高中数学讲义 均值不等式

合集下载

均值不等式讲义

均值不等式讲义

均值不等式均值不等式又名基本不等式、均值定理、重要不等式。

是求范围问题最有利的工具之一,在形式上均值不等式比较简单,但是其变化多样、使用灵活。

尤其要注意它的使用条件(正、定、等)。

1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3. 均值不等式链:若b a 、都是正数,则2211222b a b a ab b a +≤+≤≤+,当且仅当b a =时等号成立。

(注:以上四个式子分别为:调和平均数、几何平均数、代数平均数、加权(平方)平均数)一、 基本技巧技巧1:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

技巧2:分离配凑例 求2710(1)1x x y x x ++=>-+的值域。

技巧3:利用函数单调性例 求函数2y =的值域。

技巧4:整体代换例 已知0,0x y >>,且191x y +=,求x y +的最小值。

典型例题1. 若正实数X ,Y 满足2X+Y+6=XY , 则XY 的最小值是2. 已知x >0,y >0,x,a,b,y 成等差数列,x,c,d,y 成等比数列,则()cdb a 2+的最小值是( )A.0B.1C.2D. 43. 若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围为( )A.[)+∞,0B.[)+∞-,4C.[)+∞-,5D.[]4,4-4. 若直线2ax+by-2=0 (a,b ∈R +)平分圆x 2+y 2-2x-4y-6=0,则a 2+b1的最小值是( )A.1B.5C.42D.3+225. 已知x>0,y>0,x+2y+3xy=8,则x+2y 的最小值是 .6. 已知,x y R +∈,且满足134xy +=,则xy 的最大值为 .7. 设0,0.a b >>1133a b a b+与的等比中项,则的最小值为( ) A 8 B 4 C 1 D 148. 若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是 ( ) A. 245 B. 285C.5D.6 9. 若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是 (写出所有正确命题的编号).①1ab ≤; ≤ ③ 222a b +≥; ④333a b +≥;⑤112a b+≥ 10.设0a >b >,则()211a ab a a b ++-的最小值是( ) (A )1 (B )2 (C )3 (D )411.下列命题中正确的是A 、1y xx=+的最小值是2 B 、2y =的最小值是2C 、423(0)y x x x =-->的最大值是2-D 、423(0)y x x x =-->的最小值是2-12. 若21x y +=,则24x y +的最小值是______。

高中数学均值不等式

高中数学均值不等式

(一) 知识内容1.均值定理:如果,a b +∈R (+R 表示正实数),那么2a bab +≥,当且仅当a b =时,有等号成立. 此结论又称均值不等式或基本不等式.2.对于任意两个实数,a b ,2a b+叫做,a b 的算术平均值,ab 叫做,a b 的几何平均值. 均值定理可以表述为:两个正实数的算术平均值大于或等于它的几何平均值.3.两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.<教师备案>1.在利用均值定理求某些函数的最值时,要注意以下几点:⑴函数式中的各项必须都是正数,在异号时不能运用均值不等式,在同负时可以先进行 转化,再运用均值不等式;⑵函数式中含变数的各项的和或积必须是常数;⑶只有具备了不等式中等号成立的条件,才能使函数式取到最大或最小值.否则不能由 均值不等式求最值,只能用函数的单调性求最值. 运用均值不等式的前提有口诀:一正二定三相等. 2.均值不等式的几何解释:半径不小于半弦.⑴对于任意正实数,a b ,作线段AB a b =+,使,AD a DB b ==;⑵以AB 为直径作半圆O ,并过D 点作CD AB ⊥于D , 且交半圆于点C ;⑶连结,,AC BC OC ,则2a bOC +=,∵,AC BC CD AB ⊥⊥ ∴CD AD BD ab =⋅=, 当a b ≠时,在Rt COD ∆中,有2a bOC CD ab +=>=.当且仅当a b =时,,O D 两点重合,有2a bOC CD ab +===. 3.已知:a b +∈R 、(其中+R 表示正实数),有以下不等式:22221122a b a b a b ab a b ⎛⎫+++ ⎪ ⎪⎝⎭+≥≥≥≥ 其中222a b +称为平方平均数,2a b+称为算术平均数,ab 称为几何平均数,211a b+称为调和平均数.CO DBA均值不等式证明:()2221024a b a b +⎛⎫-=- ⎪⎝⎭≥∴222a b +⎛⎫ ⎪⎝⎭≥ ∵a b +∈R 、,2a b+,当且仅当“a b =”时等号成立.221024a b +-=⎝⎭≥ ∴22a b +⎝⎭≥,当且仅当“a b =”时等号成立.∵22104⎝⎭≥ ∴2⎝⎭,当且仅当“a b =”时等号成立. 2211ab a ba b=++=211a b+,当且仅当“a b =”时等号成立.了解这组不等式对解决一些不等式的证明题会有帮助,可选择性介绍.(三)典例分析:1.基础不等式【例1】 1.“0a b >,且a b ≠”是“222a b ab +<”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件2. 0a ≥,0b ≥,且2a b +=,则( )A .12ab ≤B .12ab ≥ C .222a b +≥ D .223a b +≤【变式】 设a b c ,,是互不相等的正数,则下列等式中不恒成立....的是( ) A .||||||a b a c b c --+-≤ B .2211a a a a++≥ 1【例2】 设a 、b 为非零实数,若a b <,则下列各式成立的是( )A .22a b <B .22ab a b <C .2211ab a b <D .b aa b<【变式】 若110a b <<,则下列不等式①a b ab +<②||||a b >③a b <④2b aa b +>中,正确的不等式有( )A .1个B .2个C .3个D .4个【变式】 设a 、b 、c 、d 、m 、n 均为正实数,P Q =,那么( )A .P Q ≥B .P Q ≤C .P Q <D .P 、Q 间大小关系不确定,而与m 、n 的大小有关【变式】 若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥【例3】 设实数a 、b 满足0a b <<,且1a b +=,则下列四数中最大的是( )A .12B .22a b +C .2abD .a【例4】 正实数a 、b 、c 满足a d b c +=+,a d b c -<-,则( )A .ad bc =B .ad bc <C .ad bc >D .ad 与bc 大小不定【例5】 已知a b c >>2a c-的大小关系是________.【例6】 已知实数x 、y 、z 满足条件0x y z ++=,0xyz >,设111T x y z=++,则( ) A .0T >B .0T =C .0T <D .以上都可能【例7】 若10a b >>>,以下不等式恒成立的是( )A .12a b+> B .12b a+> C .1lg 2a b b + D .1lg 2b a a +2.不等式最值问题【例8】 若0x >,则423x x++的最小值是_________.【例9】 设a 、b ∈R ,则3a b +=,则22a b +的最小值是_________.【例10】 若a 、b +∈R ,且1a b +=,则ab 的最大值是_________.【例11】 已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意正实数x y ,恒成立,则正实数a 的最小值为( )A .8B .6C .4D .2【例12】 当___x =时,函数22(2)y x x =-有最 值,其值是 .【例13】 正数a 、b 满足9a b=,则1a b +的最小值是______.【例14】 若x 、*y ∈R 且41x y +=,则x y ⋅的最大值是_____________.【变式】 设0,0x y ≥≥,2212y x +=,则_________.【变式】 已知0x >,0y >,1x y +=,则1111x y ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的最小值为【例15】 设0a b >>,那么21()a b a b +-的最小值为( )A .2B .3C .4D .5【变式】 设221x y +=,则()()11xy xy -+的最大值是 最小值是 .【变式】 已知()23200x y x y+=>>,,则xy 的最小值是 .【例16】 已知2222,,x y a m n b +=+=其中,,,0x y m n >,且a b ≠,求mx ny +的最大值.【变式】 0,0,4,a b a b >>+=求2211a b a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值.【例17】 设x ,y ,z 为正实数,满足230x y z -+=,则2y xz的最小值是 .【例18】 ⑴已知x 、y +∈R ,且2520x y +=,当x =______,y =_____时,xy 有最大值为_______.⑵若a 、b +∈R ,且1a b +=,则ab 的最大值是_______,此时____,_____.a b ==3.均值与函数最值【例19】 求函数2y =的最小值.【例20】 求函数y =.【例21】 求函数2211()1f x x x x x =++++的最小值.【例22】 已知3x ≥,求4y x x=+的最小值.【变式】 求函数2y =【点评】 当a 、b 为常数,且ab 为定值,a b ≠时,2a b+>般方法是通过函数的单调性求最值或者通过恒等变形a b +求出a b -之差的最内能取到对应的值,所以这里需要讨论,可以看出,这种讨论很繁琐晦涩,一般不用.【变式】 函数()992(33)x x x x f x --=+-+的最小值为( )A .1B .2C .3-D .2-【例23】 ⑴求函数2241y x x =++的最小值,并求出取得最小值时的x 值.⑵求y =的最大值.【变式】 ⑴求函数211ax x y x ++=+(1x >-且0a >)的最小值.⑵求函数312y x x=--的取值范围.【点评】 第⑴题在解答过程中如果选用判别式法往往会陷入困境:由21yx y ax x +=++得:2(1)10ax y x y +-+-=,2(42)140y a y a ∆=+-+-≥,且要满足有大于1-的解,下面的讨论与求解过程十分复杂,故这里用判别式法不合适.【例24】 ⑴求函数22(2)y x x =-的最大值.⑵求2y =的最小值.⑶求函数2y =的最值.【例25】 ⑴已知54x <,求函数11454y x x =-+-的最小值.⑵求函数312y x x=--的取值范围.⑶求函数22(2)y x x =-的最大值.【变式】 ⑴已知,a b 是正常数,a b ≠,(0),,x y ∈+∞,求证:222()≥a b a b x y x y+++,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x =+-(1(0)2,x ∈)的最小值,指出取最小值时x 的值.【变式】 分别求2213()32(0)g x x x x x x =-++->和2213()32(0)f x x x x x x=+++->的最小值.【例26】 ⑴求函数422331x x y x ++=+的最小值. ⑵解不等式:21log (6)2x x x --->.【例27】 函数()f x =的最大值为( )A .25B .12C D .1【例28】 设函数1()21(0)f x x x x=+-<,则()f x ( ) A .有最大值B .有最小值C .是增函数D .是减函数【变式】 设222()S x y x y =+-+,其中x ,y 满足22log log 1x y +=,则S 的最小值为_________.【例29】 设00,a b >>3a 与3b 的等比中项,则11a b+的最小值为( ) A .8 B .4 C .1 D .14【例30】 若121200a a b b <<<<,,且12121a a b b +=+=,则下列代数式中值最大的是( ) A .1122a b a b + B .1212a a b b + C .1221a b a b + D .12【点评】 排序不等式知识:定义:设a a a ≤≤≤,b b b ≤≤≤为两组实数,c c c ,,为b b b ,,的任一称1211n n n a b a b a b -++为两个实数组的反序积之和(简称反序和)。

均值不等式知识点

均值不等式知识点

均值不等式知识点均值不等式是高等数学中的一种重要的数学不等式,其在解决各类数学问题中起到了重要的作用。

本文将通过逐步思考的方式,详细介绍均值不等式的相关知识点。

1.均值不等式的基本概念均值不等式是指对于一组实数,其算术平均数大于等于几何平均数,即若有n个正实数x1、x2、……、xn,则它们的算术平均数A≥它们的几何平均数G。

这一不等式可表示为:(x1 + x2 + …… + xn)/ n ≥ (x1 * x2 * …… * xn) ^ (1/n)2.均值不等式的证明为了证明均值不等式,可以使用数学归纳法或其他数学方法。

下面以数学归纳法为例,来证明均值不等式。

首先,当n=2时,我们有:(x1 + x2)/ 2 ≥ √(x1 * x2) 化简可得:x1 + x2 ≥2√(x1 * x2) 这是一种常见的数学不等式,称为算术平均数和几何平均数之间的不等式。

接下来,假设当n=k时,均值不等式成立。

即对于任意的k个正实数x1、x2、……、xk,有:(x1 + x2 + …… + xk)/ k ≥ (x1 * x2 * …… * xk) ^ (1/k)然后,我们来证明当n=k+1时,均值不等式也成立。

即对于任意的k+1个正实数x1、x2、……、xk+1,有:(x1 + x2 + …… + xk + xk+1)/ (k+1) ≥ (x1 * x2* …… * xk * xk+1) ^ (1/(k+1))我们可以将左边的式子进行拆分,得到:[(x1 + x2 + …… + xk) + xk+1] / (k+1)≥ [(x1 * x2 * …… * xk) * xk+1] ^ (1/(k+1))根据不等式的性质,我们有:(x1 + x2 + …… + xk) / k ≥ (x1 * x2 * …… * xk) ^(1/k) 即:[(x1 + x2 + …… + xk) / k] * k ≥ [(x1 * x2 * …… * xk) ^ (1/k)] * k将上式代入前面的不等式,得到:[(x1 + x2 + …… + xk) + xk+1] / (k+1) ≥ [(x1 *x2 * …… * xk) * xk+1] ^ (1/(k+1))这样,我们证明了当n=k+1时,均值不等式也成立。

高中数学公式(均值不等式)

高中数学公式(均值不等式)

高中数学公式(均值不等式)高中数学公式(均值不等式)公式的数学本质是用简洁的语言准确地描述数学问题。

在高中数学中,均值不等式是一个重要而又常用的工具。

它可以帮助我们证明和解决各种数学问题。

本文将介绍均值不等式的定义、性质和应用。

一、均值不等式的定义均值不等式是数学中一类重要的不等式。

它表述了若干个数的某种“平均值”与这些数之间的大小关系。

常见的均值不等式有算术平均不等式、几何平均不等式和平方平均不等式。

1. 算术平均不等式算术平均不等式是指若干个正数的算术平均值不小于它们的几何平均值。

设有n个正数x₁、x₂、...、xₙ,它们的算术平均值为AM,几何平均值为GM,则有AM ≥ GM。

2. 几何平均不等式几何平均不等式是指若干个正数的几何平均值不大于它们的算术平均值。

设有n个正数x₁、x₂、...、xₙ,它们的算术平均值为AM,几何平均值为GM,则有GM ≤ AM。

3. 平方平均不等式平方平均不等式是指若干个正数的平方平均值不小于它们的算术平均值。

设有n个正数x₁、x₂、...、xₙ,它们的算术平均值为AM,平方平均值为QM,则有QM ≥ AM。

二、均值不等式的性质均值不等式有一些基本性质可以帮助我们进行各种推导。

1. 对称性均值不等式具有对称性,即对数x₁、x₂、...、xₙ的排列顺序不影响不等式的成立。

例如,若AM ≥ GM成立,则交换任意两个数的位置,不等式仍然成立。

2. 反序性均值不等式具有反序性,即改变不等式中的不等号方向,不等式仍然成立。

例如,若AM ≥ GM成立,则取倒数得到1/AM ≤ 1/GM,不等式仍然成立。

3. 结合性均值不等式具有结合性,即若AM₁ ≥ GM₁和AM₂ ≥ GM₂成立,则有AM₁ * AM₂ ≥ GM₁ * GM₂。

这一性质可以帮助我们将不等式进行合并和推导。

三、均值不等式的应用均值不等式具有广泛的应用场景,涉及各个数学领域。

1. 不等式证明均值不等式可以用于证明其他的数学不等式。

高中数学专题讲义-均值不等式的应用

高中数学专题讲义-均值不等式的应用

【例1】 若0x >,则4y x x=+的最小值是___________.【例2】 设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是( ) A .2 B .4 C .25 D .5【例3】 若,,A B C 为ABC △的三个内角,则41A B C++的最小值为 .典例分析均值不等式的应用【例4】 设0,0,24a b a b ab >>++=,则( )A .a b +有最大值8B .a b +有最小值8C .ab 有最大值8D .ab 有最小值8【例5】 已知:a b +∈R 、(其中+R 表示正实数),求证:22222()2113()2a b a ab b a b a b a b a b+++++++≥.【例6】 设,,0a b c >,求证:3333a b c abc ++≥,当且仅当a b c ==时等号成立,进一步证明:31113a b c a b c++++,当且仅当a b c ==时各等号成立.【例7】 经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系为:2920(0)31600vy v v v =>++.⑴在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/小时)⑵若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?【例8】 某种汽车购车费用是10万元,每年使用的保险费、养路费、汽油费和约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元.问这种汽车使用多少年报废最合算?(最佳报废时间也就是年平均费用最低的时间)【例9】 如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为218000cm ,四周空白的宽度为10cm ,两栏之间的中缝空白的宽度为5cm ,怎样确定广告的高与宽的尺寸(单位:cm ),能使矩形广告面积最小?【例10】 如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱.污水从A 孔流入,经沉淀后从B 孔流出.设箱体长度为a 米,高度为b 米.已知流出的水中,杂质的质量分数与,a b 的乘积ab 成反比.现有制箱材料60平方米,问当,a b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(,A B 孔的面积忽略不计)2BAb【例11】设计一幅宣传画,要求画面面积为24840cm,画面的宽与高的比为(1)λλ<,画面的上下各留8cm的空白,左右各留5cm的空白,问怎样确定画面的高与宽的尺寸,能使宣传画所用纸张面积最小?如果23,34λ⎡⎤∈⎢⎥⎣⎦,那么λ为何值时,能使宣传画所用纸张面积最小?【例12】某单位用木料制作如图所示的框架,框架的下部是边长分别为,x y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积28m. 问,x y分别为多少(精确到0.01m) 时用料最省?【例13】 某村计划建造一个室内面积为8002m 的矩形蔬菜温室.在温室内,沿左.右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大.最大种植面积是多少?【例14】 对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:1-污物质量)物体质量(含污物)为0.8,要求清洗完后的清洁度为0.99.有两种方案可供选择,方案甲:一次清洗;方案乙: 分两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为(13)a a ≤≤.设用x 单位质量的水初次清洗后的清洁度是0.81x x ++(1)x a >-,用y 单位质量的水第二次清洗后的清洁度是y acy a++,其中c (0.80.99)c <<是该物体初次清洗后的清洁度. ⑴分别求出方案甲以及0.95c =时方案乙的用水量,并比较哪一种方案用水量较少;⑵若采用方案乙,当 1.4a =时,如何安排初次与第二次清洗的用水量,使总用水量最小?【例15】 按照某学者的理论,假设一个人生产某产品的单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为mm a+;如果他买进该产品的单价为n 元,则他的满意度为an a+.如果一个人对两种交易(卖出或买进)的满意度分别为1h 和2h现假设甲生产A 、B 两种产品的单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为A m 元和B m 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙;⑴求h 甲和h 乙关于A m 、B m 的表达式;当35A B m m =时,求证:h 甲=h 乙;⑵设35A B m m =,当A m 、B m 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?⑶记⑵中最大的综合满意度为0h ,试问能否适当选取A m 、B m 的值,使得0h h 甲≥和0h h 乙≥同时成立,但等号不同时成立?试说明理由.。

高中数学人教版必修5——第十三讲均值不等式(解析版)

高中数学人教版必修5——第十三讲均值不等式(解析版)

高中数学人教版必修5——第十三讲均值不等式(解析版)第十三讲均值不等式(解析版)在高中数学的学习中,均值不等式是一条非常重要的数学定理。

它能够帮助我们找到一组数的平均值与其他特定的数值之间的关系。

本文将详细解析高中数学人教版必修5中的第十三讲——均值不等式。

一、均值不等式的定义和性质均值不等式实际上是按平均值来衡量一组数与其他数值之间的大小关系。

它包含了算术平均值、几何平均值和平方平均值等不同的形式。

算术平均值是最为熟悉的一种形式,它表示一组数相加后除以元素个数得到的结果。

几何平均值是将一组数相乘后开根号得到的结果。

平方平均值是将一组数的平方相加后除以元素个数再开根号得到的结果。

在不等式的关系中,对于正实数来说,有以下几个性质:1. 当所有元素相等时,算术平均值、几何平均值和平方平均值相等。

2. 当所有元素不相等时,算术平均值大于几何平均值,而几何平均值大于平方平均值。

3. 对于正实数来说,算术平均值大于几何平均值,并且它们都大于平方平均值。

二、均值不等式的应用均值不等式在数学问题的解决中具有广泛的应用。

它可以帮助我们证明和推导其他重要的数学关系。

1. 证明与推导在证明和推导方面,均值不等式可以帮助我们解决一些复杂的不等式问题。

通过运用不同形式的均值不等式,我们可以逐步地推导出更为严格的不等式关系。

例如,在求证某个不等式问题时,我们可以使用算术平均值与几何平均值之间的关系来逐步推导出正确的结论。

2. 理解与比较均值不等式还能够帮助我们理解和比较数列的大小关系。

通过对数列的算术平均值、几何平均值和平方平均值的比较,我们可以得出一些关于数列性质的结论。

例如,当一组数的算术平均值大于几何平均值时,就能够说明这组数存在着某种程度的波动和不均匀性。

三、均值不等式的例题解析下面,我们将通过一些例题来具体解析均值不等式的应用。

例题1:已知a、b、c为正实数,证明(a+b)(a+c)(b+c)≥8abc。

解析:我们可以通过均值不等式来证明这个不等式关系。

高中数学均值不等式知识点

高中数学均值不等式知识点

高中数学均值不等式知识点一、均值不等式的形式。

1. 基本形式。

- 对于任意的正实数a、b,有(a + b)/(2)≥slant√(ab),当且仅当a = b时,等号成立。

- 这里(a + b)/(2)叫做a、b的算术平均数,√(ab)叫做a、b的几何平均数。

2. 推广形式(三元均值不等式)- 对于任意的正实数a、b、c,有(a + b + c)/(3)≥slantsqrt[3]{abc},当且仅当a=b = c时,等号成立。

- 其中(a + b + c)/(3)是a、b、c的算术平均数,sqrt[3]{abc}是a、b、c的几何平均数。

二、均值不等式的证明。

1. 对于(a + b)/(2)≥slant√(ab)(a,b>0)的证明。

- 方法一:作差法。

- 因为((a + b)/(2))^2 - ab=(a^2 + 2ab + b^2)/(4)-ab=(a^2 - 2ab + b^2)/(4)=((a - b)^2)/(4)≥slant0。

- 当且仅当a = b时,((a + b)/(2))^2 - ab = 0,即(a + b)/(2)≥slant√(ab)。

- 方法二:分析法。

- 要证(a + b)/(2)≥slant√(ab)(a,b>0),只需证((a + b)/(2))^2≥slant ab,即证a^2 + 2ab + b^2≥slant4ab,也就是证a^2 - 2ab + b^2≥slant0,即(a - b)^2≥slant0,显然成立,当且仅当a = b时等号成立。

三、均值不等式的应用。

1. 求最值。

- 类型一:和定积最大。

- 已知a + b = m(m为定值,a>0,b>0),根据均值不等式(a +b)/(2)≥slant√(ab),可得ab≤slant((a + b)/(2))^2=(m^2)/(4),当且仅当a = b=(m)/(2)时,ab 取得最大值(m^2)/(4)。

高中数学基础讲义9均值不等式-简单难度-讲义

高中数学基础讲义9均值不等式-简单难度-讲义

均值不等式知识讲解一、等号成立条件条件:对于任意实数a b ,,222a b ab +≥,当且仅当a b =时,等号成立. 证明:2222()a b ab a b +-=-,当a b ≠时,2()0a b ->;当a b =时,2()=0a b -.222a b ab ∴+≥,当且仅当a b =时,等号成立.二、均值不等式定义:如果a b ,,是正数,那么2a bab +≥,当且仅当a b =时,有等号成立.此结论又称均值不等式或基本不等式.证明:2222()()()0a b ab a b a b +-=+=-≥,即a b ab +≥2,所以2a bab +≥三、均值不等式的几何解释解释:对于任意正实数a b ,,以AB a b =+的线段为直径做圆,在直线AB 上取点C ,使,AC a CB b ==,过点C 作垂直于直线AB 的弦DD ',连接AD 、DB 、如图已知Rt ACD Rt DCB ∆∆,那么2DC AC BC =⋅,即=CD ab .这个圆的半径为2a b+,显然2a bab +≥,当且仅当点C 与圆心重合,即a b =时,等号成立.abb aD 'D C B A四、均值不等式的理解1.对于任意两个实数a b ,,2a b+叫做a b ,a b ,的几何平均值.此定理可以叙述为:两个正数的算术平均数不小于他们的几何平均数.2.对于=“”的理解应为a b =是2a b +a b ≠,则2a b+3.注意222a b ab +≥和2a b+>a b R ∈,,后者是+a b R ∈,五、极值定理1.若x y s +=(和为定值),则当x y =时,xy 取得最大值是24s;【证明】x y ,都是正数,2x y +x y s +=,22()24x y s xy +≤=,当且仅当x y =时,xy 取得最大值是24s;2.若=xy p (积为定值),则当x y =时,x y +取得最小值是;【证明】x y ,都是正数,2x y +≥x y =时,等号成立.又=xy p ,x y +≥.【注意】利用极值定理求最大值或最小值是应注意:①注意均值不等式的前提条件:函数式中的各项必须都是正数,在异号时不能运用均值不 等式,在同负时可以先进行转化,再运用均值不等式;②求积xy 最大值时,应看和x y +是否是定值;求和x y +最小值时,看xy 是否为定值. ③通过加减的方法配凑成使用算术平均数与几何平均数定理的形式; ④注意“1”的代换;⑤等号是否成立: 只有具备了不等式中等号成立的条件,才能使函数式取到最大或最小值.否则不能由均值不等式求最值,只能用函数的单调性求最值.运用均值不等式的前提有口诀:一正二定三相等.典型例题一.选择题(共10小题)1.(2018•海拉尔区校级二模)已知正实数x ,y 满足2x +y=1,则xy 的最大值为( ) A .18B .23C .14D .25【解答】解:∵正实数x ,y 满足2x +y=1,则1≥2√2xy ,化为:xy ≤18,当且仅当2x=y=12时取等号.∴xy 的最大值为18.故选:A .2.(2018•延边州模拟)若a >0,b >0,lga +lgb=lg (a +b ),则a +b 的最小值为( ) A .8 B .6C .4D .2【解答】解:由a >0,b >0,lga +lgb=lg (a +b ), 则lg (ab )=lg (a +b ), 即有ab=a +b ,即1a +1b=1, 则a +b=(a +b )(1a +1b )=2+b a +ab≥2+2√b a ⋅ab=4,当且仅当a=b=2时,取得等号.则a +b 的最小值为4. 故选:C .3.(2018春•聊城期末)已知a 、b 是不相等的正数,x=√a+√b√2,y=√a +b ,则x 、y 的关系是( ) A .x >y B .y >xC .x >√2yD .不能确定【解答】解:∵x 2=12(√a +√b )2=12(a +b +2√ab ),y 2=a +b=12(a +b +a +b )>12(a +b +2√ab )=x 2,又∵x >0,y >0. ∴y >x .4.(2017秋•莲湖区校级期末)已知a >0,b >0,a +b=2,则y=1a +4b的最小值是( ) A .92B .72C .5D .4【解答】解:∵a >0,b >0,a +b=2,∴y=1a +4b =12(1a +4b )(a +b )=12(1+4+b a +4a b )≥12(5+2√b a ⋅4a b )=92,当且仅当b=2a 时等号成立, 故选:A .5.(2017秋•陆川县校级期末)已知x ,y >0,且1x +1y=2,则x +2y 的最小值为()A.3−2√2B.3−2√22C.3+2√2D.3+2√22【解答】解:由1x +1y=2得,12x+12y=1,∴(x+2y)(12x+12y)=12+yx+x2y+1≥32+2√yx⋅x2y=32+√2,当且仅当x=√2y=1+√22时取等号.故选:D.6.(2018春•昌吉市期末)当x>0,y>0,1x+9y=1时,x+y的最小值为()A.10B.12 C.14D.16【解答】解:∵x>0,y>0,1x +9y=1,∴x+y=(x+y)(1x+9y)=10+yx+9xy≥10+2√y x⋅9x y=16,当且仅当y=3x=12时取等号.∴x+y的最小值为16.故选:D.7.(2018春•沙坪坝区校级期末)实数a,b均为正数,且a+b=2,则1a+2b的最小值为()A.3B.3+2√2C.4D.32+√2【解答】解:∵a+b=2,∴1a +2b =12(1a +2b )(a +b )=12(1+2a b +b a +2)=12(2a b +b a +3), ∵2a b +b a ≥2√2,当2a b =ba ,即a=2√2﹣2时,等号成立, ∴1a +2b 的最小值为32+√2 故选:D .8.(2018春•南关区校级期末)若正数x ,y 满足x +3y=5xy ,则3x +4y 的最小值是( ) A .245B .285C .6D .5【解答】解:∵正数x ,y 满足x +3y=5xy ,∴x+3y 5xy =1,即15y +35x=1,∴3x +4y=(3x +4y )(15y +35x )=135+3x 5y +12y 5x ≥135+2√3x 5y ⋅12y 5x =5当且仅当3x 5y =12y 5x 即x=1且y=12时取等号,∴3x +4y 的最小值为:5 故选:D .9.(2017秋•武邑县校级期末)若x ,y 是正数,且1x +4y =1,则xy 有( )A .最大值16B .最小值116C .最小值16D .最大值116【解答】解:由于x ,y 是正数,且1x +4y =1,∴1x +4y =1≥2√4xy =4√1xy ,∴1xy ≤116,∴xy ≥16,当且仅当 1x =4y =12时,等号成立,∴xy 有最小值为 16, 故选:C .10.(2017•红桥区模拟)已知x >﹣2,则x +1x+2的最小值为( ) A .﹣12B .﹣1C .2D .0【解答】解:∵x >﹣2,则x +1x+2=x +2+1x+2﹣2≥2√(x +2)⋅1x+2﹣2=0,当且仅当x=﹣1时取等号. ∴x +1x+2的最小值为0.故选:D .二.填空题(共4小题)11.(2018•金山区二模)函数y =x +9x ,x ∈(0,+∞)的最小值是 6 . 【解答】解:∵x >0,∴函数y =x +9x ≥2√x ⋅9x =6,当且仅当x=3时取等号. ∴函数y =x +9x (x >0)的最小值是6.故答案为:6.12.(2017秋•杨浦区校级期末)若正数a 、b 满足log a (4b )=﹣1,则a +b 的最小值为 1 .【解答】解:根据题意,若正数a 、b 满足log a (4b )=﹣1,则有a=14b ,即ab=14,则a +b ≥2√ab =1,即a +b 的最小值为1; 故答案为:1.13.(2018春•秦淮区校级期中)已知正实数x ,y 满足xy=3,则x +y 的最小值是 2√3 .【解答】解:正实数 x ,y 满足 xy=3, 则 x +y ≥2√xy =2√3,当且仅当x=y=√3时,上式取得等号, 则x +y 的最小值为2√3, 故答案为:2√3.14.(2017春•宿迁期末)已知正实数x ,y 满足2x +y=1,则xy 的最大值为 18. 【解答】解:根据题意,正实数x ,y 满足2x +y=1,则xy=12(2x )y ≤12[2x+y 2]2=12×14=18,当且仅当2x=y=12,时等号成立,即xy 的最大值为18;故答案为:18.三.解答题(共1小题)15.(2010•南通模拟)某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?【解答】解:设水池底面一边的长度为xm ,水池的总造价为y 元,则底面积为48003=1600m 2,池底的造价为1600×150=240000元, 则y=240000+720(x +1600x)≥240000+720×2√x ⋅1600x =240000+720×2×40=297600,当且仅当x=1600x,即x=40时,y 有最小值297600(元)答:当水池的底面是边长为40m 的正方形时,水池的总造价最低,最低总造价是297600元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题45 利用均值不等式求最值一、基础知识:1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=(1)调和平均数:12111n nnH a a a =+++(2)几何平均数:12nn n G a a a = (3)代数平均数:12nn a a a A n+++=(4)平方平均数:22212nn a a a Q n+++=2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===特别的,当2n =时,22G A ≤⇒2a bab +≤即基本不等式 3、基本不等式的几个变形:(1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况(2)22a b ab +⎛⎫≤ ⎪⎝⎭:多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况(3)222a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈4、利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求23y x x =+的最小值。

此时若直接使用均值不等式,则2324y x x x=+≥右侧依然含有x ,则无法找到最值。

① 求和的式子→乘积为定值。

例如:上式中24y x x =+为了乘积消掉x ,则要将3x拆为两个2x,则2223342222334y x x x x x x x x =+=++≥⋅⋅=② 乘积的式子→和为定值,例如302x <<,求()()32f x x x =-的最大值。

则考虑变积为和后保证x 能够消掉,所以()()()2112329322322228x x f x x x x x +-⎛⎫=-=⋅-≤= ⎪⎝⎭(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。

5、常见求最值的题目类型(1)构造乘积与和为定值的情况,如上面所举的两个例子 (2)已知1ax by +=(a 为常数),求m nx y+的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解。

例如:已知0,0,231x y x y >>+=,求32x y+的最小值 解:()3232942366y x x y x y x y x y⎛⎫+=++=+++ ⎪⎝⎭94121224y x x y =++≥+= (3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值解:()22211222228x y x y xy x y ++⎛⎫=⋅⋅≤= ⎪⎝⎭ 所以()()2224248x y x y xy x y +++=⇒++≥即()()2282320x y x y +++-≥,可解得24x y +≥-,即()min 24x y +=-注:此类问题还可以通过消元求解:42241xx y xy y x -++=⇒=+,在代入到所求表达式求出最值即可,但要注意0y >的范围由x 承担,所以()0,2x ∈ 二、典型例题:例1:设1x >-,求函数(5)(2)1x x y x ++=+的最小值为_______________思路:考虑将分式进行分离常数,(5)(2)41511x x y x x x ++==+++++,使用均值不等式可得:59y ≥+=,等号成立条件为4111x x x +=⇒=+,所以最小值为9 答案:9例2:已知0,0x y >>,且115x y x y+++=,则x y +的最大值是________ 思路:本题观察到所求x y +与11x y+的联系,从而想到调和平均数与算术平均数的关系,即2114112x y x y x yx y+≤⇒+≥++,代入方程中可得: ()()()()245540x y x y x y x y ++≤⇒+-++≤+,解得:14x y ≤+≤,所以最大值为4 答案:4例3:已知实数,m n ,若0,0m n ≥≥,且1m n +=,则2221m n m n +++的最小值为( ) A.14 B. 415 C. 18 D. 13思路:本题可以直接代入消元解决,但运算较繁琐。

考虑对所求表达式先变形再求值,可用分离常数法将分式进行简化。

2241212121m n m n m n m n +=-+-++++++,结合分母可将条件1m n +=,变形为()()214m n +++=,进而利用均值不等式求出最值解:222244114121212121m n m n m n m n m n m n -+-++=+=-++-+++++++()4141322121m n m n m n =+-++=+-++++ ()()1214m n m n +=⇒+++= ()()()414141112214121214421n m m n m n m n m n +⎛⎫+⎛⎫∴+=+⋅+++=+++⎡⎤ ⎪ ⎪⎣⎦++++++⎝⎭⎝⎭19544⎛≥+= ⎝ 229122144m n m n ∴+≥-=++,即2221m n m n +++的最小值为14答案:A例4:已知正实数,x y 满足24xy x y ++=,则x y +的最小值为__________思路:本题所求表达式x y +刚好在条件中有所体现,所以考虑将x y +视为一个整体,将等式中的项往x y +的形式进行构造,()()()21xy x y xy x x y x y x y ++=+++=+++,而()1x y +可以利用均值不等式化积为和,从而将方程变形为关于x y +的不等式,解不等式即可解:()()()24414xy x y xy x x y x y x y ++=⇔+++=⇔+++=()()2112x y x y ++⎡⎤+≤⎢⎥⎣⎦ ∴方程变形为:()()2142x y x y ++⎡⎤++≥⎢⎥⎣⎦()()21416x y x y ∴++++≥⎡⎤⎣⎦()()26150x y x y ∴+++-≥解得:3x y +≥= 答案:()x y +的最小值为3 例5:已知20a b >>,则4(2)a b a b +-的最小值为______________思路一:所求表达式为和式,故考虑构造乘积为定值以便于利用均值不等式,分母为()2b a b -,所以可将a 构造为()112222a a b b ⋅=⋅-+⎡⎤⎣⎦,从而三项使用均值不等式即可求出最小值:4181(2)3(2)2(2)2a a b b b a b b a b ⎡⎤+=-++≥⋅=⎢⎥--⎣⎦ 思路二:观察到表达式中分式的分母()2b a b -,可想到作和可以消去b ,可得()()2222b a b b a b a +-⎡⎤-≤=⎢⎥⎣⎦,从而244(2)a a b a b a +≥+-,设()24f a a a =+,可从函数角度求得最小值(利用导数),也可继续构造成乘积为定值:()24322a a f a a =++≥= 答案:3小炼有话说:(1)和式中含有分式,则在使用均值不等式时要关注分式分母的特点,并在变形的过程中倾向于各项乘积时能消去变量,从而利用均值不等式求解 (2)思路二体现了均值不等式的一个作用,即消元(3)在思路二中连续使用两次均值不等式,若能取得最值,则需要两次等号成立的条件不冲突。

所以多次使用均值不等式时要注意对等号成立条件的检验 例6:设二次函数()()24f x ax x c x R =-+∈的值域为[)0,+∞,则1919c a +++的最大值为__________思路:由二次函数的值域可判定0a >,且04ac ∆=⇒=,从而利用定值化简所求表达式:19918918511999913913a c a c c a ac a c a c a c +++++====++++++++++,则只需确定9a c +的范围即可求出1919c a +++的最值。

由均值不等式可得:912a c +≥,进而解出最值 解:二次函数()()24f x ax x c x R =-+∈的值域为[)0,+∞164040ac ac a ∆=-=⇒=⎧∴⎨>⎩()()()9911991891851191999913913a c a c a c c a c a ac a c a c a c ++++++++====++++++++++++912a c +≥=195611912135c a ∴+≤+=+++ 答案:65例7:已知,,x y z R +∈,则222xy yzx y zμ+=++的最大值是________ 思路:本题变量个数较多且不易消元,考虑利用均值不等式进行化简,要求得最值则需要分子与分母能够将变量消掉,观察分子为,xy yz 均含y ,故考虑将分母中的2y 拆分与22,x z 搭配,即22222221122xy yz xy yzx y z x y y z μ++==++⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,而222211,22x y z y +≥=+≥=,所以μ≤=答案:2小炼有话说:本题在拆分2y 时还有一个细节,因为分子,xy yz 的系数相同,所以要想分子分母消去变量,则分母中,xy yz 也要相同,从而在拆分2y 的时候要平均地进行拆分(因为22,x z 系数也相同)。

所以利用均值不等式消元要善于调整系数,使之达到消去变量的目的。

例8:已知正实数,x y 满足3x y xy ++=,若对任意满足条件的,x y ,都有2()()10x y a x y +-++≥恒成立,则实数a 的取值范围为________思路:首先对恒成立不等式可进行参变分离,()1a x y x y≤+++。

进而只需求得()1x y x y+++的最小值。

将x y +视为一个整体,将3x y xy ++=中的xy 利用均值不等式换成x y +,然后解出x y +的范围再求最小值即可 解:()21()()10x y a x y a x y x y+-++≥⇒≤+++ ,0x y > 22x y xy +⎛⎫∴≤ ⎪⎝⎭232x y x y xy +⎛⎫∴++=≤ ⎪⎝⎭()()2412x y x y ∴++≤+ 解得:6x y +≥或2x y +≤-(舍)()min 1137666x y x y ⎡⎤∴++=+=⎢⎥+⎣⎦ (在6x y +=时取得) 376a ∴≤例9:已知1,0,0x y y x +=>≠,则121x x y ++的最小值是___________ 思路:观察到所求121x x y ++的两项中x 部分互为倒数,所以想到利用均值不等式构造乘积为定值,所以结合第二项的分母变形12x的分子。

相关文档
最新文档