→=12b .所以AB ―→=AO ―→+OB ―→=AO ―→-BO ―→=12a -12b ,BC ―→=BO ―→+OC ―→=12a +12b.解题技巧: (用基底表示向量的方法)将两个不共线的向量作为基底表示其他向量,一般是运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止.跟踪训练二1、如图所示,梯形ABCD 中,AB ∥CD ,M ,N 分别是DA ,BC 的中点,且DCAB=k ,设AD ―→=e 1,AB ―→=e 2,以e 1,e 2为基底表示向量DC ―→,BC ―→,MN ―→.2、【答案】DC ―→=k e 2.BC ―→=e 1+(k -1)e 2.MN ―→=k +12e 2.【解析】法一:∵AB ―→=e 2,DCAB=k ,∴DC ―→=k AB ―→=k e 2.∵AB ―→+BC ―→+CD ―→+DA ―→=0,∴BC ―→=-AB ―→-CD ―→-DA ―→=-AB ―→+DC ―→+AD ―→=e 1+(k -1)e 2. 又MN ―→+NB ―→+BA ―→+AM ―→=0,且NB ―→=-12BC ―→,AM ―→=12AD ―→,∴MN ―→=-AM ―→-BA ―→-NB ―→=-12AD ―→+AB ―→+12BC ―→=k +12e 2.法二:同法一得DC ―→=k e 2,BC ―→=e 1+(k -1)e 2.连接MB ,MC ,由MN ―→=12(MB ―→+MC ―→)得MN ―→=12(MA ―→+AB ―→+MD ―→+DC ―→)=12(AB ―→+DC ―→)=k +12e 2.题型三 平面向量基本定理的应用例3 如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN 的值.【答案】AP ∶PM =4,BP ∶PN =32.【解析】 设BM ―→=e 1,CN ―→=e 2,则AM ―→=AC ―→+CM ―→=-3e 2-e 1,BN ―→=BC ―→+CN ―→=2e 1+e 2. ∵A ,P ,M 和B ,P ,N 分别共线,∴存在实数λ,μ使得AP ―→=λAM ―→=-λe 1-3λe 2, BP ―→=μBN ―→=2μe 1+μe 2.故BA ―→=BP ―→+PA ―→=BP ―→-AP ―→=(λ+2μ)e 1+(3λ+μ)e 2. 而BA ―→=BC ―→+CA ―→=2e 1+3e 2,由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨⎪⎧λ=45,μ=35.∴AP ―→=45AM ―→,BP ―→=35BN ―→,∴AP ∶PM =4,BP ∶PN =32.解题技巧(平面向量基本定理应用时注意事项)若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量( 一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.跟踪训练三1.在△ABC 中,AD →=13AB →,AE →=14AC →,BE 与CD 交于点P ,且AB →=a ,AC →=b ,用a ,b 表示AP →.【答案】AP →=311 a +211b . 【解析】如图,取AE 的三等分点M ,使AM =13AE ,连接DM ,则DM//BE.设AM =t (t >0),则ME =2t . 又AE =14AC ,∴AC =12t ,EC =9t ,∴在△DMC 中,CE CM =CP CD =911,∴CP =911CD ,∴DP =211CD ,AP →=AD →+DP →=AD →+211DC →=13AB →+211(DA →+AC →)=13AB →+211⎝ ⎛⎭⎪⎫-13AB →+AC →=311AB →+211AC →=311 a +211b . 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本27页练习,36页习题6.3的1,11题. 【教学反思】教学过程中说到基底问题时,要注重数形结合思想的培养.特别是很多学生总是把他和单位向量分不开,教师需要给学生引导,要注意不共线的两个向量都可以作为基底这个思想.在进行向量运算时需要进行转化,运用相等向量,比例等知识来进行;学生在解题时很少注意到这个问题,只是纯粹的利用向量知识解题,所以很难找到思路.《6.3.1 平面向量基本定理》导学案【学习目标】 知识目标1、了解平面向量基本定理;2、理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量 解决实际问题的重要思想方法;3、能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 核心素养1.数学抽象:平面向量基底定理理解;2.逻辑推理:用基底表示向量;3.数学建模:利用数形结合的思想运用相等向量,比例等知识来进行转换. 【学习重点】:平面向量基本定理;【学习难点】:平面向量基本定理的理解与应用. 【学习过程】 一、预习导入阅读课本25-27页,填写。

高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

1.若向量 a,b 不共线,则 c=2a-b,d=3a-2b, 试判断 c,d 能否作为基底. 解:设存在实数 λ,使 c=λd, 则 2a-b=λ(3a-2b), 即(2-3λ)a+(2λ-1)b=0, 由于向量 a,b 不共线, 所以 2-3λ=2λ-1=0,这样的 λ 是不存在的, 从而 c,d 不共线,c,d 能作为基底.
探究点二 用基底表示平面向量
如图所示,在▱ABCD 中,点 E,F
分别为 BC,DC 边上的中点,DE 与 BF 交 于点 G,若A→B=a,A→D=b,试用 a,b 表 示向量D→E,B→F.
[解] D→E=D→A+A→B+B→E =-A→D+A→B+12B→C
=-A→D+A→B+12A→D=a-12b.
4.若 a,b 不共线,且 la+mb=0(l,m∈R),则 l=________, m=________. 答案:0 0 5.若A→D是△ABC 的中线,已知A→B=a,A→C=b,若 a,b 为基底,则A→D=________. 答案:12(a+b)
探究点一 对基底的理解
设 O 是平行四边形 ABCD 两对角线的交点,给出下列向
解:D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a.
B→F=B→C+C→F=2E→C+C→F
=-2C→E+C→F=-2a+b.
用基底表示向量的两种方法 (1基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一 性求解.
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共 线.若共线,则不能作基底,反之,则可作基底. (2)一个平面的基底若确定,那么平面上任意一个向量都可以由 这组基底唯一线性表示出来,设向量 a 与 b 是平面内两个不共 线的向量,若 x1a+y1b=x2a+y2b,则xy11==yx22.,

2.3.1平面向量基本定理课件(新人教A版必修4)

2.3.1平面向量基本定理课件(新人教A版必修4)
⑴向量的加法:
B
b
⑵向量的加法:
a
C
ab
O
a

平行四边形法则
b
B
b
O
A
a-b
ab
B
O
A a 三角形法则
已知平行四边形ABCD中,M,N分别是
BC,DC的中点且 AB a, AD b ,用 a, b
表示 AM, AN .
B
M N
解: AM AB BM A D b 1 AB BC 2 AN AD DN 1 1 1 AB AD AD DC AD AB 2 2 2 1 1 b a a b 2 2
=
二、向量的夹角:
两个非零向量 a 和 b ,作 OA a ,
, 则 ( 0 180 ) AOB OB b


B

b
O
a
A
叫做向量
a和 b
夹角的范围:00 ,180
a
O

的夹角. 注意:两向量必须 是同起点的 0

B
a
A B b
b

0
b B

180
a
C
设 e1 , e2是同一平面内的两个不共线的向量,
a 是这一平面内的任一向量, 问:与 a e1 , e2 之间有怎样的关系?
M C
e1
a
e2
A
O
N
B
OM 1 e1 ON 2 e2
a OM ON 1 e1 2 e2
平面向量基本定理 • 如果e1、e2是同一平面内的两个不共线 向量,那么对于这一平面内的任意向 量a,有且只有一对实数1、2,使得 a=1e1+2e2.

[教案精品]新课标高中数学人教A版必修四全册教案2. 3平面向量基本定理及坐标表示(三)

[教案精品]新课标高中数学人教A版必修四全册教案2. 3平面向量基本定理及坐标表示(三)

2.3.4 平面向量共线的坐标表示教案目的:<1)理解平面向量共线的坐标表示;<2)掌握平面上两点间的中点坐标公式及定点坐标公式;<3)会根据向量的坐标,判断向量是否共线.教案重点:平面向量公线的坐标表示及定点坐标公式,教案难点:向量的坐标表示的理解及运算的准确性教案过程:一、复习引入:1.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2b5E2RGbCAP(1>我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2>基底不惟一,关键是不共线;(3>由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4>基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量2.平面向量的坐标表示分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得p1EanqFDPw把叫做向量的<直角)坐标,记作其中叫做在轴上的坐标,叫做在轴上的坐标,特别地,,,.2.平面向量的坐标运算<1)若,,则,,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差. . 实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。

<2)若,,则一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.向量的坐标与以原点为始点、点P为终点的向量的坐标是相同的。

3.练习:1.若M(3, -2> N(-5, -1> 且,求P点的坐标2.若A(0, 1>, B(1, 2>, C(3, 4> ,则 2=.3.已知:四点A(5, 1>, B(3, 4>, C(1, 3>, D(5, -3> ,如何求证:四边形ABCD是梯形.?二、讲解新课:1、思考:<1)两个向量共线的条件是什么?<2)如何用坐标表示两个共线向量?设=(x1, y1> ,=(x2, y2> 其中≠.由=λ得, (x1, y1> =λ(x2, y2> 消去λ,x1y2-x2y1=0∥ (≠>的充要条件是x1y2-x2y1=0探究:<1)消去λ时能不能两式相除?<不能∵y1, y2有可能为0,∵≠∴x2, y2中至少有一个不为0)<2)能不能写成?<不能。

2021秋高中数学第二章平面向量2.3.1平面向量基本定理练习(含解析)新人教A版必修4

2021秋高中数学第二章平面向量2.3.1平面向量基本定理练习(含解析)新人教A版必修4

2.3.1 平面向量根本定理A 级 根底稳固一、选择题1.设e 1,e 2是平面内所有向量的一组基底,那么以下四组向量中,不能作为基底的是( )A .e 1+e 2和e 1-e 2B .3e 1-4e 2和6e 1-8e 2C .e 1+2e 2和2e 1+e 2D .e 1和e 1+e 2解析:B 中,因为6e 1-8e 2=2(3e 1-4e 2), 所以(6e 1-8e 2)∥(3e 1-4e 2),所以3e 1-4e 2和6e 1-8e 2不能作为基底. 答案:B2.在菱形ABCD 中,∠A =π3,那么AB →与AC →的夹角为( )A.π6B.π3C.5π6D.2π3解析:由题意知AC 平分∠BAD ,所以AB →与AC →的夹角为π6.答案:A3.在△ABC 中,点D 在BC 边上,且BD →=2DC →,设AB →=a ,AC →=b ,那么AD →可用基底a ,b 表示为( )A.12(a +b ) B.23a +13b C.13a +23b D.13(a +b ) 解析:因为BD →=2DC →, 所以BD →=23BC →.所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →=13a +23b .答案:C4.如图,在△OAB 中,P 为线段AB 上一点,OP →=xOA →+yOB →,且BP →=3PA →,那么( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:由BP →=3PA →,得OP →-OB →=3(OA →-OP →),整理,得OP →=34OA →+14OB →,故x =34,y =14.答案:D5.(2021·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,那么EB →=( ) A.34AB →-14AC → B.14AB →-34AC → C.34AB →+14AC → D.14AB →+34AC → 答案:A 二、填空题6.假设OP 1→=a ,OP 2→=b ,P 1P →=λPP 2→(λ≠-1),那么OP →=________.解析:因为OP →=OP 1→+P 1P →=OP 1+λPP 2→=OP 1→+λ(OP 2→-OP →)=OP 1→+λOP 2→-λOP →, 所以(1+λ)OP →=OP 1→+λOP 2→.所以OP →=11+λOP 1→+λ1+λOP 2→=11+λa +λ1+λb .答案:11+λa +λ1+λb 7.|a |=1,|b |=2,且a -b 与a 垂直,那么a 与b 的夹角为________.解析:如图,作向量OA →=a ,OB →=b ,那么BA →=a -b .由,得OA =1,OB =2,OA ⊥AB ,所以△OAB 为等腰直角三角形,所以∠AOB =45°,所以a 与b 的夹角为45°.答案:45°8.如果3e 1+4e 2=a ,2e 1+3e 2=b ,其中a ,b 为向量,那么e 1=________,e 2=________. 解析:由⎩⎪⎨⎪⎧a =3e 1+4e 2,b =2e 1+3e 2,解得⎩⎪⎨⎪⎧e 1=3a -4b ,e 2=3b -2a .答案:3a -4b 3b -2a 三、解答题9.如下图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,假设OC →=λOA →+μOB →(λ,μ∈R).求λ+μ的值.解:如下图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,那么OC →=OD →+OE →.在直角△OCD 中,因为|OC →|=23,∠COD =30°,∠OCD =90°,所以|OD →|=4,|CD →|=2,故OD →=4OA →,OE →=2OB →,即λ=4,μ=2,所以λ+μ=6.10.如下图,▱ABCD 中,E ,F 分别是BC ,DC 的中点,G 为DE ,BF 的交点,假设AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →,CG →.解:DE →=AE →-AD →=AB →+BE →-AD →=a +12b -b =a -12b .BF →=AF →-AB →=AD →+DF →-AB →=b +12a -a =b -12a .如下图,连接DB ,延长CG ,交BD 于点O ,点G 是△CBD 的重心,故CG →=CE →+EG →=12CB →+EG →=12CB →+13ED →=-12b -13⎝ ⎛⎭⎪⎫a -12b =-13a -13b .B 级 能力提升1.如果e 1,e 2是平面α内两个不共线的向量,那么以下说法中不正确的选项是( ) ①λe 1+μe 2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③假设向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,那么有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④假设存在实数λ,μ使得λe 1+μe 2=0,那么λ=μ=0.A .①②B .②③C .③④D .②解析:由平面向量根本定理可知,①④是正确的;对于②,由平面向量根本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个.答案:B2.如图,向量BP →=14BA →,假设OP →=xOA →+yOB →,那么x -y =________.解析:因为OP →=OB →+BP →=OB →+14BA →=OB →+14(BO →+OA →)=14OA →+34OB →,所以x =14,y =34.所以x -y =-12.答案:-123.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式; (3)假设4e 1-3e 2=λa +μb ,求λ,μ的值.(1)证明:假设a ,b 共线,那么存在λ∈R ,使a =λb , 那么e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线得,⎩⎪⎨⎪⎧λ=1,3λ=-2,⇒⎩⎪⎨⎪⎧λ=1,λ=-23. 所以λ不存在,故a 与b 不共线,可以作为一组基底.(2)解:设c =ma +nb (m ,n ∈R),得3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.所以⎩⎪⎨⎪⎧m +n =3,-2m +3n =-1,⇒⎩⎪⎨⎪⎧m =2,n =1.所以c =2a +b .(3)解:由4e 1-3e 2=λa +μb ,得4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2)=(λ+μ)e 1+(-2λ+3μ)e 2.所以⎩⎪⎨⎪⎧λ+μ=4,-2λ+3μ=-3,⇒⎩⎪⎨⎪⎧λ=3,μ=1.故所求λ,μ的值分别为3和1.。

平面向量基本定理(教学设计)

平面向量基本定理(教学设计)

《平面向量基本定理(第一课时)》教学设计一、教材分析:本节内容是人教A版普通高中课程标准实验教科书必修4第二章第3节“平面向量基本定理及坐标表示”的第一课时内容,本节共2个课时。

平面向量基本定理是本节的重点也是本节的难点。

平面向量基本定理告诉我们同一平面内任一向量都可以表示为两个不共线向量的线性组合,由于高中数学设计的向量是自由向量,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任何一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点和两个不共线的向量得到表示,这是引进平面向量基本定理一个原因(学生可以不讲)。

实际上,本节课在本章中起到一个“承上启下”的作用,一方面要在平面向量线性运算的基础上归纳定理,另一方面,作为平面向量基本定理的特殊情况,研究平面向量的正交分解及坐标表示,是建立向量坐标的一个逻辑基础,它揭示了平面向量的基本关系和基本结构,是学生后续学习向量坐标表示的基础。

二、学情分析:知识方面:学生学习了第一节“平面向量的实际背景及基本概念”和第二节“平面向量的线性运算”,已经有了一定的平面向量基础知识,学力和能力方面:授课对象为省级示范学校高一学生,有比较扎实的数学基本知识,其数学基本素养和学习能力应该在普通高中学生中处于中上水平。

三、教师教学的出发点:根据课程标准的要求备课,备学生,把课程标准的要求溶解在课堂中,让学生在潜移默化中提高数学素养。

本节课的教学设计主要是针对学习情况为中等的学生(占大多数),第一、注重知识的生成,通过创设问题情境,引导学生自主学习,主动探究发现新知(平面向量基本定理);第二、注重数学思维的培养,通过问题的两个方面,即平面向量合成和分解,培养学生的观察能力,启发学生的逆向思考能力,抽象概括能力,引导学生进行适当的合情推理(定理的证明);第三、注重对知识的理解、消化、应用,主要通过典型的问题,掌握对新知的应用,可进行适当的拓展,发散思维;第四:激发学生的学习兴趣,在3个方向:新知识的维度拓展的兴趣激发,解决几何问题的兴趣激发,后续学习的兴趣激发。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.1.平面向量基本定理学习目标.1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一.平面向量基本定理思考1.如果e 1,e 2是两个不共线的确定向量,那么与e 1,e 2在同一平面内的任一向量a 能否用e 1,e 2表示?依据是什么?答案. 能.依据是数乘向量和平行四边形法则.思考2.如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么? 答案. 不一定,当a 与e 1共线时可以表示,否则不能表示.梳理.(1)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二.两向量的夹角与垂直思考 1.平面中的任意两个向量都可以平移至起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? 答案. 存在夹角,不一样.思考2.△ABC 为正三角形,设AB →=a ,BC →=b ,则向量a 与b 的夹角是多少? 答案.如图,延长AB 至点D ,使AB =BD ,则BD →=a ,∵△ABC 为等边三角形,∴∠ABC =60°,则∠CBD =120°,故向量a 与b 的夹角为120°. 梳理.(1)夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b .类型一.对基底概念的理解例1.如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是(..) ①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. A.①② B.②③ C.③④ D.② 答案.B解析.由平面向量基本定理可知,①④是正确的;对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个,故选B.反思与感悟.考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来. 跟踪训练1.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是(..) A.e 1-e 2,e 2-e 1 B.2e 1-e 2,e 1-12e 2C.2e 2-3e 1,6e 1-4e 2D.e 1+e 2,e 1-e 2答案.D解析.选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2(e 1-12e 2),也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合. 类型二.向量的夹角例2.已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.解.如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA 、OB 为邻边作▱OACB , 则OC →=a +b ,BA →=OA →-OB →=a -b , BC →=OA →=a .因为|a |=|b |=2,所以△OAB 为正三角形, 所以∠OAB =60°=∠ABC , 即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°, 所以α+β=90°.反思与感悟.(1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1、λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.跟踪训练2.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案.90°解析.由AO →=12(AB →+AC →)知,O ,B ,C 三点共线,且O 是线段BC 的中点,故线段BC 是圆O 的直径,从而∠BAC =90°,因此AB →与AC →的夹角为90°.类型三.平面向量基本定理的应用例3.如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →.解.∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点,∴AD →=BC →=2BE →,BA →=CD →=2CF →,∴BE →=12AD →=12b ,CF →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE → =-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →. 解.取CF 的中点G ,连接EG . ∵E 、G 分别为BC ,CF 的中点,∴EG →=12BF →=12b ,∴DG →=DE →+EG →=a +12b .又∵DG →=34DC →=34AB →,∴AB →=43DG →=43(a +12b )=43a +23b .又∵AD →=BC →=BF →+FC →=BF →+12DC →=BF →+12AB →,∴AD →=BC →=b +12(43a +23b )=23a +43b . 反思与感悟.将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练3.如图所示,在△AOB 中,OA →=a ,OB →=b ,M ,N 分别是边OA ,OB 上的点,且OM →=13a ,ON →=12b ,设AN →与BM →相交于点P ,用基底a ,b 表示OP →.解.OP →=OM →+MP →,OP →=ON →+NP →. 设MP →=mMB →,NP →=nNA →,则 OP →=OM →+mMB →=13OA →+m (OB →-OM →)=13a +m (b -13a )=13(1-m )a +m b , OP →=ON →+nNA →=12OB →+n (OA →-ON →)=12b +n (a -12b )=12(1-n )b +n a . ∵a ,b 不共线, ∴⎩⎪⎨⎪⎧ 13(1-m )=n ,12(1-n )=m ,即⎩⎪⎨⎪⎧n =15,m =25.∴OP →=15a +25b .1.下列关于基底的说法正确的是(..)①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的. A.① B.② C.①③ D.②③ 答案.C解析.零向量与任意向量共线,故零向量不能作为基底中的向量,故②错,①③正确. 2.在直角三角形ABC 中,∠BAC =30°,则AC →与BA →的夹角等于(..) A.30° B.60° C.120° D.150°答案.D解析.由向量夹角定义知,AC →与BA →的夹角为150°.3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________. 答案.-15.-12解析.∵向量e 1,e 2不共线,∴⎩⎪⎨⎪⎧2x -3y =6,3x -4y =3,解得⎩⎪⎨⎪⎧x =-15,y =-12.4.如图所示,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则当以a ,b 为基底时,AC →可表示为________,当以a ,c 为基底时,AC →可表示为________.答案.a +b .2a +c解析.由平行四边形法则可知,AC →=AB →+AD →=a +b ,以a ,c 为基底时将BD →平移,使点B 与点A 重合,再由三角形法则和平行四边形法则即可得到.5.已知在梯形ABCD 中,AB ∥DC ,且AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用a 、b 为基底表示DC →,BC →,EF →.解.连接FD ,∵DC ∥AB ,AB =2CD ,E ,F 分别是DC ,AB 的中点, ∴DC 綊FB .∴四边形DCBF 为平行四边形. 依题意,DC →=FB →=12AB →=12b , BC →=FD →=AD →-AF → =AD →-12AB →=a -12b ,EF →=DF →-DE →=-FD →-DE →=-BC →-12DC →=-⎝ ⎛⎭⎪⎫a -12b -12×12b =14b -a .1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件.(2)零向量与任意向量共线,故不能作为基底.2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.课时作业一、选择题1.设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是(..)A.e1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2答案.B解析.B中,∵6e1-8e2=2(3e1-4e2),∴(6e1-8e2)∥(3e1-4e2),∴3e1-4e2和6e1-8e2不能作为基底.2.若向量a与b的夹角为60°,则向量-a与-b的夹角是(..)A.60°B.120°C.30°D.150°答案.A3.如图所示,用向量e1,e2表示向量a-b为(..)A.-4e1-2e2B.-2e1-4e2C.e1-3e2D.3e1-e2答案.C解析.如图,由向量的减法得a -b =AB →.由向量的加法得AB →=e 1-3e 2.4.设向量e 1和e 2是某一平面内所有向量的一组基底,若3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,则实数y 的值为(..) A.3 B.4 C.-14 D.-34答案.B解析.因为3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2, 所以(3x -4y +7)e 1+(10-y -2x )e 2=0,又因为e 1和e 2是某一平面内所有向量的一组基底,所以⎩⎪⎨⎪⎧3x -4y +7=0,10-y -2x =0,解得⎩⎪⎨⎪⎧x =3,y =4,故选B.5.若OP →1=a ,OP →2=b ,P 1P →=λPP →2(λ≠-1),则OP →等于(..) A.a +λb B.λa +(1-λ)b C.λa +b D.11+λa +λ1+λb 答案.D解析.∵P 1P →=λPP 2→,∴OP →-OP →1=λ(OP →2-OP →),∴(1+λ)OP →=OP →1+λOP →2, ∴OP →=11+λOP →1+λ1+λOP →2=11+λa +λ1+λb .6.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为(..) A.165 B.125 C.85 D.45 答案.C解析.∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.7.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于(..)A.14a +12b B.12a +14b C.23a +13b D.12a +23b 答案.C解析.如图,设CF →=λCD →,AE →=μAF →,则CD →=OD →-OC →=12b -12a ,故AF →=AC →+CF →=(1-12λ)a +12λb .∵AF →=1μAE →=1μ(AO →+OE →)=1μ(12a +14b )=12μa +14μb , ∴由平面向量基本定理,得⎩⎪⎨⎪⎧1-12λ=12μ,12λ=14μ,∴⎩⎪⎨⎪⎧λ=23,μ=34,∴AF →=23a +13b ,故选C.二、填空题8.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则实数λ的取值范围为______________. 答案.(-∞,4)∪(4,+∞)解析.若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b ,即得λ≠4.9.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为________. 答案.60°解析.作OA →=a ,OB →=b ,则BA →=a -b ,∠AOB 为a 与b 的夹角,由|a |=|b |=|a -b |知△AOB 为等边三角形,所以∠AOB =60°.10.如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.答案.43解析.设AB →=a ,AD →=b ,则AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.三、解答题11.判断下列命题的正误,并说明理由:(1)若a e 1+b e 2=c e 1+d e 2(a 、b 、c 、d ∈R ),则a =c ,b =d ;(2)若e 1和e 2是表示平面内所有向量的一组基底,那么该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.解.(1)错,当e 1与e 2共线时,结论不一定成立.(2)正确,假设e 1+e 2与e 1-e 2共线,则存在实数λ,使e 1+e 2=λ(e 1-e 2),即(1-λ)e 1=-(1+λ)e 2.因为1-λ与1+λ不同时为0, 所以e 1与e 2共线,这与e 1,e 2不共线矛盾.所以e 1+e 2与e 1-e 2不共线,即它们可以作为基底,该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.12.如图,平面内有三个向量OA →,OB →,OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.解.如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt△OCD 中,∵|OC →|=23,∠COD =30°,∠OCD =90°,∴|OD →|=4,|CD →|=2,故OD →=4OA →,OE →=2OB →,即λ=4,μ=2,∴λ+μ=6.13.在梯形ABCD 中,AB →∥CD →,M ,N 分别是DA ,BC 的中点,且DC AB=k .设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →.解.方法一.如图所示,∵AB →=e 2,且DC AB=k , ∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD →=e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0,且NB →=-12BC →,AM →=12AD →, ∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC → =k +12e 2. 方法二.如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .同方法一可得DC →=k e 2.则BC →=BE →+EC →=-(AB →-DC →)+AD →=e 1+(k -1)e 2,MN →=MF →+FN →=DC →+12EB →=DC →+12(AB →-DC →) =k +12e 2. 方法三.如图所示,连接MB ,MC .同方法一可得DC →=k e 2,BC →=e 1+(k -1)e 2.由MN →=12(MB →+MC →),得MN →=12(MA →+AB →+MD →+DC →)=12(AB →+DC →)=k +12e 2. 四、探究与拓展14.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.答案.90°解析.由题意可画出图形,在△OAB 中,因为∠OAB =60°,|b |=2|a |,所以∠ABO =30°,OA ⊥OB ,即向量a 与c 的夹角为90°.15.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2.(1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式;(3)若4e 1-3e 2=λa +μb ,求λ,μ的值.(1)证明.若a ,b 共线,则存在λ∈R ,使a =λb ,则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧ λ=1,3λ=-2⇒⎩⎪⎨⎪⎧ λ=1,λ=-23.∴λ不存在,故a 与b 不共线,可以作为一组基底.(2)解.设c =m a +n b (m ,n ∈R ),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.∴⎩⎪⎨⎪⎧ m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧ m =2,n =1.∴c =2a +b . (3)解.由4e 1-3e 2=λa +μb ,得 4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2) =(λ+μ)e 1+(-2λ+3μ)e 2. ∴⎩⎪⎨⎪⎧ λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧λ=3,μ=1. 故所求λ,μ的值分别为3和1.。

相关文档
最新文档