2021年高考数学总复习:基本不等式
2021高考数学一轮复习第一章集合常用逻辑用语和不等式第4节基本不等式课件0

26
2021/4/17
网店和实体店各有利弊,两者的结合将在未来一段时
2021高考数学一轮复习第一章集合常用逻辑 用语和不等式第4节基本不等式课件0
14
2021/4/17
考点 1 利用基本不等式求最值(自主演练)
1.若 a>0,b>0 且 2a+b=4,则a1b的最小值为(
)
A.2
1 B.2
C.4 解析:因为
1 a>0,b>0,D故.4 2a+b≥2
2ab(当且仅当
用语和不等式第4节基本不等式课件0
5
2021/4/17
1.基本不等式的两个变形.
(1)a2+2 b2≥a+2 b2≥ab(a,b∈R,当且仅当 a=b 时 取等号).
(2)
a2+b2≥a+b≥
2
2
ab(a>0,b>0,当且仅当 a=
b 时取等号).
2.使用基本不等式求最值,“一正,二定,三相等”
三个条件缺一不可.
2a=b 时取等号).
又因为 2a+b=4,
所以 2 2ab≤4⇒0<ab≤2,
2021高考数学一轮复习第一章集合常用逻辑 用语和不等式第4节基本不等式课件0
15
所以a1b≥12,故a1b的最小值为12(当且仅当 a=1,b=2 时等号成立).
答案:B
2021/4/17
2021高考数学一轮复习第一章集合常用逻辑 用语和不等式第4节基本不等式课件0
16
休息时间到啦
同学们,下课休息十分钟。现在是休息时 间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来动一 动,久坐对身体不好哦~
2021/4/17
2021高考数学一轮复习第一章集合常用逻辑 用语和不等式第4节基本不等式课件0
(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
高考数学复习考点知识与题型专题讲解44---基本不等式

高考数学复习考点知识与题型专题讲解基本不等式 考试要求1.掌握基本不等式及常见变型.2.会用基本不等式解决简单的最值问题. 知识梳理1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b 2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b ≥2(a ,b 同号).(3)ab ≤⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ). (4)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P . (2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.注意:利用不等式求最值应满足三个条件“一正、二定、三相等”.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22与ab ≤a +b 2等号成立的条件是相同的.(×) (2)y =x +1x 的最小值是2.(×)(3)若x >0,y >0且x +y =xy ,则xy 的最小值为4.(√)(4)函数y =sin x +4sin x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值为4.(×)教材改编题1.已知x >2,则x +1x -2的最小值是() A .1B .2C .22D .4答案D解析∵x >2,∴x +1x -2=x -2+1x -2+2≥2(x -2)1x -2+2=4,当且仅当x -2=1x -2,即x =3时,等号成立.2.函数y =4-x -1x (x <0)()A .有最小值2B .有最小值6C .有最大值2D .有最大值6答案B解析y =4+(-x )+1(-x )≥4+2(-x )·⎝ ⎛⎭⎪⎫-1x =6. 当且仅当-x =1-x ,即x =-1时取等号. 3.若a ,b ∈R ,下列不等式成立的是________.①b a +a b ≥2;②ab ≤a 2+b 22;③a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22; ④2ab a +b≤ab . 答案②③解析当b a 为负时,①不成立.当ab <0时,④不成立.题型一 利用基本不等式求最值命题点1配凑法例1(1)(2022·乐山模拟)设0<x <32,则函数y =4x (3-2x )的最大值为()A.94B .4C.92D .9答案C解析y =4x (3-2x )=2·2x ·(3-2x )≤2·⎝ ⎛⎭⎪⎫2x +3-2x 22=92. 当且仅当2x =3-2x ,即x =34时取等号,∴当x =34时,y max =92.(2)若x <23,则f (x )=3x +1+93x -2有() A .最大值0B .最小值9C .最大值-3D .最小值-3答案C解析∵x <23,∴3x -2<0,f (x )=3x -2+93x -2+3 =-⎣⎢⎡⎦⎥⎤(2-3x )+92-3x +3≤-2(2-3x )·92-3x+3=-3. 当且仅当2-3x =92-3x ,即x =-13时取“=”. (3)(2022·绍兴模拟)若-1<x <1,则y =x 2-2x +22x -2的最大值为________. 答案 -1解析因为-1<x <1,则0<1-x <2,于是得y =-12·(1-x )2+11-x=-12⎣⎢⎡⎦⎥⎤(1-x )+11-x ≤-12·2(1-x )·11-x=-1, 当且仅当1-x =11-x,即x =0时取“=”, 所以当x =0时,y =x 2-2x +22x -2有最大值-1.命题点2常数代换法例2(2022·重庆模拟)已知a >0,b >0,且a +b =2,则2a +12b 的最小值是()A .1B .2C.94D.92答案C解析因为a >0,b >0,且a +b =2,所以a +b 2=1,所以2a +12b =12(a +b )⎝ ⎛⎭⎪⎫2a +12b =12⎝ ⎛⎭⎪⎫2b a +a 2b +52 ≥12×⎝ ⎛⎭⎪⎫2+52=94, 当且仅当a =43,b =23时,等号成立.命题点3消元法例3已知x >0,y >0且x +y +xy =3,则x +y 的最小值为________.答案2解析方法一(换元消元法)∵x +y +xy =3,则3-(x +y )=xy ≤⎝ ⎛⎭⎪⎫x +y 22, 即(x +y )2+4(x +y )-12≥0,令t =x +y ,则t >0,∴t 2+4t -12≥0,解得t ≥2,∴x +y 的最小值为2.方法二(代入消元法)由x+y+xy=3得y=3-x x+1,∵x>0,y>0,∴0<x<3,∴x+y=x+3-xx+1=x+4x+1-1=x+1+4x+1-2≥2(x+1)·4x+1-2=2,当且仅当x+1=4x+1,即x=1时取等号,∴x+y的最小值为2.延伸探究本例条件不变,求xy的最大值.解∵x+y+xy=3,∴3-xy=x+y≥2xy,当且仅当x=y时取等号,令t=xy,则t>0,∴3-t2≥2t,即t2+2t-3≤0,即0<t≤1,∴当x =y =1时,xy 最大值为1. 教师备选1.(2022·哈尔滨模拟)已知x >0,y >0,且2x +8y -xy =0,则当x +y 取得最小值时,y 等于()A .16B .6C .18D .12答案B解析因为x >0,y >0,2x +8y =xy ,所以2y +8x =1,所以x +y =(x +y )⎝ ⎛⎭⎪⎫2y +8x =10+2x y +8y x ≥10+22x y ·8y x =10+2×4=18, 当且仅当⎩⎨⎧ 2x y =8y x ,2x +8y -xy =0,即⎩⎪⎨⎪⎧x =12,y =6时取等号, 所以当x +y 取得最小值时,y =6.2.已知函数f (x )=-x 2x +1(x <-1),则() A .f (x )有最小值4B .f (x )有最小值-4C .f (x )有最大值4D .f (x )有最大值-4答案A解析f (x )=-x 2x +1=-x 2-1+1x +1=-⎝ ⎛⎭⎪⎫x -1+1x +1=-⎝⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2. 因为x <-1,所以x +1<0,-(x +1)>0,所以f (x )≥21+2=4,当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立. 故f (x )有最小值4.思维升华(1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.跟踪训练1(1)已知函数f (x )=22x -1+x (2x >1),则f (x )的最小值为________. 答案52解析∵2x >1,∴x -12>0,f (x )=22x -1+x =1x -12+x -12+12≥21x -12·⎝ ⎛⎭⎪⎫x -12+12 =2+12=52, 当且仅当1x -12=x -12,即x =32时取“=”.∴f (x )的最小值为52.(2)已知x >0,y >0且x +y =5,则1x +1+1y +2的最小值为________. 答案12解析令x +1=m ,y +2=n ,∵x >0,y >0,∴m >0,n >0,则m +n =x +1+y +2=8, ∴1x +1+1y +2=1m +1n =⎝ ⎛⎭⎪⎫1m +1n ×18(m +n )=18⎝ ⎛⎭⎪⎫n m +m n +2≥18×(21+2)=12. 当且仅当n m =m n ,即m =n =4时等号成立.∴1x +1+1y +2的最小值为12. 题型二 基本不等式的常见变形应用例4(1)(2022·宁波模拟)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为()A.a +b 2≥ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0)C.2ab a +b ≤ab (a >0,b >0)D.a +b 2≤a 2+b 22(a >0,b >0) 答案D解析由图形可知,OF =12AB =12(a +b ),OC =12(a +b )-b =12(a -b ),在Rt △OCF 中,由勾股定理可得,CF =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫a -b 22=12(a 2+b 2), ∵CF ≥OF ,∴12(a 2+b 2)≥12(a +b )(a >0,b >0).(2)(2022·广州模拟)已知0<a <1,b >1,则下列不等式中成立的是()A .a +b <4ab a +b B.ab <2ab a +bC.2a 2+2b 2<2abD .a +b <2a 2+2b 2答案D 解析对于选项A ,因为0<a <1,b >1,所以(a +b )2=a 2+2ab +b 2>4ab ,故选项A 错误;对于选项B ,ab >21a +1b=2ab a +b ,故选项B 错误; 对于选项C ,2(a 2+b 2)>2×2ab =2ab ,故选项C 错误;对于选项D,2a 2+2b 2>a 2+2ab +b 2=(a +b )2,所以a +b <2a 2+2b 2,故选项D 正确.教师备选若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是()A .a 2+b 2>2abB .a +b ≥2abC.1a +1b >2abD.b a +a b ≥2答案D解析a 2+b 2≥2ab ,所以A 错误;ab >0,只能说明两实数同号,同为正数,或同为负数,所以当a <0,b <0时,B 错误;同时C 错误;a b 或b a 都是正数,根据基本不等式求最值,a b +b a ≥2a b ×ba =2,故D 正确.思维升华基本不等式的常见变形(1)ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22. (2)21a +1b ≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).跟踪训练2(1)(2022·浙南名校联盟联考)已知命题p :a >b >0,命题q :a 2+b 22>⎝ ⎛⎭⎪⎫a +b 22,则p 是q 成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析∵a >b >0,则a 2+b 2>2ab ,∴2(a 2+b 2)>a 2+b 2+2ab ,∴2(a 2+b 2)>(a +b )2,∴a 2+b 22>⎝ ⎛⎭⎪⎫a +b 22, ∴由p 可推出q ,当a <0,b <0时,命题q 成立,如a =-1,b =-3时,a 2+b 22=5>⎝ ⎛⎭⎪⎫a +b 22=4, ∴由q 推不出p ,∴p 是q 成立的充分不必要条件.(2)(2022·漳州质检)已知a ,b 为互不相等的正实数,则下列四个式子中最大的是()A.2a +bB.1a +1bC.2ab D.2a 2+b 2 答案B解析∵a ,b 为互不相等的正实数, ∴1a +1b >2ab, 2a +b <22ab=1ab <2ab ,2a 2+b 2<22ab =1ab <2ab, ∴最大的是1a +1b .柯西不等式是法国著名的数学家、物理学家、天文学家柯西(Cauchy,1789-1857)发现的,故命名为柯西不等式.柯西不等式是数学中一个非常重要的不等式,除了用柯西不等式来证明一些不等式成立外,柯西不等式还常用于选择、填空求最值的问题中,借助柯西不等式的技巧可以达到事半功倍的效果.1.(柯西不等式的代数形式)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.推广一般情形:设a 1,a 2,…,a n ,b 1,b 2,…,b n ∈R ,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2(当且仅当b i =0(i =1,2,…,n )或存在一个实数k ,使得a i =kb i (i =1,2,…,n )时,等号成立).2.(柯西不等式的向量形式)设α,β为平面上的两个向量,则|α||β|≥|α·β|,其中当且仅当β是零向量,或存在实数k ,使α=k β时等号成立.3.(柯西不等式的三角不等式)设x 1,y 1,x 2,y 2,x 3,y 3为任意实数,则:(x 1-x 2)2+(y 1-y 2)2+(x 2-x 3)2+(y 2-y 3)2 ≥(x 1-x 3)2+(y 1-y 3)2. 一、利用柯西不等式求最值例1已知x ,y 满足x +3y =4,则4x 2+y 2的最小值为________.答案6437解析(x +3y )2≤(4x 2+y 2)⎝ ⎛⎭⎪⎫14+9, 所以4x 2+y 2≥16×437=6437,当且仅当y =12x 时,等号成立,所以4x 2+y 2的最小值为6437.例2已知正实数x ,y ,z 满足x 2+y 2+z 2=1,正实数a ,b ,c 满足a 2+b 2+c 2=9,则ax +by +cz 的最大值为________.答案3解析(ax +by +cz )2≤(a 2+b 2+c 2)·(x 2+y 2+z 2)=9,∴ax +by +cz ≤3,当且仅当a =3x ,b =3y ,c =3z 时取“=”,∴ax +by +cz 的最大值为3.例3函数y =5x -1+10-2x 的最大值为________.答案6 3解析y 2=(5x -1+10-2x )2=(5x -1+2·5-x )2≤(52+2)(x -1+5-x )=108,当且仅当x =12727时等号成立,∴y ≤6 3.二、利用柯西不等式证明不等式例4已知a 1,a 2,b 1,b 2为正实数,求证:(a 1b 1+a 2b 2)·⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2≥(a 1+a 2)2. 证明(a 1b 1+a 2b 2)⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2 =[(a 1b 1)2+(a 2b 2)2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 1b 12+⎝ ⎛⎭⎪⎫a 2b 22 ≥⎝⎛⎭⎪⎫a 1b 1·a 1b 1+a 2b 2·a 2b 22 =(a 1+a 2)2.当且仅当b 1=b 2时,等号成立.例5已知a 1,a 2,…,a n 都是实数,求证:1n (a 1+a 2+…+a n )2≤a 21+a 22+…+a 2n .证明根据柯西不等式,有⎝⎛⎭⎫12+12+…+12n 个 (a 21+a 22+…+a 2n )≥(1×a 1+1×a 2+…+1×a n )2,所以1n (a 1+a 2+…+a n )2≤a 21+a 22+…+a 2n .课时精练1.下列函数中,最小值为2的是()A.y=x+2 xB.y=x2+3 x2+2C.y=e x+e-xD.y=log3x+log x3(0<x<1) 答案C解析当x<0时,y=x+2x<0,故A错误;y=x2+3x2+2=x2+2+1x2+2≥2,当且仅当x2+2=1x2+2,即x2=-1时取等号,∵x2≠-1,故B错误;y=e x+e-x≥2e x·e-x=2,当且仅当e x=e-x,即x=0时取等号,故C正确;当x∈(0,1)时,y=log3x<0,故D错误.2.(2022·汉中模拟)若a>0,b>0且2a+b=4,则ab的最大值为()A .2B.12C .4D.14答案A解析4=2a +b ≥22ab ,即2≥2ab ,平方得ab ≤2,当且仅当2a =b ,即a =1,b =2时等号成立,∴ab 的最大值为2.3.(2022·苏州模拟)若a ,b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥(a +b )2x +y,当且仅当a x =b y 时取等号.利用以上结论,函数f (x )=2x +91-2x,x ∈⎝ ⎛⎭⎪⎫0,12取得最小值时x 的值为()A.15B.14C.24D.13答案A解析f (x )=2x +91-2x =42x +91-2x≥(2+3)22x +1-2x =25,当且仅当22x =31-2x,即x =15时等号成立. 4.(2022·重庆模拟)已知x >2,y >1,(x -2)(y -1)=4,则x +y 的最小值是()A .1B .4C .7D .3+17答案C解析∵x >2,y >1,(x -2)(y -1)=4, ∴x +y =(x -2)+(y -1)+3 ≥2(x -2)(y -1)+3=7,当且仅当⎩⎪⎨⎪⎧ x =4,y =3时等号成立. 5.已知函数f (x )=14x +9x -1(x <1),下列结论正确的是() A .f (x )有最大值114B .f (x )有最大值-114C .f (x )有最小值132D .f (x )有最小值74答案B解析f (x )=x -14+9x -1+14=-⎝ ⎛⎭⎪⎪⎫1-x 4+91-x +14≤-21-x 4·91-x +14=-114,当且仅当x =-5时等号成立.6.已知函数f (x )=x x 2-x +4(x >0),则() A .f (x )有最大值3B .f (x )有最小值3C .f (x )有最小值13D .f (x )有最大值13答案D解析f (x )=x x 2-x +4=1x +4x -1≤124-1=13, 当且仅当x =4x ,即x =2时等号成立, ∴f (x )的最大值为13.7.(2022·济宁模拟)已知a ,b 为正实数,则“ab a +b ≤2”是“ab ≤16”的() A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件答案B解析由a ,b 为正实数,∴a +b ≥2ab ,当且仅当a =b 时等号成立,若ab ≤16,可得aba +b ≤ab 2ab =ab 2≤162=2,故必要性成立; 当a =2,b =10,此时ab a +b≤2,但ab =20>16,故充分性不成立, 因此“ab a +b≤2”是“ab ≤16”的必要不充分条件.8.已知正实数a,b满足a>0,b>0,且a+b=1,则下列不等式恒成立的有() ①2a+2b≥22;②a2+b2<1;③1a+1b<4;④a+1a>2.A.①②B.①③C.①②④D.②③④答案C解析∵2a+2b≥22a·2b=22a+b=22,当且仅当a=b时取等号,∴①正确;∵a2+b2<a2+b2+2ab=(a+b)2=1,∴②正确;∵1a+1b=(a+b)⎝⎛⎭⎪⎫1a+1b=2+ba+ab≥2+2ba×ab=4,当且仅当a=b时取等号,∴③错误;∵a>0,b>0,a+b=1,∴0<a<1,∵a+1a≥2a·1a=2,当且仅当a=1时取等号,∴a+1a>2,④正确.9.若0<x<2,则x4-x2的最大值为________.答案2解析∵0<x <2,∴x 4-x 2=x 2(4-x 2)≤x 2+4-x 22=2, 当且仅当x 2=4-x 2,即x =2时取“=”.10.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为________. 答案4解析依题意ab =a +b ,∴a +b =ab ≤⎝ ⎛⎭⎪⎫a +b 22, 即a +b ≤(a +b )24,∴a +b ≥4,当且仅当a =b 时取等号,∴a +b 的最小值为4.11.已知x >0,y >0且3x +4y -xy =0,则3x +y 的最小值为________. 答案27解析因为x >0,y >0,3x +4y =xy ,所以3y +4x =1,所以3x +y =(3x +y )⎝ ⎛⎭⎪⎫3y +4x =15+9x y +4y x ≥15+29x y ·4y x =27,当且仅当⎩⎨⎧ 9x y =4y x ,3x +4y -xy =0即⎩⎪⎨⎪⎧x =6,y =9时取等号,所以3x +y 的最小值为27.12.(2021·天津)若a >0,b >0,则1a +a b 2+b 的最小值为________. 答案2 2解析∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22b ·b =22, 当且仅当1a =a b 2且2b =b ,即a =b =2时等号成立,∴1a +a b 2+b 的最小值为2 2.13.(2022·南京模拟)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的取值范围是() A.⎣⎢⎡⎦⎥⎤-233,233 B.⎝ ⎛⎭⎪⎫-233,233 C.⎣⎢⎡⎦⎥⎤-223,223 D.⎝ ⎛⎭⎪⎫-223,223 答案A解析∵x 2+y 2+xy =1⇔xy =(x +y )2-1,又∵xy ≤⎝ ⎛⎭⎪⎫x +y 22, ∴(x +y )2-1≤⎝ ⎛⎭⎪⎫x +y 22,令x +y =t , 则4t 2-4≤t 2,∴-233≤t ≤233,即-233≤x +y ≤233,当且仅当x =y 时,取等号,∴x +y 的取值范围是⎣⎢⎡⎦⎥⎤-233,233. 14.设a >0,b >0,则下列不等式中一定成立的是________.(填序号) ①a +b +1ab ≥22; ②2ab a +b>ab ; ③a 2+b 2ab≥a +b ; ④(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4. 答案①③④解析因为a >0,b >0,所以a +b +1ab ≥2ab +1ab ≥22, 当且仅当a =b 且2ab =1ab, 即a =b =22时取等号,故①正确;因为a +b ≥2ab >0,所以2ab a +b ≤2ab 2ab=ab ,当且仅当a =b 时取等号, 故②错误;因为2ab a +b ≤2ab 2ab =ab ,当且仅当a =b 时取等号, 所以a 2+b 2a +b =(a +b )2-2ab a +b =a +b -2ab a +b≥ 2ab -ab =ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b≥ab ,即a 2+b 2ab ≥a +b ,故③正确; 因为(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥ 2+2b a ·ab =4,当且仅当a =b 时取等号,故④正确.15.已知a >0,b >0,且a +b =1,则1a +1b +ab 的最小值为____________.答案174解析因为a >0,b >0,且a +b =1,所以1=a +b ≥2ab ,即0<ab ≤14,当且仅当a =b 时取等号, 令t =ab ,则1a +1b +ab =1ab +ab =1t +t ,t ∈⎝ ⎛⎦⎥⎤0,14,因为函数y =1t +t 在⎝ ⎛⎦⎥⎤0,14上为减函数, 所以当t =14时,函数y =1t +t 取得最小值,即y min =14+4=174.16.(2022·沙坪坝模拟)若x >0,y >0且x +y =xy ,则x x -1+2y y -1的最小值为________. 答案3+2 2解析因为x >0,y >0且x +y =xy ,则xy =x +y >y ,即有x >1,同理y >1,由x +y =xy 得,(x -1)(y -1)=1,于是得xx -1+2yy -1=1+1x -1+2+2y -1=3+⎝ ⎛⎭⎪⎫1x -1+2y -1≥3+21x -1·2y -1=3+22, 当且仅当1x -1=2y -1,即x =1+22,y =1+2时取“=”,所以xx -1+2yy -1的最小值为3+2 2.。
2021年高考数学高分套路 基本不等式(解析版)

mn
2
3.已知
a
1, b
0, a
b
2
,则
a
1 1
1 2b
的最小值为(
)
A. 3 2 2
B. 3 2 42
C. 3 2 2
D. 1 2 23
【答案】A
【解析】由题意知 a 1,b 0, a b 2 ,可得: (a 1) b 1, a 1 0 ,
则
a
1 1
1 2b
[(a
1)
b](
∴ + = [(x+2)+(y+1)] x+2 y+1 = y+1 x+2 ≥
x+2 y+1 4
4
4
x+2 4y+1
·
9
y+1 x+2 = ,
4
41
2
+
9
当且仅当 x=2y= 时, x+2 y+1 = min .
3
4
【套路总结】 在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数 1”的替换,或构造不等式 求解.
2 的最大值为 .
4
2
1
(2)因为 x<5,所以 5-4x>0,则 f(x)=4x-2+
1
5-4x+
=-
5-4x +3
4
4x-5
1
1
≤-2 (5-4x)· +3=-2+3=1.当且仅当 5-4x= ,即 x=1 时,等号成立.
5-4x
5-4x
1 故 f(x)=4x-2+ 的最大值为 1.
4x-5 x2+2
1
1
【解析】 x(4-3x)= ·(3x)(4-3x)≤ ·
2
2=4,
3
3
3
2021高考数学9.3 基本不等式

不等式
高考第一轮复习 第三节 基本不等式
1高考引航
2必备知识
3关键能力
高考引航
知识清单
必备知识
答案
基础训练
题型归纳题型一 利用基本不等式求最值关键能力
点拨:在利用基本不等式求最值时,必须满足三个条件:
①各项均为正数;②含变数的各项的和(或积)必须是定值;③当含变数的各项均相等时取得最值,即一正、二定、三相等.这三个条件极易忽略而导致解
题型二 基本不等式与其他知识的交汇问题值
答案
解析
点拨:求基本不等式与其他知识交汇的最值问题的类型及策略:
(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.
(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.
答案
解析
题型三 基本不等式的实际应用
解析
点拨:利用基本不等式解决实际应用题的基本思路:①设变量时一般要把求最大值或最小值的变量定义为函数;②根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值;③在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.
解析
方法突破
方法一 利用基本不等式求参数的值或取值范围
答案
解析
方法二 利用基本不等式证明不等式
解析
谢谢观赏。
2021届高考数学核按钮【新高考广东版】2.3 基本不等式

2.3 基本不等式1.如果a >0,b >0,那么 叫做这两个正数的算术平均数. 2.如果a >0,b >0,那么 叫做这两个正数的几何平均数.3.重要不等式:a ,b ∈R ,则a 2+b 2≥ (当且仅当a =b 时取等号).4.基本不等式:a >0,b >0,则 ,当且仅当a =b 时等号成立,即两个正数的算术平均数不小于它们的几何平均数.5.求最小值:a >0,b >0,当ab 为定值时,a+b ,a 2+b 2有 ,即a +b ≥ ,a 2+b 2≥ .简记为:积定和最小. 6.求最大值:a >0,b >0,当a +b 为定值时,ab 有最大值,即 ,亦即 ;或a 2+b 2为定值时,ab 有最大值(a >0,b >0),即 .简记为:和定积最大. 7.拓展:若a >0,b >0时,21a +1b ≤ ≤a +b 2≤ ,当且仅当a =b 时等号成立.自查自纠 1.a +b 2 2.ab 3.2ab 4.a +b 2≥ab 5.最小值 2ab 2ab 6.ab ≤⎝⎛⎭⎫a +b 22 ab ≤14(a +b )2ab ≤a 2+b 22 7.ab a 2+b 221.下列说法正确的是( ) A.a ≥0,b ≥0,则a 2+b 2≥2ab B.函数y =x +1x的最小值是2C.函数f (x )=cos x +4cos x ,x ∈⎝⎛⎭⎫0,π2的最小值等于4D.“x>0且y >0”是“x y +yx≥2”的充分不必要条件解:选项A 中,a =b =0.1时不成立;选项B中,当x =-1时y =-2;选项C 中,x ∈⎝ ⎛⎭⎪⎫0,π2时,0<cos x <1,f (x )=cos x +4cos x无最小值;选项D 中,当x y +y x ≥2时,需x y>0即xy >0,故“x >0且y >0”为充分不必要条件.故选D. 2.(2019·首都师范大学附中模拟)在各项均为正数的等比数列{}a n 中,a 6=3,则a 4+a 8 ( )A.有最小值6B.有最大值6C.有最大值9D.有最小值3解:因为a 6=3,所以a 4a 8=a 26=9,所以a 4+a 8≥2a 4a 8=6,当且仅当a 4=a 8=3时等号成立.故选A. 3.(2019·玉溪一中月考)已知f (x )=x 2-2x +1x ,则f (x )在⎣⎡⎦⎤12,3上的最小值为 ( ) A.12 B.43C.-1D.0 解:因为x ∈⎣⎡⎦⎤12,3,所以f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x,即x =1时取等号.又1∈⎣⎡⎦⎤12,3,所以f (x )在⎣⎡⎦⎤12,3上的最小值为0.故选D. 4.(2019·北京高二期末)当且仅当x =________时,函数y =4x +1x (x >0)取得最小值. 解:由于x >0,由基本不等式可得y =4x +1x ≥24x ·1x =4,当且仅当4x =1x (x >0),即当x =12时,等号成立.故填12.5.(2019·河南高考模拟)若实数x ,y 满足2x +2y =1,则x +y 的最大值是________.解:由题得2x +2y ≥22x ·2y =22x +y (当且仅当x =y =-1时取等号), 所以1≥22x +y ,所以14≥2x +y ,所以2-2≥2x+y ,所以x +y ≤-2. 所以x +y 的最大值为-2.故填-2.类型一 利用基本不等式求最值例1 (1)已知a >0,b >0,且4a +b =1,则ab 的最大值为________.解法一:因为a >0,b >0,4a +b =1,所以1=4a +b ≥24ab =4ab ,当且仅当4a =b =12,即a=18,b =12时,等号成立.所以ab ≤14,ab ≤116,则ab 的最大值为116.解法二:因为4a +b =1,所以ab =14·4a ·b ≤14⎝ ⎛⎭⎪⎫4a +b 22=116,当且仅当4a =b =12,即a =18, b =12时等号成立,所以ab 的最大值为116.故填116. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.解:因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2(5-4x )·15-4x +3=-2+3=1.当且仅当5-4x =15-4x,即x =1时,等号成立.故填1.(3)(2020届山东滨州高三9月期初考试)已知a >0,b >0,且2a +b =ab ,则2a +b 的最小值为________.解:因为a >0,b >0,由2a +b =ab ⇒2b +1a=1,故2a +b =(2a +b )⎝⎛⎭⎫2b +1a =4+4a b +ba≥4+4=8.当且仅当4a b =ba ,即b =2a =4时等号成立.另解:因为a >0,b >0,所以ab =2a +b ≥22ab ,解得ab ≥8,当且仅当2a =b 时等号成立.故填8.点拨 利用基本不等式解决最值的关键是构造和为定值或积为定值,主要有两种思路:①对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:拆项法、变系数法、凑因子法、换元法、整体代换法等.②条件变形,进行“1”的代换求目标函数最值.注意:使用基本不等式求最值,“一正、二定、三相等”三个条件缺一不可.变式1 (1)(2019·济南联考)若a >0,b >0且2a+b =4,则1ab的最小值为 ( )A.2B.12C.4D.14解:因为a >0,b >0,故2a +b ≥22ab (当且仅当2a =b 时取等号).又因为2a +b =4,所以22ab ≤4⇒0<ab ≤2,所以1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立).故选B.(2)设0<x <32,则函数y =4x (3-2x )的最大值为________.解:y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92,当且仅当2x =3-2x ,即x =34时,等号成立.因为34∈⎝⎛⎭⎫0,32,所以函数y =4x (3-2x )⎝⎛⎭⎫0<x <32的最大值为92.故填92. (3)(2019·潍坊调研)函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0上,且m ,n 为正数,则1m +1n 的最小值为________.解:因为曲线y =a 1-x 恒过定点A ,x =1时,y =1,所以A (1,1).将A 点代入直线方程mx +ny -1=0(m >0,n >0),可得m +n =1,所以1m +1n =⎝⎛⎭⎫1m +1n ·(m +n )=2+n m +mn≥2+2n m ·m n =4,当且仅当n m =m n且m +n =1(m >0,n >0),即m =n =12时,取得等号.故填4.类型二 利用基本不等式求参数的值或范围例2 (1)(2019·黑龙江哈尔滨市第六中学期末)若对任意x >0,都有4xx 2+x +1≤a 恒成立,则实数a的取值范围是________.解:因为x >0,所以x +1x≥2(当且仅当x =1时取等号),所以4x x 2+x +1=41x+x +1≤42+1=43,即4x x 2+x +1的最大值为43,即实数a 的取值范围是⎣⎡⎭⎫43,+∞.故填⎣⎡⎭⎫43,+∞.(2)已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.解:因为x >0,a >0,所以f (x )=4x +a x ≥24x ·ax=4a ,当且仅当4x =ax ,即4x 2=a 时,f (x )取得最小值.又因为f (x )在x =3时取得最小值,所以a =4×32=36.故填36.点拨 求解含参不等式的策略:①观察题目特点,利用基本不等式确定相关不等式成立的条件,从而得参数的值或取值范围.②对含参的不等式求范围问题通常采用分离变量,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式的等价命题:a >f (x )恒成立⇔a >f (x )max ;a <f (x )恒成立⇔a <f (x )min ;a >f (x )有解⇔a >f (x )min ;a <f (x )有解⇔a <f (x )max .变式2 (1)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A.2B.4C.6D.8解:因为(x +y )⎝⎛⎭⎫1x +a y =1+ax y +yx +a ≥a +1+2a ,当且仅当ax y =yx时等号成立.要使原不等式恒成立,则只需a +1+2a ≥9恒成立,所以(a -2)(a +4)≥0,解得a ≥4, 所以正实数a 的最小值是4.故选B.(2)(2019·厦门模拟)已知f (x )=32x -(k +1)3x +2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( )A.(-∞,-1)B.(-∞,22-1)C.(-1,22-1)D.(-22-1,22-1) 解:由f (x )>0得32x -(k +1)3x +2>0,解得k +1<3x +23x .又3x +23x ≥22(当且仅当3x =23x ,即x =log 32时,等号成立),所以k +1<22,即k <22-1.故选B.类型三 利用基本不等式解决实际问题例3 (2019·上海高三单元测试)某文化创意公司开发出一种玩具(单位:套)进行生产和销售.根据以往经验,每月生产x 套玩具的成本p 由两部分费用(单位:元)构成:①固定成本(与生产玩具套数x 无关),总计一百万元;②生产所需的直接总成本50x +1100x 2.(1)该公司每月生产玩具多少套时,可使得平均每套所需成本费用最少?此时每套玩具的成本费用是多少?(2)假设每月生产出的玩具能全部售出,但随着x 的增大,生产所需的直接总成本在急剧增加,因此售价也需随着x 的增大而适当增加.设每套玩具的售价为q 元,q =a +xb(a ,b ∈R ).若当产量为15 000套时利润最大,此时每套售价为300元,试求a ,b 的值.(利润=销售收入-成本费用) 解:(1)由题意知,生产成本为p =1 000 000+50x +1100x 2,p x =x 100+1 000 000x +50≥2x 100·1 000 000x +50=250,当且仅当x 100=1 000 000x ,即x =10 000时,取等号.故该公司生产1万套玩具时,使得每套平均所需成本费用最少,此时每套的成本费用为250元.(2)设利润为s ,则s =qx -p =x ⎝⎛⎭⎫a +x b -⎝⎛⎭⎫1 000 000+50x +1100x 2 =⎝⎛⎭⎫1b -1100x 2+(a -50)x -1 000 000,根据题意,有1b -1100<0,a +15 000b =300,且-a -502⎝⎛⎭⎫1b -1100=15 000,解得a =250,b =300.点拨 建立关于x 的函数关系式是解决本题的关键,在运用基本不等式求最小值时,除了“一正,二定,三相等”以外,在最值的求法中,使用基本不等式次数要尽量少,最好是在最后一步使用基本不等式,如果必须使用几次,就需要查看这几次基本不等式等号成立的条件是否有矛盾,有矛盾则应调整解法.变式3 (1)(2019·阜新市高级中学高一月考)某公司一年需要购买某种原材料400吨,计划每次购买x 吨,已知每次的运费为4万元,一年总的库存费用为4x 万元.为了使总运费与总库存费用之和最小,则x 的值是________.解:由题意,总的费用y =400x×4+4x =4⎝⎛⎭⎫400x +x ≥4×2400x ×x =160,当x =20时取“=”.故填20.(2)在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为200 m 2的矩形区域(如图所示),按规划要求:在矩形内的四周安排2 m 宽的绿化,绿化造价为200元/m 2,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/m 2.设矩形的长为x (m),总造价为y (元).(Ⅰ)将y 表示为关于x 的函数; (Ⅱ)当x 取何值时,总造价最低,并求出最低总造价. 解:(Ⅰ)由矩形的长为x ,得矩形的宽为200x , 则中间区域的长为x -4,宽为200x-4,则定义域为(4,50), 则y =100⎣⎡⎦⎤(x -4)⎝⎛⎭⎫200x -4+200[200-(x -4)⎝⎛⎭⎫200x -4], 整理得y =18 400+400⎝⎛⎭⎫x +200x ,x ∈(4,50). (Ⅱ)x +200x ≥2x ·200x=202, 当且仅当x =200x时取等号,即x =102∈(4,50).所以当x =10 2 m 时,总造价最低,且为18 400+8 0002元.1.基本不等式的变式和推广①a 2+b 2≥(a +b )22;②ab ≤a 2+b 22; ③ab ≤14(a +b )2;④⎝⎛⎭⎫a +b 22≤a 2+b 22;⑤(a +b )2≥4ab ;⑥ab ≥21a +1b;⑦a +b +c 3≥3abc ;⑧abc ≤a 3+b 3+c 33,等等.对于以上各式,要明了其成立的条件和取“=”的条件.2.在利用基本不等式求最值时,要注意一正、二定、三相等.“一正”是指使用均值不等式的各项(必要时,还要考虑常数项)必须是正数;“二定”是指含变数的各项的和或积必须是常数;“三相等”是指具备等号成立的条件,使待求式能取到最大或最小值.3.基本不等式的应用在于“定和求积,定积求和;和定积最大,积定和最小”,必要时可以通过变形(拆补)、配凑、常数代换、运算(指数、对数运算、平方等)构造“和”或者“积”,使之为定值.4.求1a +1b型最值问题,常通过“1”来进行转化,但不是所有的最值都可以通过基本不等式解决,有一些看似可以通过基本不等式解决的问题,由于条件的限制,等号不能够成立,这时就不能用基本不等式来解决,而要借助于其他求值域的方法来解决. 5.基本不等式除具有求最值的功能外,还具有将“和式”转化为“积式”以及将“积式”转化为“和式”的放缩功能,常用于比较数(式)的大小或证明不等式,解决问题的关键是抓住不等式两边的结构特征,找准利用基本不等式的切入点.1.(2019·孝感调研)“a >b >0”是“ab <a 2+b 22”的 ( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解:由a >b >0,可知a 2+b 2>2ab ,充分性成立,由ab <a 2+b 22,可知a ≠b ,a ,b ∈R ,故必要性不成立.故选A.2.(2018·北京高三期中)某人从甲地到乙地往返的速度分别为a 和b (0<a <b ),其全程的平均速度为v ,则 ( )A.v =a +b 2 B. v =ab C.a < v <ab D.ab < v <a +b 2 解:设从甲地到乙地距离为s ,往返的时间分别为t 1=s a ,t 2=sb(a <b ),其全程的平均速度为v =2s t 1+t 2=2s s a +s b =21a +1b<ab ,因为0<a <b ,所以1a >1b ,1a +1b <2a ,v >22a =a ,所以a < v <ab.故选C.3.(2019·河北高三月考)已知函数f (x )=log 2(x 2+1-x ),若对任意的正数a ,b 满足f (a )+f (3b -1)=0,则3a +1b的最小值为 ( )A.6B.8C.12D.24解:因为x 2+1-x >x 2-x ≥x -x =0,所以定义域为R ,因为f (-x )=log 2(x 2+1+x ),所以f (x )=-f (-x ),则f (x )为奇函数.又x >0时,f (x )=log 21x 2+1+x单调递减,f (0)=0,f (x )为奇函数,所以f (x )为减函数,因为f (a )+f (3b -1)=0,所以f (a )=-f (3b -1)=f (1-3b ),则a =1-3b ,即a +3b =1,所以3a +1b =⎝⎛⎭⎫3a +1b (a +3b )=9b a +ab+6, 因为9b a +a b ≥29b a ×a b =6,所以3a +1b≥12⎝⎛⎭⎫当且仅当a =12,b =16时,等号成立. 故选C.4.(2019·江苏省如皋中学高一月考)0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是 ( )A.a 1b 1+a 2b 2B.a 1a 2+b 1b 2C.a 1b 2+a 2b 1D.12解:因为0<a 1<a 2,0<b 1<b 2,a 1+a 2=b 1+b 2=1,所以a 1a 2+b 1b 2<⎝⎛⎭⎪⎫a 1+a 222+⎝ ⎛⎭⎪⎫b 1+b 222=12,又a 1b 1+a 2b 2-(a 1b 2+a 2b 1)=(a 1-a 2)b 1-(a 1-a 2)b 2=(a 2-a 1)(b 2-b 1)>0,所以a 1b 1+a 2b 2>a 1b 2+a 2b 1,而1=(a 1+a 2)(b 1+b 2)=a 1b 1+a 2b 2+a 1b 2+a 2b 1<2(a 1b 1+a 2b 2),故a 1b 1+a 2b 2>12.综上可得a 1b 1+a 2b 2最大.故选A.5.(2019·衡水中学质检)正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是 ( )A.[3,+∞)B.(-∞,3]C.(-∞,6]D.[6,+∞)解:因为a >0,b >0,1a +9b=1,所以a +b =(a +b )⎝⎛⎭⎫1a +9b =10+b a +9ab≥10+2b a ·9a b =16,当且仅当b a =9ab ,即a =4,b =12时取等号.依题意,16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立.又x 2-4x -2=(x -2)2-6≥-6,所以-6≥-m ,即m ≥6.故选D.6.(2019·宜春昌黎实验学校高一月考)关于x 的方程9x +(a -2)3x +4=0有解,则实数a 的取值范围是 ( )A.(-2,+∞)B.(-∞,-4)C.(-∞,-2]D.[-4,+∞)解:因为9x +(a -2)3x +4=0,所以(a -2)3x =-(9x +4),所以a -2=-9x +43x =-⎝⎛⎭⎫3x +43x ≤-4(当且仅当3x =43x ,即x =log 32时,等号成立),故a ≤-2,实数a 的取值范围是(-∞,-2].故选C.7.(2019·湖南师大附中模拟)已知△ABC 的面积为m ,内切圆半径也为m ,若△ABC 的三边长分别为a ,b ,c ,则4a +b+a +b c 的最小值为 ( )A.2B.2+2C.4D.2+22 解:因为△ABC 的面积为m ,内切圆半径也为m ,所以12(a +b +c )×m =m ,所以a +b +c =2,所以4a +b +a +b c =2(a +b +c )a +b+a +b c =2+2c a +b+a +b c ≥2+22,当且仅当a +b =2c ,即c =22-2时,等号成立,所以4a +b +a +b c 的最小值为2+22.故选D.8.【多选题】(2019·海南东方市民族中学高一期中)已知a ,b 均为正实数,则下列不等式不一定成立的是 ( )A.a +b +1ab ≥3 B.(a +b )⎝⎛⎭⎫1a +1b ≥4 C.a 2+b 2ab ≥a +b D.2ab a +b≥ab解:对于A ,a +b +1ab ≥2ab +1ab≥22<3,当且仅当a =b =22时取等号; 对于B ,(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·b a=4,当且仅当a =b 时取等号;对于C ,a 2+b 2ab ≥(a +b )22ab ≥(a +b )2a +b=a +b ,当且仅当a =b 时取等号;对于D ,当a =12,b =13时,2aba +b =1356=215, ab =16,16>215, 此时2ab a +b <ab.当a =b =1时,22≥1成立.综上知,选项A ,D 中的不等式不一定成立.故选AD.9.(2019·河南八校测评)已知等差数列{a n }中,a 3=7,a 9=19,S n 为数列{a n }的前n 项和,则S n +10a n +1的最小值为________.解:因为a 3=7,a 9=19, 所以d =a 9-a 39-3=19-76=2,所以a n =a 3+(n -3)d =7+2(n -3)=2n +1, 所以S n =n (3+2n +1)2=n (n +2),因此S n +10a n +1=n (n +2)+102n +2=12⎣⎢⎡⎦⎥⎤(n +1)+9n +1≥12×2(n +1)×9n +1=3,当且仅当n =2时取等号.故S n +10a n +1的最小值为3.故填3.10.(2019·上海模拟)设x ,y 均为正实数,且32+x+32+y=1,则xy 的最小值为________. 解:32+x +32+y =1可化为xy =8+x +y ,因为x ,y 均为正实数,所以xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16.故填16.11.已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值;(2)求1x +25y 的最小值.解:(1)因为x >0,y >0,所以由基本不等式,得2x +5y ≥210xy.因为2x +5y =20,所以210xy≤20,xy ≤10,当且仅当⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,即⎩⎪⎨⎪⎧x =5,y =2时,等号成立.此时xy 有最大值10.所以u =lg x +lg y =lg(xy )≤lg10=1.则当x =5,y =2时,u =lg x +lg y 有最大值1. (2)因为x >0,y >0,所以1x +25y =⎝⎛⎭⎫1x +25y ·2x +5y20=120⎝⎛⎭⎫4+5y x +4x 5y ≥120⎝⎛⎭⎫4+25y x ·4x 5y =25,当且仅当⎩⎪⎨⎪⎧2x +5y =20,5y x =4x 5y,即⎩⎪⎨⎪⎧x =5,y =2时,等号成立.所以1x +25y 的最小值为25.12.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0,则1=8x +2y≥28x ·2y =8xy,得xy ≥64, 当且仅当x =4y ,即x =16,y =4时等号成立.(2)解法一:由2x +8y -xy =0,得x =8yy -2,因为x >0,所以y >2,则x +y =y +8y y -2=(y -2)+16y -2+10≥18,当且仅当y -2=16y -2,即y =6,x =12时等号成立.解法二:由2x +8y -xy =0,得8x +2y=1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y )=10+2x y +8yx≥10+22x y ·8y x=18,当且仅当y =6,x =12时等号成立.13.(2019·西安模拟)某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:①年平均利润最大时,以46万元出售该工作室;②纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案?解:(1)设n 年获取纯利润为y 万元. n 年付出的装修费构成一个首项为1,公差为2的等差数列,n 年付出的装修费之和为n ×1+n (n -1)2×2=n 2,又投资81万元,n 年共收入租金30n 万元,所以利润y =30n -n 2-81(n ∈N *).令y >0,即30n -n 2-81>0,所以n 2-30n +81<0, 解得3<n <27(n ∈N *),所以从第4年开始获取纯利润.(2)方案①:年平均利润t =30n -81-n 2n=30-81n -n =30-⎝⎛⎭⎫81n +n ≤30-281n·n =12(当且仅当81n=n ,即n =9时取等号), 所以年平均利润最大时,以46万元出售该工作室共获利润12×9+46=154(万元).方案②:纯利润总和y =30n -n 2-81=-(n -15)2+144(n ∈N *),当n =15时,纯利润总和最大,为144万元, 所以纯利润总和最大时,以10万元出售该工作室共获利润144+10=154(万元),两种方案盈利相同,但方案①时间比较短,所以应选择方案①.附加题 (宁夏石嘴山市第三中学2019届高三四模)点M (x ,y )在曲线C :x 2-4x +y 2-21=0上运动,t =x 2+y 2+12x -12y -150-a ,且t 的最大值为b ,若a ,b ∈R +,则1a +1+1b的最小值为________.解:曲线C 可整理为:(x -2)2+y 2=25, 则曲线C 表示圆心为(2,0),半径为5的圆, t =x 2+y 2+12x -12y -150-a =(x +6)2+(y -6)2-222-a ,设d =(x +6)2+(y -6)2,则d 表示圆C 上的点到(-6,6)的距离,则d max =(2+6)2+(0-6)2+5=15,所以t max =152-222-a =b ,整理得,a +1+b=4.所以1a +1+1b =14⎝ ⎛⎭⎪⎫1a +1+1b [(a +1)+b ]=14×⎝ ⎛⎭⎪⎫1+ba +1+a +1b +1. 又b a +1+a +1b ≥2b a +1·a +1b=2(当且仅当b a +1=a +1b ,即a =1,b =2时取等号).所以1a +1+1b ≥14×4=1,即1a +1+1b 的最小值为1.故填1.。
高中数学基本不等式知识点及练习题

高中数学基本不等式知识点及练习题1.基本不等式:对于任意正实数a和b,有ab≤(a+b)/2.2.几个重要的不等式:1) 平方差公式:对于任意实数a和b,有(a-b)^2≥0,即a^2+b^2≥2ab.2) 两个同号数的平方和大于它们的积:对于任意正实数a 和b,有a^2+b^2≥2ab.3) 两个异号数的平方和小于它们的积:对于任意实数a和b,如果ab<0,则a^2+b^2<2ab.4) 平均值不等式:对于任意正实数a和b,有(a+b)/2≥√(ab).3.算术平均数与几何平均数:对于任意正实数a和b,它们的算术平均数为(a+b)/2,几何平均数为√(ab)。
基本不等式可以叙述为两个正数的算术平均数大于或等于它们的几何平均数.4.利用基本不等式求最值问题:1) 如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.2) 如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p^2/4.一个技巧:在运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a^2+b^2≥2ab逆用就是ab≤(a^2+b^2)/(a+b)^2;还要注意“添、拆项”等技巧和公式等号成立的条件等.两个变形:1) a^2+b^2≥(a+b)^2/2≥ab(a>0,b>0,当且仅当a=b时取等号).2) a^2+b^2≥2ab(a,b∈R,当且仅当a=b时取等号).三个注意:1) 使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视。
要利用基本不等式求最值,这三个条件缺一不可.2) 在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.3) 连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值:例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.解题技巧:技巧一:凑项.例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.技巧二:凑系数.例1.当x^2+7x+10/(x+1)的值域.技巧三:分离.例3.求y=x(8-2x)的最大值,当y<4时。
高考数学复习专题 基本不等式

高考数学复习专题基本不等式全国名校高考数学复优质学案、专题汇编(附详解)高考数学复专题:基本不等式一、基本不等式1.基本不等式:对于任意非负实数 $a$ 和 $b$,有 $a+b \geq 2\sqrt{ab}$,等号成立当且仅当 $a=b$。
2.算术平均数与几何平均数:设 $a>0$,$b>0$,则$a$ 和 $b$ 的算术平均数不小于它们的几何平均数。
3.利用基本不等式求最值问题:1)如果积 $xy$ 是定值 $P$,那么当且仅当 $x=y$ 时,$x+y$ 有最小值 $2\sqrt{P}$。
2)如果和 $x+y$ 是定值 $P$,那么当且仅当 $x=y$ 时,$xy$ 有最大值 $\frac{P}{4}$。
4.常用结论:1)$a+b \geq 2ab$($a$,$b$ 为任意实数)。
2)$\frac{b^2}{a}+\frac{a^2}{b} \geq 2(a+b)$($a$,$b$ 为同号实数)。
3)$ab \leq \frac{a^2+b^2}{2} \leq (\frac{a+b}{2})^2$($a$,$b$ 为任意实数)。
4)$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq\frac{3}{2}$($a$,$b$,$c$ 为正实数)。
5)$2(a+b) \geq \sqrt{2}(a+b)$($a$,$b$ 为任意实数)。
6)$\frac{a^2+b^2}{a+b} \geq \frac{a+b}{2}$($a$,$b$ 为任意实数)。
7)$a^2+b^2 \geq ab$($a>0$,$b>0$)。
二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等。
题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解。
2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及 $y=ax+b$($a>0$,$b>0$)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:因为x+y=18,所以 xy≤x+2 y=9,当且仅当x=y=9
时,等号成立.
答案:A
返回
2.(必修5P100练习T1改编)设a>0,则9a+1a的最小值为
()
A.4
B.5
C.6
D.7
解析:因为a>0,所以9a+1a≥2 9a×1a =6,当且仅当9a
=1a,即a=13时,9a+1a取得最小值6.故选C.
=(x-1)+x-3 1+2≥2 3+2.
当且仅当 x-1=x-3 1,即 x= 3+1 时,取等号.
[答案]
2 (1)3
(2)1
(3)2 3+2
返回
[解题技法] 通过拼凑法利用基本不等式求最值的实质及关键点 拼凑法就是将相关代数式进行适当的变形,通过添项、拆 项等方法凑成和为定值或积为定值的形式,然后利用基本不等 式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系 数、凑常数是关键.
[解析] 由a>b>0,得a-b>0,
∴b(a-b)≤b+2a-b2=a42.
∴a2+ba1-b≥a2+a42≥2
a2·a42=4,
当且仅当b=a-b且a2=a42,即a= 2,b= 22时取等号.
∴a2+ba1-b的最小值为4.
[答案] 4
返回
[解题技法] 两次利用基本不等式求最值的注意点 当连续多次使用基本不等式时,一定要注意每次是 否能保证等号成立,并且注意取等号的条件的一致性.
润最大,最大利润为1 000万元.
返回
[解题技法] 有关函数最值的实际问题的解题技巧 (1)根据实际问题抽象出函数的解析式,再利用基本不等 式求得函数的最值. (2)解应用题时,一定要注意变量的实际意义及其取值范围. (3)在应用基本不等式求函数最值时,若等号取不到,可 利用函数的单调性求解.
返回
(2)把确定的定值(常数)变形为1; (3)把“1”的表达式与所求最值的表达式相乘或相除, 进而构造和或积为定值的形式; (4)利用基本不等式求解最值.
返回
考向(三) 消元法——利用基本不等式求最值 [例3] 已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为
________.
[解析] 法一:(换元消元法)由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy, 所以 3xy≤x+23y2,当且仅当 x=3y,即 x=3,y=1 时取等号, 即(x+3y)2+12(x+3y)-108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
返回
2. 变设问 保持本例条件不变,则 1+1a 1+1b 的最小值为 ________.
解析:1+1a1+1b=1+a+a b1+a+b b =2+ba2+ab=5+2ba+ab≥5+4=9.当且仅当 a=b=12 时,取等号.
答案:9
返回
[解题技法] 通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数);
[对点变式]
1.变条件将条件“a+b=1”改为“a+2b=3”,则1a+1b的最
小值为________.
解析:因为a+2b=3,所以13a+23b=1.
所以1a+1b=1a+1b13a+23b
=13+23+3ab+23ba≥1+2
a 2b 3b·3a
=1+232.当且仅当a= 2b时,取等号.
答案:1+2 3 2
返回
[跟踪训练]
1.若对于任意的x>0,不等式
x x2+3x+1
≤a恒成立,则实数a
的取值范围为
()
A.a≥15
B.a>15
C.a<15
D.a≤15
返回
解析:由x>0,得
x x2+3x+1
=
1 x+1x+3
≤
2
1 x·1x+3
=
1 5
,当
且仅当x=1时,等号成立.则a≥15,故选A.
答案:A
2.(2019·天津高考)设x>0,y>0,x+2y=5,则
a+b 2
,几何平均数为
ab ,基本不等式可叙述为:两个正数的算术平均数不小于
它们的几何平均数.
返回
3.利用基本不等式求最值问题
已知 x>0,y>0,则
(1)如果 xy 是定值 p,那么当且仅当 x=y 时,x+y 有最小值
是 2 p (简记:积定和最小).
(2)如果 x+y 是定值 q,那么当且仅当 x=y 时,xy 有最大值
返回
[解题技法] 通过消元法利用基本不等式求最值的策略 当所求最值的代数式中的变量比较多时,通常是考虑利用已 知条件消去部分变量后,凑出“和为常数”或“积为常数”,最 后利用基本不等式求最值.
返回
考向(四) 利用两次基本不等式求最值
[例4] 已知a>b>0,那么a2+ba1-b的最小值为________.
是
q2 4
(简记:和定积最大).
和定积最大,积定和最小:两个正数的和为定值时,则 可求其积的最大值;积为定值时,可求其和的最小值.
返回
[常用结论]
1.基本不等式的两种常用变形形式
(1)ab≤a+2 b2(a,b∈R ,当且仅当a=b时取等号).
(2)a+b≥2 ab(a>0,b>0,当且仅当a=b时取等号).
返回
此时,当x=60时,L(x)取得最大值L(60)=950万元.
当x≥80时,L(x)=1
200-
x+10
000
x
≤1
200-2
10 x·
x000=1
200-200=1
000.
此时x=10 x000,即x=100时,L(x)取得最大值1 000万元.
由于950<1 000,
所以当年产量为100千件时,该厂在这一商品生产中所获利
返回
法二:(代入消元法)由x+3y+xy=9, 得x=91-+3yy, 所以x+3y=91-+3yy+3y=9-3y+1+3yy1+y =91++3yy2=31+y2-1+61y +y+12 =3(1+y)+11+2y-6≥2 31+y·11+2y-6 =12-6=6.即x+3y的最小值为6. [答案] 6
返回
3.(2019·河南许昌、洛阳第三次质量检测)已知 x>0,y>0,
且1x+2y=1,则 xy+x+y 的最小值为________. 解析:因为1x+2y=1,所以 xy=y+2x,xy+x+y=3x+2y=
(3x
+
2y)· 1x+2y
=
7
+
2y x
+
6x y
≥7
+
4
3
当且仅当y= 3x,即x=1+233,y=2+ 3时取等号, 所以 xy+x+y 的最小值为 7+4 3.
13x2+10x
-250=-
1 3
x2
+40x-250.
当x≥80时,L(x)=(0.05×1
000x)-51x+10
x000-1
450-250
=1
200-x+10
000
x
.
所以L(x)=- 1 2130x02-+4x0+x-102x05000,,0<xx≥<8800,.
(2)当0<x<80时,L(x)=-13(x-60)2+950.
商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利
润最大?
返回
[解] (1)因为每件商品售价为0.05万元,则x千件商品销售额
为0.05×1 000x万元,依题意得:
当0<x<80时,L(x)=(0.05×1
000x)-
返回
考向(二) 常数代换法——利用基本不等式求最值
[例 2] 已知 a>0,b>0,a+b=1,则1a+1b的最小值为________.
[解析] 因为a+b=1,
所以
1 a
+
1 b
=
1a+1b
(a+b)=2+
ba+ab
≥2+2
=4.当且仅当a=b=12时,取等号.
ba a·b
=2+2
[答案] 4
返回
答案:C
返回
二、走出误区 常见误区:①忽视不等式成立的条件a>0且b>0致误;②忽 视定值存在致误;③忽视等号成立的条件致误.
返回
3.(多选)下列选项错误的是
()
A.两个不等式 a2+b2≥2ab 与a+2 b≥ ab成立的条件是
相同的
B.函数 y=x+1x的最小值是 2
C.函数 f(x)=sin x+sin4 x的最小值为 4
2.几个重要的结论
(1)a2+2 b2≥a+2 b2. (2)ba+ab≥2(ab>0).
(3) ab≤a+2 b≤
a2+2 b2(a>0,b>0).
返回
[基础自测]
一、走进教材
1.(必修5P99例1(2)改编)若x>0,y>0,且x+y=18,则 xy 的最大
值为
()
A.9
B.18
C.36
D.81
________.
(2)已知 x<54,则 f(x)=4x-2+4x1-5的最大值为________.
(3)函数 y=xx2-+12(x>1)的最小值为________.
[解析]
(1)x(4-3x)=
1 3
×(3x)·(4-3x)≤