高等数学 第一章 1.1 作业答案
高等数学大一教材答案

高等数学大一教材答案1. 第一章:函数与极限1.1 函数的概念及性质1.2 极限的概念1.3 极限的运算法则2. 第二章:导数与微分2.1 导数的定义2.2 导数的几何意义2.3 微分的概念及运算法则3. 第三章:微分中值定理与导数的应用3.1 微分中值定理3.2 最值问题3.3 凹凸性与拐点4. 第四章:不定积分4.1 不定积分的概念4.2 基本积分表与积分法4.3 特殊曲线的面积5. 第五章:定积分5.1 定积分的定义5.2 区间上的连续函数的积分5.3 定积分的性质与计算方法6. 第六章:定积分的应用6.1 近似计算积分6.2 弧长与曲线面积的计算6.3 牛顿—莱布尼茨公式7. 第七章:多元函数的极限与连续7.1 二元函数的连续与偏导数7.2 多元函数的极限与连续7.3 多重积分8. 第八章:多元函数的微分法与隐函数的求导法8.1 多元函数的全微分8.2 隐函数的求导法8.3 多元函数的泰勒公式9. 第九章:向量代数与空间解析几何9.1 向量的概念与运算9.2 空间中的曲线与曲面9.3 平面与直线的方程10. 第十章:多元函数的导数与微分10.1 偏导数的概念10.2 高阶偏导数和混合偏导数10.3 多元函数的隐函数及其导数11. 第十一章:多元函数的极值与条件极值11.1 多元函数的极值11.2 多元函数的条件极值11.3 二重积分的计算12. 第十二章:曲线积分与曲面积分12.1 曲线积分12.2 曲面积分与高斯积分定理12.3 斯托克斯定理文章结束。
预科高等数学习题参考答案(上学期)

第一章函数与极限1.1 数列的极限1 (1) 对任意的自然数n 有7)1(5750n n ,所以有07)1(51751n n,即01nnx x ,因此数列}{n x 是单调递减数列.显然对于任意的自然数n 有175n ,因而有17510n x n.进而存在1M ,对任意的自然数n 有,M x x nn1,所以数列}{n x 是有界的.综上数列是单调递减有界数列,因此必有极限.观察出0limnnx .nn n x x nn1517510.0,要使n1,只要1n,于是取正整数1N.则当N n 时,就有nx n 10,故0limn nx .(2) 对任意的自然数n 有5)1(2520n n,所以有10n n x x ,因此数列}{n x 是单调递增数列.显然对于任意0M ,存在}25,1max {0M n ,使得M n x n 5200,因此数列}{n x 是无界的.综上数列是单调递增无界数列,因此数列}{n x 的极限不存在.(3) 从数列的前几项,5,0,3,0,154321x x x x x 可以看出数列}{n x 既非单调递减数列也非单调递增数列.显然对于任意0M ,存在}21,1max {0M k ,使得M k k k x k122)12(sin)12(0120,因此数列}{n x 是无界的.综上数列既不是单调数列也不是无界数列,因此数列}{n x 的极限不存在.2 分析用“N ”语言证明数列极限A x nnlim的步骤如下:(1) 化简A x n(往往需将它适当放大后)得)(n f ;(2) 逆序分析求N .0,要使)(n f ,(解不等式后知))(g n,于是取正整数)(g N;(3) 按定义作结论则当N n时,就有Ax n.故A x nnlim.证明 (1)nnn110144.0,要使n1,只要1n,于是取正整数1N.则当N n时,就有nn 1014,故014limnn.(2)nnnn 1241231213.0,要使n1,只要1n,于是取正整数1N.则当N n 时,就有nn n 1231213,故231213limnn n .(3)nnC CCCn nnnnnnnn 1919991)91(11011999.022109个.0,要使n1,只要1n,于是取正整数1N.则当N n 时,就有nn 11999.09个,故1999.09lim个n n.3证明222222656112136561121365611213limlimlim limlimlim limlimnnn n nnn n nnn n nnnnnnnn6130060013.4 证明当0q时,显然00limlimnnnq;当0q 时,显然nnq q0.0(10),要使nq,由于10q ,因此只要qnlog ,于是取正整数qNlog.则当N n 时,就有nnqq0,故0limnnq.综上所述,当1q 时,0lim nnq .5证明 (N定义证明)令01nnn h ,则有nnh n)1(,即nn n n nnnnh nh h n n nh h n122)1(1)1(,进而22)1(n h n n n ,即)1(12nn h n.0,要使121n h n nn,只要212n ,即1112n,于是取正整数112N .则当N n 时,就有121n nn,故1limnnn.(夹逼定理证明) 由于nn nnn n n n nn nn n2211111111212个个,并且122limnn nn,因此1limnnn.5 证明由数列}{n x 有界知,0M,使得数列}{n x 的每一项都有M x n.又0limnny ,则有0,存在0N,当N n时,My y nn.进而当N n时,MMy x y x nn nn 0.因此0lim nnny x.1.2 函数的极限1证明0,0,当00x x时,c c .因此c c x xlim.2证明)1sin (1sin 0sin x xx x xx .0,要使x1,只要1x,于是取正数1M.则当M x时,就有xxx 10sin ,故0sin limx x x .343434343433412313412313423limlimlim limlimlimlimlimxxx x xxxx x x xxx x xxxxx x xx0001000.4解3212223213212321limlim44x x x x x x xx xx34381242321223214242limlim44xx x x x x xx.5解ax ax a xax a x axax2cos 2sin2sin sin limlima a a x a x axaxcos cos 12cos22sinlim.另解axaa a x axa xaxaxsin ])sin[(sin sin limlima xaaa x aa x axsin sin )cos(cos )sin(limaaxa xaaxa x axsin 1)cos(cos )sin(limaa x a x a x aax a x axsin 2sin22sincos )sin(lima aa cos sin 01cos 1.6 因为0)1()(lim limxxxex f ,00)(lim limxxx f ,即0)()(limlimx f x f xx.因此函数)(x f 在0x点处极限存在,并且0)(lim0x f x.7111111113323323131limlimxxxxxxx x xx xx3211111133213321limlimxxxx x x xx xx .8xx x xx xx xx)2sin()2sin()2sin()2sin(limlim2cos 2sin 2cos 2sin 2cos 2limlim00xx xxxx.92122322233221231212314232limlimlime eexxxx xx xx xxxxxx.另解221)42(421142114232limlimlimx x xxxxxxxx 221)42(42114211limxxx x221)42(42114211limlimxxxx x 21211e e10aba b ax xbxxbx xax axax ax 33113113114limlimlimabab ababax xe eax ax 333311131131lim.另解a baba bab ax abax xbxbxxbxxe e eaxax axax ax ax 344441141114114limlimlim.1.3 无穷小与无穷大1因为x,1sin x ,01limxx,即x时x sin 是有界变量,x1是无穷小量,因此01sin sin limlimxxxx xx.2 (利用无穷大的)(M E定义求解)0E ,要使E xx 523,只要)5(223xE xx ,即E x2,于是取}5,2max {E M ,当M x时,E xx 523.所以523xx 是x时的无穷大量,即523limxx x.另解(利用无穷大与无穷小的关系求解)显然当x时,0523xx ,但是01515332limlimx xx xxx,进而根据无穷大与无穷小的关系有,3223515limlimxxxx xx.3 (利用无穷大的)(M E 定义求解)0E ,要使E xx x x21232,只要)3(121x E x x x ,即1E x,于是取}3,1max{EM,当M x 时,E xx232.所以232xx是x时的无穷大量,即232limx xx.4414144tan sin limlimlim220220xxxxxxx.52121cos 12202limlimx x xx xx.6设00,当0x x时,)(x g 有界,则存在00M,使得当0x x时,0)(M x g .当0x x时,)(x f 是无穷大量,则0M,存在01,当10x x时,0)(M M x f .取},m in{1,则当0x x 时,00)()()()(M M M x g x f x g x f ,因此)()(x g x f 是0x x 时的无穷大量.7x x y cos 在,不是有界变量,即x x y cos 在,是无界的.因为0M,存在1][Mx ,使得M M x x 1][cos 00.下面证明当x 时,x x y sin 不是无穷大量.1E ,对于0M ,存在10Mx ,使得M x 0,并且E x x 0sin 00.因此当x时,x x ysin 不是无穷大量.1.4 函数的连续性与间断点1 (1) 函数)(x f 的定义域是),3()3,5()5,(.由于函数)(x f 是初等函数,因此)(x f 的连续区间是),3(),3,5(),5,(.(2) 函数)(x f 的定义域是]6,4[.由于函数)(x f 是初等函数,因此)(x f 的在区间)6,4(内连续.又)4(464464)(limlim44f x xx f xx,则)(x f 在4x 处右连续;)6(664664)(limlim66f xxx f xx,则)(x f 在6x 处左连续.因此)(x f 的连续区间是]6,4[.(3) 函数)(x f 的定义域是]2,1[.显然函数)(x f 在区间)2,1(),1,0(),0,1(内连续.又)1(11)(lim lim11f x f xx,则)(x f 在1x处右连续;1)(lim lim0xxx f )0(1f ,)0(1sin )(limlim 0f xx x f xx,即)0()()(limlim 0f x f x f xx,则)(x f 在0x 处连续;)1(81sin sin )(limlim11f xx x f xx,即)(x f 在1x 处不左连续,则)(x f 在1x处不连续;)2(14)83()(limlim 22f xx f xx,则)(x f 在2x 处左连续.因此)(x f 的连续区间是]2,1(),1,1[.2 (1)函数)(x f 的定义域是),7()7,2()2,(,进而函数的间断点只可能为2x 和7x.对于2x,72)7)(2()2)(2(1494)(limlimlimlim222222xx xxx x xxx x f xxxx54,因此2x 是函数)(x f 的第一类间断点中的可去间断点.对于7x,)7)(2()2)(2(1494)(lim limlim72277xxx x xxx x f xxx,因此2x 是函数)(x f 的第二类间断点中的无穷间断点.综上,2x 是函数)(x f 的第一类间断点中的可去间断点,7x 是第二类间断点中的无穷间断点.(2) 显然函数)(x f 的定义域是Zk Zk k kk k )1(,22,,进而函数)(x f 的间断点只可能为k x 和)(2Z kkx .对于0x,1tan )(limlim 0xx x f xx,因此0x是函数)(x f 的第一类间断点中的可去间断点.对于)0,(k Z k k x,xx x f kxkxtan )(limlim,因此当0k 时,kx是函数)(x f 的第二类间断点中的无穷间断点.对于)(2Z k kx ,0tan )(limlim22xx x f kxkx,因此2kx 是函数)(x f 的第一类间断点中的可去间断点.综上,0x和)(2Z k kx是函数)(x f 的第一类间断点中的可去间断点,)0,(k Z k k x 是第二类间断点中的无穷间断点.(3) 显然函数)(x f 的定义域是),1()1,0()0,(,进而函数)(x f 的间断点只可能为0x和1x .对于0x,111)(limlimx xxxe xf ,因此0x 是)(x f 的第二类间断点中的无穷间断点.对于1x,011)(111limlim x xxxex f ,111)(111limlimxxxxe xf ,即函数)(x f 在1x处的左右极限存在,但不相等,因此1x 是)(x f 的第一类间断点中的跳跃间断点.综上,0x 是)(x f 的第二类间断点中的无穷间断点,1x 是第一类间断点中的跳跃间断点.(4) 显然函数)(x f 的定义域为),0()0,(,进而)(x f 的间断点只可能为0x .21arctan)(limlim 0xx f xx,21arctan)(limlimxx f xx,即)(x f 在0x处的左右极限存在,但不相等,因此0x函数)(x f 的第一类间断点中的跳跃间断点.(5) 显然函数)(x f 的定义域为),1()1,0()0,(,进而)(x f 的间断点只可能为0x 和1x.对于0x,0223)(limlimxx f xx,因此0x 是)(x f 的第一类间断点中的可去间断点.对于1x ,xx f xx223)(limlim11,因此1x 是)(x f 的第二类间断点中的无穷间断点.因此0x 是)(x f 的第一类间断点中的可去间断点,1x 是第二类间断点中的无穷间断点.(6) 显然函数)(x f 的定义域为),0()0,(,进而)(x f 的间断点只可能为0x .22cos 1cos 1)(2limlimlimxx x x x f xxx,22cos 1cos 1)(20limlimlimx xxxx f xxx,即)(x f 在0x 处的左右极限存在,但不相等,因此0x函数)(x f 的第一类间断点中的跳跃间断点.(7) 显然函数)(x f 的定义域为),1()1,(,进而)(x f 的间断点只可能为1x .xx x f xx12)(lim lim 11,因此1x 是)(x f 的第二类间断点中的无穷间断点.1.5 连续函数的运算与初等函数的连续性1 (1) 当1x 时,02limnnx,则有x x x x x f nn n2211)(lim ;当1x 时,nnx2lim,并且11122lim nn nxx ,则有x x xx x f nn n2211)(lim ;当1x 时,012nx,则有011)(22lim xxx x f nn n.因此111,,0,)(xx x x x x f .显然函数)(x f 在区间),1(),1,1(),1,(内连续.对于1x,1)(limlim11x x f xx,1)()(lim lim11x x f xx,即)(x f 在1x 处的左右极限存在,但不相等,因此1x 函数)(x f 的第一类间断点中的跳跃间断点.对于1x,1)()(limlim11x x f xx,1)(limlim11xx f xx,即)(x f 在1x 处的左右极限存在,但不相等,因此1x 函数)(x f 的第一类间断点中的跳跃间断点.综上,函数)(x f 的连续区间是),1(),1,1(),1,(,1x 函数)(x f 的第一类间断点中的跳跃间断点.(2) 显然1x时,函数)(x f 无定义;当1x 时,0limnn x,则有01)(lim nnnxxx f ;当1x 时,nnxlim,则有11)(lim nnnx xx f ;当1x 时,1nx ,则有211)(lim nnnxxx f .因此111,0,21,1)(xx x x f .显然函数)(x f 在区间),1(),1,1(),1,(内连续.对于1x ,00)(lim lim11xxx f ,11)(lim lim11xxx f ,即)(x f 在1x 处的左右极限存在,但不相等,因此1x 函数)(x f 的第一类间断点中的跳跃间断点.对于1x,11)(limlim11xxx f ,00)(limlim11xxx f ,即)(x f 在1x 处的左右极限存在,但不相等,因此1x 函数)(x f 的第一类间断点中的跳跃间断点.综上,函数)(x f 的连续区间是),1(),1,1(),1,(,1x 函数)(x f 的第一类间断点中的跳跃间断点.(3) 当10x 时,0limnnx,则有111)(lim nnxx f ;当1x 时,nnxlim,则有011)(lim nnxx f ;当1x时,1nx,则有2111)(lim nnxx f .因此1011,1,21,0)(xx x x f .显然函数)(x f 在区间),1(),1,0(内连续.对于0x ,)0(11)(limlimf x f xx,因此)(x f 在0x 处右连续.对于1x ,00)(lim lim11x xx f ,11)(lim lim11xx x f ,即)(x f 在1x 处的左右极限存在,但不相等,因此1x 函数)(x f 的第一类间断点中的跳跃间断点.综上,函数)(x f 的连续区间是),1(),1,0[,1x 函数)(x f 的第一类间断点中的跳跃间断点.(4) 当0x 时,xnxnnnlim lim ,0,则有1)(limxxx x n nnn n x f ;当0x 时,0,lim lim xnxnnn,则有1)(limxxx x nnnn n x f ;当0x 时,1xn,则有0)(limxxx x nnnn n x f .因此000,1,0,1)(xx x x f .显然函数)(x f 在区间),0(),0,(内连续.对于0x ,11)(lim limxxx f ,1)1()(lim limxxx f ,即)(x f 在0x 处的左右极限存在,但不相等,因此0x 函数)(x f 的第一类间断点中的跳跃间断点.综上,函数)(x f 的连续区间是),0(),0,(,0x 函数)(x f 的第一类间断点中的跳跃间断点.(5)显然1x 时,函数)(x f 无定义.又xexnxn x f xxnnnxn1111111)(limlim,因此xe xf x1)(,并且定义域为),1()1,(.显然函数)(x f 在区间),1(),1,(内连续.对于1x,xex f xxx1)(lim lim11,因此1x 函数)(x f 的第二类间断点中的无穷间断点.综上,函数)(x f 的连续区间是),1(),1,(,1x函数)(x f 的第二类间断点中的无穷间断点.2 (1) 因为函数)(x f 在区间),0(),0,(内是初等函数,因此函数)(x f 在,连续,只需在分段点0x处连续,即)0()()(limlim 00f x f x f xx.又在0x 处,b f )0(,b b ax x f xx)()(limlim,1)(lim limxxxex f ,因此1b.由于2)1(f ,即2b a,因此1a .综上当1,1ba 时,函数)(x f 在,上连续.(2) 因为函数)(x f 在区间),1(),1,1(),1,(内是初等函数,因此函数)(x f 在,连续,只需在分段点1x处连续,即)1()()(limlim11f x f x f xx,)1()()(limlim11f x f x f xx.在1x 处,1)1(f ,b a bx axx f xx)()(211limlim ,11)(limlim11xx f xx,因此1ba .在1x处,1)1(f ,11)(limlim11xx f xx,b a bx axx f xx)()(211limlim,因此1b a .于是有11b a b a ,解得1,0b a .综上当1,0b a 时,函数)(x f 在,上连续.3 )(x f 在1x 处连续,则)1()(lim1f x f x,即4313)(lim1xx b xb a x.由于0313lim1xx x,则有0)(lim1bxb ax,即02ba ,进而b a 2.从而313313)(limlim11xx b bx xxb x b a x x313313313)1(lim1x x x x x x x b x)1(2313)1(lim1x x x x b x b xxb x22313lim1.因此42b ,即2b,于是4a .综上当2,4ba 时,)(x f 在1x处连续.1.6 闭区间上连续函数的性质1若)0()(f a f ,则0或a .因此下面假设)0()(f a f .令)()()(a x f x f x F .显然)(x F 在],0[a 上连续,并且)2()()(),()0()0(a f a f a F a f f F .由于)2()0(a f f ,所以有0)]0()()][()0([)()0(f a f a f f a F F ,从而根据根的存在定理知,),0(a ,使得0)(F ,即)()(a f f .综上存在一点],0[a ,使得)()(a f f .2由于b x f a )(,则b b f a f a )(),(.令x x f x F )()(.显然)(x F 在],[b a 上连续,并且0)()(aa f a F ,0)()(bb f b F ,从而根据根的存在定理知,],[),(b a b a ,使得0)(F ,即)(f .3令bx b xa ax B x f A x F ,),(,)(.显然)(x F 在],[b a 上连续,并且A a F )(,B b F )(.又0AB ,因此0)()(b F a F 从而根据根的存在定理知,),(b a ,使得0)(F ,即0)(f .4方程可以变为),,(0))(())(())((321213312321x x x a x x a x xa .令))(())(())(()(213312321xxa xxa xxa x F .显然)(x F 在],[],,[3221上连续,并且))(()(322111a F ,))(()(321222a F ,))(()(131333a F .由于321,0,,321a a a ,所以0)(1F ,0)(2F ,0)(3F .进而根据根的存在定理知,),(211,),(322,使得0)(1F ,0)(2F ,即),(211,),(322,使得0313212111a a a ,0323222121a a a .5 (反证法)假设存在),(,使得0)(f .若 (或),则函数)(x f 在],[ (或],[)内连续,并且0)(f ,0)(f ,即0)()(f f .因此存在),( (或),(),即),(,使得0)(f .这与x和x是0)(x f 相邻的两个根相矛盾.故),(x都有0)(x f .6若1)sin(b a,则显然方程b x a x sin 有一个根是b a x .下面假设1)sin(b a .令b x a xx f sin )(.显然)(x f 在],0[b a上连续,并且0)0(bf ,0)]sin(1[)sin()(b a a b b a a b a b a f (因为0,0b a),进而0)()0(b a f f .因此存在),0(b a,使得0)(f ,即b x a xsin 在区间),0(b a上至少有一个根.综上方程b x a x sin 至少有一正根,并且它不超过b a .7 令)}(,),(),(min{21n x f x f x f m,)}(,),(),(m ax {21n x f x f x f M,则n x x x ,,,21中至少有一个i x 使得m x f i )(,至少有一个j x 使得M x f j )(,显然有M x f nx f x f mj nk k i )()()(1.若这个不等式中有一等号成立,则对应的i x 或j x 即为所求的点.若不等式都是严格不等式时,又)(x f 在],[j i x x 或],[i j x x 上连续,由介值定理知,至少存在一点介于i x 与j x 之间,使得nx f x f x f f n )()()()(21.综上存在],[b a ,使得nx f x f x f f n )()()()(21.习题 110,要使nn n n 11)1(1,只要1n,于是取正整数1N,当N n 时,1)1(1n nn ,因此1)1(1limnn n n.2由于当0x时,x ex~1,所以x ex3~13.进而331limlim30xx xexxx.3因为nnnn333213,则有nnnn33)321(31,并且nn33lim3,因此3)321(1limnnnn.4 令x t arcsin ,则t x sin ,并且00tx .因此1sin arcsin limlimtt xx tx.53sin 2tan 2limxxxxxxxxx x xxsin 2tan 2sin 2tan 2sin 2tan 23limxxxx xxsin 2tan 2sin tan 3limxx xx x xsin 2tan 2)cos 1(tan 3limxxxxx xsin 2tan 22132limxxxsin 2tan 221lim 082241.6任取),(0b a x ,对0,存在0k ,当00x x时,kx xk x f x f 00)()(.因此)()(0limx f x f x x,即)(x f 在0x x处连续.由0x 的任意性知,)(x f 在),(b a 上连续.当ax 0时,ka x k a f x f )()(.因此)()(lima f x f ax,即)(x f 在a x 处右连续.当0bx 时,kb x k b f x f )()(.因此)()(limb f x f bx,即)(x f 在b x处左连续.综上)(x f 在],[b a 上连续,又由于0)()(b f a f ,所以根据根的存在定理知,存在),(b a 使得0)(f .7 函数)(x f 的定义域为),2()2,1()12,12(0,k Z k k k.显然)(x f 的间断点只可能是)0,(12kZ k k x ,0x和2x.由于)(x f 在区间)0,)(12,12(k Z k k k ,)0,1(,)2,0(,),2(内是初等函数,因此)(x f 在这些区间上连续.对于2x,4222limxx,则有42sin )(222lim limxx f xx不存在,但是在1到1之间来回振荡,因此2x 是)(x f 的第二类间断点中的振荡间断点.对于0x ,21sin42sin)(2limlimxx f xx,02cos)1()(limlimxx x x f xx,即左右极限存在但不相等, 因此0x 是)(x f 的第一类间断点中的跳跃间断点.对于1x ,)1(2cos )1(2cos)1()(limlimlim111t t t xx x x f tx t xx2)1(22)1(2sin)1(limlimlimt tt t tt t ttt,因此1x 是)(x f 的第一类间断点中的可去间断点.对于)1,(12kZ kkx,xx x x f k xk x2cos)1()(limlim1212,因此12k x )1,(k Z k 是)(x f 的第二类间断点中的无穷间断点.综上所述,函数)(x f 在区间)0,)(12,12(kZ kkk ,)0,1(,)2,0(,),2(内连续;0x 是第一类间断点中的跳跃间断点;1x是第一类间断点中的可去间断点;2x 是第二类间断点中的振荡间断点;)1,(12kZ kkx是第二类间断点中的无穷间断点.8先证命题:若)(x F 在],[b a 上连续,则)(x F 在],[b a 上也连续.由于)(x F 在],[b a 上连续,则任取],[0b a x ,)()(0limx F x F x x(a x 0时取右极限,b x 0时取左极限).若)0(0)(0x F ,则根据极限的局部保号性知,在0x 的某个邻域内)0(0)(x F ,进而)()()()(00lim limx F x F x F x F x xx x()()()()(00limlimx F x F x F x F x xx x),注意a x 0时取右极限,b x 0时取左极限.因此)(x F 在],[b a 上也连续.由于)(),(x g x f 在],[b a 上连续,则)()(x g x f 在],[b a 上连续,进而)()(x g x f 在],[b a 上连续.又2)()()()()}(),(max {x g x f x g x f x g x f ,因此)}(),(max{x g x f 在],[b a 上连续.9由于n 为非零有理数,则可令qp n,其中q p,为非零整数,并且0p .进而nx与方程0qp x同解.(存在性)令px x f )(.则)(x f 在),0[内连续,并且当x时,)(x f .因此存在),0(a使得)(a f .显然)(x f 在],0[a 上连续,并且)()0(0a f f ,根据介值定理知,存在),0(a ,使得)(f ,即是方程px的一个正根.(唯一性)假设21,是方程px的两个正根. 进而有pp 21,即))((12221221112121p p p p pp ,由于0,21,则01222122111p p p p .因此21,即方程px只有一个正根.10狄利克雷(Dirichlet)函数是无理数是有理数,,x x x D 01)(.显然狄利克雷函数在),(上每一点都有定义, 但是在每一点都不连续.第二章一元函数的导数和微分2.1 导数的概念1 分析 (1) AA x f x f Ax f )(')(')('00_0;(2) 2 函数在0x x处可导,则函数在0x x处必连续;(3) 0 4ln )(x f 是常值函数,因此0)('x f ;(4) 0 驻点:函数的导数值为0的点.2 (1)xx f x x f xx f x x f xx2)()2(2)()2(0000limlim)('22)()2(20000limx f xx f x x f x.(2)xx f x x f xx f x x f xx)()()()(000000limlim)(')()(000limx f xx f x x f x.(3)hx f h x f x f h x f hh x f h x f h h)()()()(212)()(00000000lim limhx f h x f hx f h x f h )()()()(2100000lim)(')()()()(2100000limlimx f hx f h x f hx f h x f hh.(4)000)()()()(limlimx x x f x f x xx f x f x xx x)(')()(000limx f x x x f x f x x.3 (1)22)12(]1)(2['limlimlimxx xx x xxy y xxx;(2)xx x xxxx x xy y xxx2sin2sin 2cos )cos('limlimlimx xx x xxsin 22sin2sin lim;(3)xx x x xx x xy y xx)()]()[('22limlim12)12()()12(limlim2x x x x x xx xx;(4)1)1()](1['limlimlimx x xx x x x y y xxx.4因为0)0(f ,01sin)(limlimxx x f xx,即)0()(limf x f x,因此)(x f 在0x 处连续.因为xxxx xf x f xxx1sin1sin)0()(limlimlim不存在,因此)(x f 在0x 处不可导.5 (1) 因为x y cos ',故曲线在点)0,0(处的切线斜率为10cos 'x y k,进而曲线x ysin 在点)0,0(处的切线方程是x y ,法线方程是x y.(2) 因为x y sin ',故曲线在点)1,0(处的切线斜率为00sin 'x y k,进而曲线x y cos 在点)1,0(处的切线方程是1y,法线方程是0x.(3) 因为xy 1',故曲线在点)0,1(处的切线斜率为1'1x y k ,进而曲线x y ln 在点)0,1(处的切线方程是1x y,法线方程是1xy.6因为速度是t t tt S t V 22)'211()(')(2,加速度是)(')(t V t a 2)'22(t ,因此速度2)2(,6)2(a V ,即2t 秒时,运动物体的速度是s m/6,加速度是2/2s m .2.2 求导公式和求导法则1 (1)1620'3xx y .(2)'221'21211xx mxx my 32232121111xxxm mxxmxm.(3)xx y 55ln 5'4.(4)01111'22xxy .(5)52)2()3()'3)(2()3()'2('x x x x x x xy .(6)xxxx xxx x x xxxy 1ln 21)1(ln 2)')(ln 1(ln )'1('2222.(7)xxxxxxe e e e e y 3)13(ln )3ln()3(]')3[()'3('.(8))'(sin sin )'()'(cos '22x x x x x y x x x x x x x x xcos sin )12(cos sin 2sin 22.(9)x xx xy 22csc sec tan '.(10))'(ln sin ln )'(sin ln sin ''x x x x x x x x x y x x x x x x xx x xx x x x sin ln cos ln sin sin ln cos ln sin .(11)222ln 1ln 1'ln )'(ln 'xx xx x xxx x x x y .(12)2cos 1)'cos 1(sin )cos 1()'(sin 'xx x x x y xxx xxx x x cos 11cos 1cos 1cos 1sin sin )cos 1(cos 22.另解2sec21'2tan'cos 1sin '2x x xx y .(13)22''sin cos sin cos sin sin sin 'xxxx xxx x xx xx y .(14)422)')(ln ()'ln ('xx x x x x xy 342ln 21)ln (211xxx xx x x xx.(15)2)ln 1()'ln 1)(ln 1()ln 1()'ln 1('x x x x x y 22)ln 1(2)ln 1(ln 1ln 1x x x xxx x.另解222)ln 1(2)ln 1(12)ln 1()'ln 1(2'1ln 12'x x x x x x xy .(16)2222)1()'1(ln )1()'ln ('x x x x x x x y 22222222)1(ln )1(1)1(ln 2)1)(1(ln x xx xx xx x x .2 (1) 2222222)'(1'xax x axay .(2))53cos(3)'53()53cos('x x x y .(3))1sin(2)1()1sin('222xx xxy .(4)xx x xy ln 1)'(ln ln 1'.(5)xxe x ey 333)'3('.(6)222)'('2x x xex e y .(7)22'24121212211'xx x x y .(8)422212)'(11'xx x xy .(9)222'21111111111'xxxxx y .(10)222'211)1(21111111111'xx xx xx xx y .(11)x e x e x e x e y xx xx 3sin 33cos 3cos 3cos '''.(12)'2'21sin1sin'xxxxy xxx xxxxx 1cos1sin21cos11sin 222.(13))'(arccos 1arccos 1'2'2x xxx y 11arccos 111arccos 12222xx x xxxxx .(14)''11112111111111'xx xx xx xx x x y 1112112122xxxx .另解11111121)1ln()1ln(21'2'xxxx x y .(15))'(sin )sin 2(22ln )'(sin 22ln '22sin2sin x x x y xxx xx xx2sin 22ln cos )sin 2(22ln 22sin sin .(16)x xx x xx xy 4csc 42cos 2sin 2)]2(sec 2[2tan 1)'2(tan 2tan 1'2.(17)x x x x x y 6sin 3)3cos 3()3sin(2)'3(sin 3sin 2'.(18))'12(sin sin '21212'12122222x xeeeey x x x x x x x x。
中国人民大学出版社(第四版)高等数学一第1章课后习题详解

中国人民大学出版社(第四版)高等数学一第1章课后习题详解第一章函数、极限与连续内容概要名称主要内容(1.1、1.2)函数邻域(){}δδ<-=axxaU,(即(){},U a x a x aδδδ=-<<+)(){}0,0U a x x aδδ=<-<((){}0,,0U a x a x a xδδδ=-<<+≠)函数两个要素:对应法则f以及函数的定义域D由此,两函数相等⇔两要素相同;(与自变量用何字母表示无关)解析表示法的函数类型:显函数,隐函数,分段函数;特性局部有界性对集合DX⊂,若存在正数M,使对所有Xx∈,恒有()Mxf<,称函数()xf在X上有界,或()xf是X上的有界函数;反之无界,即任意正数M(无论M多大),总存在(能找到)Xx∈,使得()Mxf>局部单调性区间DI⊂,对区间上任意两点21xx,当21xx<时,恒有:()()21xfxf<,称函数在区间I上是单调增加函数;反之,若()()21xfxf>,则称函数在区间I上是单调减小函数;奇偶性设函数()xf的定义域D关于原点对称;若Dx∈∀,恒有()()xfxf=-,则称()xf是偶函数;若Dx∈∀,恒有()()xfxf-=-,则称()x f是奇函数;周期性若存在非零常数T,使得对Dx∈∀,有()DTx∈±,且()()x fTxf=+,则称()x f是周期函数;初等函数几类基本初等函数:幂函数;指数函数;对数函数;三角函数;反三角函数;反函数求法和性质;复合函数性质;初等函数课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① alog□,( □0>) ② /N □, ( □0≠) ③ (0)≥④ arcsin([]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ; (2)31121121arcsin ≤≤-⇒≤-≤-⇒-=x x x y ;(3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,xx g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数; 思路:注意自变量的不同范围;解:216sin )6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。
大学高等数学基础教材答案

大学高等数学基础教材答案(字数:1631)第一章:函数与极限1. 函数与映射1.1 函数定义与性质1.2 函数的四则运算1.3 反函数与复合函数2. 极限的概念与性质2.1 极限的定义2.2 极限存在的判定定理2.3 极限的性质与四则运算2.4 极限存在的唯一性3. 极限运算法则3.1 数列极限的性质3.2 函数极限的性质3.3 极限运算法则第二章:导数与微分1. 导数的概念与性质1.1 导数定义1.2 导数存在的条件1.3 函数可导的判定定理2. 导数运算法则2.1 基本导数运算法则2.2 高阶导数与Leibniz公式3. 高阶导数与隐函数求导3.1 高阶导数定义与性质3.2 隐函数求导原理第三章:微分中值定理及其应用1. 微分中值定理1.1 罗尔中值定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 函数的极值与最值2.1 函数极值的判定定理2.2 求解函数最值的方法3. 函数图形的简单性质与描绘 3.1 函数的对称轴与奇偶性3.2 函数的图像描绘第四章:不定积分1. 不定积分的定义与性质1.1 不定积分的定义1.2 不定积分的基本性质2. 基本不定积分与换元积分法 2.1 基本不定积分表2.2 第一换元法2.3 第二换元法3. 分部积分法与有理函数的积分 3.1 分部积分法3.2 有理函数的积分第五章:定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的基本性质1.3 可积函数与Riemann积分2. 定积分计算方法2.1 基本积分公式2.2 定积分的几何应用3. 牛顿-莱布尼茨公式与定积分的换元法 3.1 牛顿-莱布尼茨公式3.2 定积分的换元法第六章:微分方程1. 微分方程的基本概念1.1 微分方程的定义与解1.2 微分方程的阶与类型2. 可分离变量的微分方程2.1 可分离变量的微分方程解法2.2 可分离变量的应用3. 一阶线性微分方程3.1 一阶线性微分方程解法3.2 一阶线性微分方程的应用第七章:级数1. 级数的定义及基本性质1.1 级数的定义1.2 级数的基本性质1.3 级数的敛散性判定2. 收敛级数的性质与判别法2.1 收敛级数性质2.2 正项级数判别法2.3 任意项级数判别法3. 幂级数3.1 幂级数的性质3.2 幂级数的收敛半径以上是大学高等数学基础教材的答案,希望对你的学习有所帮助。
北大版高等数学教材答案

北大版高等数学教材答案第一章极限和连续1.1 从数列的极限到函数的极限1.1.1 数列极限的定义1.1.2 数列极限的性质1.1.3 函数极限的定义1.1.4 函数极限的性质1.1.5 无穷小与无穷大1.2 一元函数的连续性1.2.1 函数连续的定义1.2.2 连续函数的性质1.2.3 闭区间上连续函数的性质1.3 极限存在准则1.3.1 两个重要极限存在准则1.3.2 极限存在准则的应用1.4 函数的间断点1.4.1 第一类间断点1.4.2 第二类间断点1.4.3 间断点的分类1.4.4 间断点与连续性的关系第二章导数与微分2.1 导数的概念与几何意义2.1.1 导数的定义2.1.2 几何意义2.1.3 导数的性质2.2 导数的计算2.2.1 利用导数定义计算2.2.2 导数的四则运算2.2.3 高阶导数2.3 函数的微分与高阶导数2.3.1 函数的微分2.3.2 高阶导数的计算2.4 切线与法线2.4.1 切线的定义2.4.2 切线与导数的关系2.4.3 法线的定义2.4.4 法线与导数的关系2.5 隐函数与参数方程的导数2.5.1 隐函数的导数2.5.2 参数方程的导数2.6 可导与连续函数第三章微分中值定理与导数应用3.1 Rolle定理与Lagrange中值定理3.1.1 Rolle定理的条件与结论3.1.2 Lagrange中值定理的条件与结论3.1.3 多次应用Lagrange中值定理3.2 函数的单调性与极值3.2.1 函数的单调性与单调区间3.2.2 极值的必要条件与充分条件3.2.3 极值的判定和求解3.3 函数图形的描绘3.3.1 函数的对称性3.3.2 函数的周期性3.3.3 函数的凹凸性与拐点3.4 洛必达法则与泰勒展开3.4.1 洛必达法则3.4.2 泰勒展开3.5 导数在自然科学中的应用3.5.1 导数在物理学中的应用3.5.2 导数在生物学中的应用3.5.3 导数在经济学中的应用第四章不定积分4.1 基本积分公式4.1.1 基本积分公式的推导4.1.2 基本积分公式的应用4.2 第一换元法4.2.1 第一换元法的步骤4.2.2 第一换元法的应用4.3 分部积分法4.3.1 分部积分法的推导4.3.2 分部积分法的应用4.4 第二换元法4.4.1 第二换元法的步骤4.4.2 第二换元法的应用4.5 有理函数的积分4.5.1 有理函数的积分的一般步骤4.5.2 有理函数分解的方法4.6 函数的定义积分4.6.1 定义积分的概念4.6.2 定义积分的性质4.7 牛顿—莱布尼茨公式与定积分的应用4.7.1 牛顿—莱布尼茨公式4.7.2 定积分在曲线长度计算中的应用4.7.3 定积分在平面图形的面积计算中的应用第五章定积分5.1 定积分的定义与性质5.1.1 定积分的定义5.1.2 定积分的性质5.2 定积分的计算5.2.1 分割求和法5.2.2 定积分的换元法5.2.3 定积分的分部积分法5.3 定积分的应用5.3.1 定积分在物理学中的应用5.3.2 定积分在几何学中的应用5.3.3 定积分在经济学中的应用5.4 不定积分与定积分之间的关系5.4.1 不定积分与定积分的定义5.4.2 不定积分与定积分的性质5.4.3 不定积分与定积分的计算方式...(以此类推,继续描述后续章节内容)这是根据北大版高等数学教材的章节划分及内容概要,提供了一个大纲结构。
第二版高等数学教材答案

第二版高等数学教材答案由于高等数学是一门较为复杂的学科,学生在学习过程中常常会遇到一些难题和疑惑。
为了帮助广大学生更好地掌握高等数学知识,提高学习效果,我们特别整理了《第二版高等数学教材答案》。
本答案提供了全书各章节的详细解析,旨在给学生提供学习的参考和借鉴。
第一章:极限和连续1.1 实数与数列1.2 函数与极限1.3 无穷小与无穷大1.4 极限运算法则1.5 极限存在准则1.6 数列极限的性质1.7 函数的极限1.8 连续与间断1.9 无穷小的比较1.10 极限与连续的关系第二章:导数与微分2.1 函数的概念2.2 三角函数与反三角函数2.3 反函数与复合函数2.4 极限与连续2.5 导数概念2.6 导数的几何意义与物理应用2.7 导数的运算法则2.8 高阶导数2.9 隐函数与参数方程的导数2.10 函数的微分2.11 中值定理与导数的应用第三章:定积分3.1 面积与定积分3.2 定积分的概念与性质3.3 定积分的计算3.4 反常积分3.5 定积分与无穷小量3.6 牛顿—莱布尼兹公式3.7 定积分的应用第四章:不定积分和微分方程4.1 不定积分概念4.2 基本积分公式4.3 第一换元法4.4 分部积分法4.5 三角函数的积分4.6 有理函数的积分4.7 反常积分4.8 微分方程的基本概念4.9 可分离变量的微分方程4.10 齐次方程4.11 一阶线性微分方程4.12 可降阶的高阶微分方程第五章:无穷级数5.1 数项级数概念5.2 正项级数收敛的判别法与性质5.3 收敛级数的四则运算5.4 交错级数5.5 绝对收敛与条件收敛5.6 幂级数5.7 函数展开成幂级数第六章:多元函数微分学6.1 多元函数的概念6.2 偏导数6.3 全微分6.4 多元复合函数的求导法则6.5 隐函数与参数方程的求导6.6 微分的几何应用6.7 方向导数与梯度6.8 极值问题6.9 条件极值与最小二乘法6.10 多元函数积分学的基本概念以上是《第二版高等数学教材答案》各章节的内容概述。
高等数学重庆大学版教材答案

高等数学重庆大学版教材答案第一章:极限与连续1.1 极限的概念与性质1.2 极限存在准则及常用极限第二章:函数与导数2.1 函数的概念与性质2.2 一次函数与多项式函数2.3 指数函数与对数函数2.4 三角函数与反三角函数2.5 导数的概念及其几何意义第三章:微分学应用3.1 微分学中的中值定理3.2 泰勒公式与函数的凹凸性3.3 曲线的渐近线与曲率第四章:不定积分与定积分4.1 不定积分的概念与性质4.2 基本积分公式及其应用4.3 定积分的概念与性质4.4 定积分的计算方法第五章:常微分方程5.1 常微分方程的基本概念与解法5.2 一阶线性常微分方程5.3 高阶常系数线性微分方程第六章:多元函数微分学6.1 多元函数的概念与性质6.2 多元函数的偏导数6.3 多元函数的全微分与全导数第七章:多元函数积分学7.1 二重积分及其计算方法7.2 三重积分及其计算方法7.3 曲线与曲面的面积与曲线积分第八章:无穷级数与幂级数8.1 数项级数的概念与性质8.2 收敛级数判别法8.3 幂级数及其收敛半径第九章:向量代数与空间解析几何9.1 向量的概念与性质9.2 空间几何与平面方程第十章:连续性与一元函数微积分应用10.1 函数连续性与间断点10.2 一元函数微积分应用第十一章:二重积分与曲线积分应用11.1 二重积分应用11.2 曲线积分应用第十二章:无穷级数与多元函数微积分应用12.1 数项级数的应用12.2 多元函数微积分的应用总结:以上为高等数学重庆大学版教材的答案提纲。
希望这个提纲能够帮助你更好地学习和理解高等数学的知识。
在实际讲授过程中,还请参考教材详细内容和课堂教学,确保准确性和全面性。
祝你学习进步!。
高等数学第一章函数例题及答案

高等数学第一章 函数、极限、连续§1.1 函数一.求函数的定义域例1.求函数()2100ln ln ln x x x f -+=的定义域 例2.求5ln 1-+-=x x x y 的定义域例3.设()x f 的定义域为[]()0,>-a a a ,求()12-x f 的定义域 例4.设()⎩⎨⎧≤≤<≤=42 ,220 ,1x x x g 求()()()12-+=x g x g x f 的定义域,并求⎪⎭⎫ ⎝⎛23f 。
二.求函数的值域 例1.求3311-=x ey 的值域例2.求()()⎪⎩⎪⎨⎧>--≤≤---<-==2,2122,52,323x x x x x x x f y 的值域,并求它的反函数 三.求复合函数有关表达式 1.已知()x f 和()x g ,求()[]x g f 例1.已知()1-=x xx f ,求()⎥⎦⎤⎢⎣⎡-11x f f 例2.设()21x x x f +=,求()()[]()重复合n x f x f f f n =例3.设()⎩⎨⎧>≤-=2,02,42x x x x f ,求()[]x f f 2.已知()x g 和()[]x g f ,求()x f 例1.设()x e e e f x xx++=+21,求()x f例2.已知()xxxee f -=',且()01=f ,求()x f例3.设()x x fsin =,求()x f '例4.已知()x x f 2cos 3sin -=,求证()x x f 2cos 3cos += 3.已知()x f 和()[]x g f ,求()x g例.已知()()x x f +=1ln ,()[]x x g f =,求()x g 解:()[]x fx g 1-=实际上为求反函数问题()[]()[]x x g x g f =+=1ln ,()x e x g =+1 ()1-=x e x g 4.有关复合函数方程 例.设()x x f x x f 2311-=⎪⎭⎫⎝⎛-+,求()x f 四.有关四种性质例1.设()()x f x F =',则下列结论正确的是[ ](A )若()x f 为奇函数,则()x F 为偶函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1-1 第34页
第4题 求下列函数的自然定义域
(1)由题意知:320x +≥,解得23x ≥-. 因此x 的定义域为)2,3⎡-+∞⎢⎣ 备注:偶次根式的被开方数应该大于等于零。
(2)由题意知:2
10x -≠,解得:1x ≠±.
因此x 的定义域为()()(),11,11,-∞-⋃-⋃+∞
备注:分式的分母不能为零
(3)由题意可知: 2010x x ≠⎧⎨-≥⎩
解得 011
x x ≠⎧⎨-≤≤⎩ 因此,函数的自然定义域为[)(]1,00,1-⋃
备注:偶次根式的被开方数应该大于等于零;分式的分母不能为零
(4)由题意可知:
224040
x x ⎧-≥⎪⎨-≠⎪⎩ 解得:22x -<<
因此函数的自然定义域为()2,2-
备注:偶次根式的被开方数应该大于等于零;分式的分母不能为零
(5)由题意知
0x ≥
因此函数的自然定义域为[)0,+∞
备注:偶次根式的被开方数应该大于等于零
(6)由题意可知:
12x k π
π+≠+,k Z ∈
解得:12x k π
π≠+-
因此函数的自然定义域为1,2x x k k Z ππ⎧
⎫≠+-∈⎨⎬⎩⎭
备注:tan x 的定义域为,2x x k k Z ππ⎧
⎫≠+∈⎨⎬⎩⎭
(7)由题意知:
131x -≤-≤
解得:24x ≤≤
因此函数的自然定义域为[]2,4
备注:arcsin x 的定义域为[]1,1-
(8)由题意可知:
300
x x -≥⎧⎨≠⎩ 解得:30x x ≤⎧⎨
≠⎩ 因此函数的自然定义域为()(],00,3-∞⋃
备注:偶次根式的被开方数应该大于等于零;分式的分母不能为零 arctan x 的自然定义域为R
(9)由题意知:
10x +>
解得:1x >-
因此函数的自然定义域为()1,-+∞
备注:对数函数的真数要大于零
(10)由题意知:0x ≠
因此函数的自然定义域为()(),00,-∞⋃+∞ 备注:分式的分母不能为零,x e 的定义域为R。