微积分课后习题答案
高等数学教材微积分课后答案

高等数学教材微积分课后答案第一章微积分基本概念1. 第一节课后习题答案1.1 单项选择题1. A2. B3. C4. D5. A1.2 填空题1. 42. 273. 184. 05. 21.3 解答题1. (a) 首先将函数对x求导,得到f'(x) = 6x^2 + 12x - 8。
令f'(x) = 0,解得x = -2和x = 2/3。
然后再带入原函数,得到f(-2) = 0和f(2/3) = -1/27。
因此,函数在x = -2和x = 2/3处取得极值,极大值为0,极小值为-1/27。
(b) 由于f'(x) = 6x^2 + 12x - 8 > 0,说明函数在(-∞, -2)和(2/3, +∞)上为增函数;当-2 < x < 2/3时,f'(x) < 0,说明函数在(-2, 2/3)上为减函数。
结合图像,可以得到函数的单调性为:在(-∞, -2)上递增,在(-2, 2/3)上递减,在(2/3, +∞)上递增。
2. 第二节课后习题答案2.1 单项选择题1. C2. A3. D4. B5. C2.2 填空题1. 82. 123. 04. -∞5. +∞2.3 解答题1. (a) 首先求函数的导数,得到f'(x) = 2e^x - 12x。
令f'(x) = 0,解得x = ln6。
然后带入原函数,得到f(ln6) = 4ln6 - 6ln^2(6)。
因此,函数在x = ln6处取得极值。
(b) 由于f'(x) = 2e^x - 12x > 0,说明函数在(-∞, ln6)上为增函数;当x > ln6时,f'(x) < 0,说明函数在(ln6, +∞)上为减函数。
结合图像,可以得到函数的单调性为:在(-∞, ln6)上递增,在(ln6, +∞)上递减。
第二章微分学中值定理1. 第三节课后习题答案1.1 单项选择题1. B2. D3. C4. A5. D1.2 填空题1. 42. 53. π/24. √35. 01.3 解答题1. 根据罗尔定理,首先证明f(x)在区间[0, 1]上连续。
《微积分》课后习题答案

习题五 (A )1.求函数)(x f ,使)3)(2()(x x x f --=',且0)1(=f .解:6x 5x )(f 2++-='xC x x x x f +++-=⇒62531)(236230625310)1(=⇒=+++-⇒=C C f 62362531)(23+++-=x x x x f2.一曲线)(x f y =过点(0,2),且其上任意点的斜率为x x e 321+,求)(x f .解:x e x x f 321)(+=C e x x f x ++=⇒341)(21232)0(-=⇒=+⇒=C C f1341)(2-+=⇒x e x x f 3.已知)(x f 的一个原函数为2e x,求⎰'x x f d )(.解:222)()(x x xe e x f ='=⎰+=+='C xe C x f dx x f x 22)()(4.一质点作直线运动,如果已知其速度为t t dtdxsin 32-=,初始位移为20=s ,求s 和t 的函数关系.解:t t t S sin 3)(2-=C t t t S ++=⇒cos )(31212)0(=⇒=+⇒=C C S1cos )(3++=⇒t t t S5.设[]211)(ln x x f +=',求)(x f .解:[]1arctan )(ln 11)(ln C x x f x x f +=⇒+=')0()(arctan arctan 1>==⇒+C Ce e x f x C x6.求函数)(x f ,使5e 1111)(22+--++='x x x x f 且0)0(=f .解:C x e x x x f e x x x f x x ++-++=⇒--++=+521arcsin 1ln )(1111)(252 21002100)0(=⇒=++-+=C C f 21521arcsin 1ln )(2++-++=⇒x e x x x f x7.求下列函数的不定积分 (1)⎰-x xx x d 2(2)⎰-)1(t a dt(3)⎰mnx x d (4)⎰+-x xx d 1122(5)⎰++x x x d 114 (6)⎰++x xx xd cos sin 2sin 1(7)⎰+x x x x d cos sin 2cos (8)⎰++x xxd 2cos 1cos 12(9)⎰x x x xd cos sin 2cos 22 (10)x x x d sin 2cos 22⎰⎪⎭⎫⎝⎛+ (11)⎰-x xx x d cos sin12cos 22(12)⎰+-x xx d 1e 1e 2 (13)⎰⨯-⨯x xxx d 85382 (14)x xx x d 105211⎰-+-(15)⎰-x xx -x x d )e (e (16)⎰++x xx x d )31)(2e ( (17)x x x xx d 1111⎰⎪⎪⎭⎫⎝⎛+-+-+ (18)⎰----x x x x x x d 151)1(222(19)x xx d 1142⎰-+ (20)⎰-+-x xx xd sincos 1cos 1222(21)⎰+-+x x x x x d )1(1223 (22)⎰+-x x x x d 1224解:(1)=⎰+-=-C x x dxx x 252323215232)( (2)=⎰+-=--C tatt d a2121)1(2)1()1(.1(3)=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+=-=+=≠-≠++=⎰⎰⎰+0 0, m C x dx n m C x In dx x m n m C x m n m dx x m n m m n m n(4)=⎰+-=⎪⎪⎭⎫⎝⎛+-C x x dx x arctan 2 121(5)=C x x x dx x x x x ++-=++-+⎰arctan 2311)1(32222(6)=⎰⎰++=+++dx xx x x dx xx xx x x cos sin )cos (sin cos sin cos sin 2cos sin 222=⎰+-=+C x x dx x x cos sin )cos (sin(7)=⎰⎰-=+-dx x x dx xx xx )sin (cos cos sin sin cos 22=C x x ++cos sin (8)=⎰⎰++=⎪⎪⎭⎫⎝⎛+=+C x x dx x dx xx2tan 21 1cos 121cos 2cos 1222 (9)=⎰⎰+--=⎪⎪⎭⎫ ⎝⎛-=-C x x dx x x dx x x xx tan cot cos 1sin 1cos sin sin cos 222222 (10)=⎰⎰⎪⎭⎫ ⎝⎛+-=-++dx x x dx x x 122cos 2cos 22cos 121cos =C x x x +-+2sin 41sin 21(11)=⎰⎰+-=-=---C x dx x dx xx xx x x tan 2cos 12cos sin sin cos sin cos 2222(12)=()⎰+-=-C x e dx e x x 1(13)=⎰⎰+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-C x dx dx xx85ln 85328532(14)=⎰⎰++-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛--C dx dx x x xx22ln 5155ln 22151512(15)=⎰+-=⎪⎭⎫⎝⎛-C x e dx x e x x ln 1(16)=[]⎰+++++=+++C e e dx e e xx x xxxxx6ln 63ln l )3(2ln 2)3(26(17)=⎰⎰+=-=--++C x dx xdx xx x arcsin 211211122(18)=⎰+--=⎪⎪⎭⎫⎝⎛---C x x x dx x xx arcsin 5ln 21151222 (19)=⎰+=-C x dx xarcsin 112(20)=⎰⎰+-=⎪⎪⎭⎫⎝⎛-=-C x x dx x dx xx2tan 211cos 121cos 2cos 1222 (21)=⎰⎰+++=⎪⎪⎭⎫ ⎝⎛++-=+-+C x x x dx x x x dx x x x x arctan 1ln 1111)1(1)1(22222 (22)=⎰⎰++-=⎪⎪⎭⎫ ⎝⎛++-=+++--C x x x dx x x dx x x x arctan 22312212)1(13222248.用换元积分法计算下列各题. (1)⎰+-x x x d 24 (2)⎰-x x d )23(8(3)x xxd e 3e 42⎰+ (4)⎰⎪⎭⎫ ⎝⎛+32cos d 2πx x(5)⎰-x xx d 432 (6)⎰+-52xd 2x x(7)⎰-+xxxe ed (8)⎰--xxxe e d(9)⎰-1tan cos d 2x xx(10)⎰)ln -(1d x x x(11)⎰-xx x2ln 1d (12)⎰-x xx d e9e 2(13)⎰+x xxx d sin2cos sin (14)⎰-x x x d 212(15)x xx x d 1arctan 2⎰++ (16)⎰+xxe1d(17)x x x d 11arctan2⎰+ (18)⎰+--x x x x d e )1(422(19)⎰+x xx d 1335(20)⎰+x xxx d ln 2ln(21)⎰+x xx d sin 1sin 2 (22)⎰+-x x xx d 2sin 1cos sin(23)⎰+2)cos 2(sin d x x x(24)⎰x xx xd cos sin tan ln(25)⎰+xx x22cos 3sin d (26)⎰-++1212d x x s(27)⎰+++3)1(1d x x x(28)⎰++52d 24x xxx(29)⎰+x x x x d )ln 1( (30)x x x x d 12⎰-+(31)⎰+)1(ln ln d 2x x x x(32)x x x xd )1(arcsin ⎰-(33)⎰xx x x cos sin d (34)x x x d )1(x arctan ⎰+(35)⎰+x xxd cos 1cos 2(36)⎰xdx x 3cos 2sin(37)x x x x ⎰-d 2cos )sin (cos (38)x xxx d sin1cos sin 4⎰+ (39)⎰x xd sin14(40)⎰xdx 3tan解:(1)=C x x x d x x dx x x ++-+=+⎪⎪⎭⎫ ⎝⎛+-+=+-+⎰⎰2123)2(12)2(32)2(262262(2)=⎰+-=--C x x d x 98)23(271)23()23(31 (3)=()()⎰+=+C e e e d x xx3arctan3213212222(4)=C x x x d +⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎰32tan 2132cos 32212πππ (5)=⎰⎰+--=---=-C x x x d x x d 333334324)4(314)(31(6)=C x x x d +-=+--⎰21arctan 214)1()1(2(7)=⎰+=+C e ee d x xx arctan 1)(2(8)=C e e e e d x x x x ++-=-⎰11ln 211)(2(9)=⎰+-=--C x x x d 21)1(tan 21tan )1(tan(10)=C xx d +--=---⎰lnx 1ln ln 1)ln 1((11)=⎰+=-C x x x d ln arcsin ln 1)(ln 2(12)=C e e e d x x x +=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛⎰3arcsin2922222(13)=C x xx d x x xd ++=++=+⎰⎰2222sin 2ln 21sin 2)sin 2(21sin 2)(sin sin (14)=C x x x d +--=---⎰222212121)21(41(15)=C x x x d x x x d +++=+++⎰⎰23222)(arctan 32)1ln(21)(arctan arctan 1)1(21(16)=⎰⎰⎰⎰+⎪⎪⎭⎫⎝⎛+=++-=+=+C e e e e d e e d e e e d dx e e e x x xx xx xxx xxx 1ln 1)1()()1()()1( (17)=C x d x xx d x +⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=+⎪⎭⎫⎝⎛-⎰⎰221arctan 211arctan 1arctan 1111arctan (18)=⎰+=+-+-+-C e x x d e x x x x 422422221)42(21 (19)=)(131)(131333333t d tttx x d xx ⎰⎰+=+令⎰⎰⎰⎪⎪⎪⎭⎫ ⎝⎛+-+=+-+=-)()1()()1(31)(1113131323t d t t d t t d t t C x x C t t ++-+=++-+=3233533235)1(21)1(51)1(21)1(51(20)⎰⎰+=+=tt td txx xd 2)(ln ln 2)(ln ln 令⎰⎰⎰++-++=+-+=tt d t d t tt d t 2)2(2)2()2(2)(2221C x x C t t ++-+=++-+=21232123)ln 2(4)ln 2(32)2(4)2(32 (21)⎰+-=--=C x xx d 2cos arcsincos 2)(cos 2(22)C x x x x x x d ++=++-=-⎰12)cos (sin )cos (sin )cos (sin(23)C x x x d ++-=++=-⎰12)2(tan )2(tan )2(tan(24)⎰⎰+===C x x xd x d x x 2)tan (ln 21)tan (ln tan ln )(tan tan tan ln (25)⎰⎰+=+=+=C x x x d xx d )tan 3tan(31)tan 3(1)tan 3(31tan31)(tan 22(26)C x x dx x x +⎥⎥⎦⎤⎢⎢⎣⎡--+=--+=⎰2323)12(32)12(324121212C x x +⎥⎥⎦⎤⎢⎢⎣⎡--+=2323)12()12(61(27)⎰⎰+=+++++=dt t t tt x x x x d 3321)1(1)1(令⎰++=+=+=C x C t dt t1arctan 2arctan 21122(28)⎰++=+++=C x xx d 21arctan 414)1()1(212222 (29)()⎰⎰+=+==+=C x C e e d dx x e x x x x x x x ln ln ln l )ln 1( (30)⎰⎰⎰++-=++-=+-=C x x x d x dx x dx x x x 23232222)1(3131)1(121)1((31)⎰⎰+=+=)1()(ln 令)1(ln ln )(ln 22tt t d tx x x d⎰++=⎪⎪⎭⎫ ⎝⎛++-=C t t t t d t t d 1ln 211)1()(21222222 C x x C x x ++-=++=)1ln(ln 21ln ln 1ln ln ln 2122(32)t x ==arcsin 令,则tdt t dt cos sin 2=⎰⎰+=+==C x C t dt t tdt t tt t 232322)(arcsin 34342cos sin 2cos sin(33)⎰⎰+===C x xx d x x x d tan ln 2tan )(tan cos sin)(2(34)⎰⎰+==+=Cx x d x x d x x22)(arctan arctan arctan 2)(1arctan 2(35)⎰+-+=-=C xx xx d sin 2sin 2ln221sin2)(sin 2(36)⎰⎰+-=-==C x x xd xdx x x 543cos 52cos cos 2cos cos sin 2 (37)⎰⎰---=+-=)sin (cos )sin (cos )sin (cos )sin (cos 22x x d x x dx x x x xC x x +--=3)sin (cos 31(38)⎰+=+=C x x x d 242sin arctan 21sin 1)(sin 21(39)⎰⎰⎰+--=+-=-==C x x x d x xx d dx xx cot cot 31)(cot )1(cot sin )(cot sinsin 132(40)⎰⎰⎰+-=-=-=C x x xdx x xd xdx x cos ln )(tan 21tan tan tan tan )1(sec 229.求下列函数的不定积分 (1)⎰+)1(d 7x x x(2)⎰-x x x d 12(3)⎰+-x x d 3211 (4)⎰+x x x-1)(1d(5)⎰+3d xx x (6)⎰-+x x xx d 21 (7)x x xd 11632⎰++ (8)x x d e 1⎰+ (9)⎰+-+x x x x d 4222(10)x x x d )1(3⎰-解:(1)⎰⎰++-=+=+=C x x x x dx dx x x x 77777761ln 71ln )1(71)1((2)令t x =-1,则tdt dx t x 2 , 16-=-=⎰⎰+++-=+--=--=C t t t dt t t t dt t t t )315271(2)2(2)2()1(3572462(3)令t x =-21,则tdt dx t x -=-= , 212⎰⎰++-+--=+++-=+---+=C x C t t dt t dt t t 321ln 3213ln 3)331()(31 (4)令t x =-1,则tdt dx t x 2 , 12-=-=⎰⎰+---+-=+-+-=-=--=C xx C tt tdtdt tt t1212ln221.222ln221.222).2(222(5)令t x =6,则dt t dx t x 566 , ==⎰⎰⎰+-+-=+=+=dt t t t dt t t dt tt t 11)1(616623235C t t t t ++-+-=)1ln 2131(623 C t t t t ++-+-=1ln 663223(6)令t x =-2,则tdt dx t x 2 , 22=+=⎰⎰++=++=++=C t t dt t tdt tt 2arctan22)211(22.23222C x x +-+-=22arctan222(7)令t x =+312)1(,则dt t xds 232=⎰⎰+++-=++-=+=C t t t dt t t dt t t )1ln 21(9111919222C x x x +++++-+=1)1(ln )1()1(29312312322 (8)令t e x =+1,则12 , )1ln(22-=-=t tdt dx t x⎰++++-++=++-+=-=C e e e C t t t dt t t x x x)1111ln 211(2)11ln 21(21222(9)令t x =-1,则dt dx t x =+= , 1⎰⎰⎰+++++=+++=++=C t t tdt t dt t t dt t t 3ln 3)3(333332212223C x x x x x ++-+-++-=421ln 3)42(2212(10)令t x =2,则t x =⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡-+--=-+--=-=dt t t dt t t dt t t 3233)1(1)1(121)1(1121)1(21 C t t C t t +-+-=+⎥⎥⎦⎤⎢⎢⎣⎡-----=22)1(141)1(21)1(1211121Cx x C x x +--=+-+-=222222)1(412)1(141)1(2110.设⎰⎰+=+=x xb x a xx x xb x a xx F d cos sin cos )G( , d cos sin sin )(求)()(x bG x aF +;)()(x bF x aG -;)(x F ;)(x G .解:⎰+=++=+C x dx xb x a xb x a x bG x aF cos sin cos sin )()(⎰⎰++=++=+-=-C x b x a dx xb x a x b x a d dx xb x a xb x a x bF x aG cos sin ln cos sin )cos sin (sin sin sin cos )()(C bx x b x a a b a x G +++-=⇒)cos sin ln (1)(22C ax x b x a b b a x F +++--=)cos sin ln (1)(2211.用三角代换求下列不定积分. (1)⎰-221x d x x(2)⎰32)-(1d x x(3)⎰-x x x d 122(4)⎰-x xa x d 22 (5)⎰-322)1(d x xx(6)x x x d )1(2101298⎰-解:(1)令t x sin =,则)2t ( cos π<=tdt dx⎰⎰+--=+-=+-===C x x C x C t t dtdt tt t2221)cot(arcsin cot sin cos sincos(2)令t x sin =,则)2t ( cos π<=tdt dxC xx C x C t tdtdt tt+-=+=+===⎰⎰2231)tan(arcsin tan cos cos cos(3)令t x sin =,则)2t ( cos π<=tdt dxC t t dt t tdt dt t t t +-=-===⎰⎰⎰2sin 412122cos 1sin cos cos sin 22 C x x x C x x +--=+-=2141arcsin 21)(arcsin 2sin 41arcsin 21 (4)令t a x sec =,则t a dx tan sec =,)20(π<<t⎰⎰⎰+-=-===C t a dt t a tdt a dt ta tt a t a )1(tan )1(sec tan sec tan sec .tan 22C saa a x C xa a a x a +--=+--=arccos )arccos (2222(5)令t x sin =,则tdt dx cos = 2π<t⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛+-=-===dt t t dt t t dt t t dt tt t22222232cos 1cos 11cos )cos 1(1cos sin1cos sincosC xx x x C t t +---=++-=2211tan cot (6)令t x sin =,则tdt dx cos = 2π<t⎰⎰⎰+⎪⎪⎭⎫ ⎝⎛-=+====C x x C td dt t dt tt t 992999810098101981991tan 991tan tan cos sin cos cos sin12.用分部积分法计算下列积分.(1)⎰++x x x x d e )31(2 (2)⎰--x x x d e 1 (3)⎰-x x x x d )sin (cos e (4)⎰x x x d cos (5)⎰x x d arcsin (6)⎰+x x d )4ln(2 (7)⎰x x x x d cos sin 4 (8)x x d l arctan 2⎰- (9)⎰x xx d )ln(ln (10)⎰x x x d sec 22 (11)⎰x x x d arctan 2 (12)x x d )(arccos 2 (13)⎰+-x x xxd 44ln 2(14)⎰+x x xx d arctan 122(15)⎰+x x x x d arctan )1(632 (16)⎰x x xd cos tan ln(17)⎰∙x x x d sin sec ln (18)⎰∙x x x d tan ln 2sin(19)x x x x d ln 32ln 22⎰⎪⎭⎫ ⎝⎛+ (20)⎰x x x d arctan 2解:(1)⎰⎰+-++=++=dx x e e x x de x x x x x )32()31()31(22⎰++-++=dx e x e e x x x x x 2)32()31(2(2)C ex C dx e xe xde e x x x x ++-=+⎪⎭⎫ ⎝⎛--=-=+----⎰⎰)1()1(311 (3)⎰⎰⎰⎰-=-=xdx e xde xdx e xdx e x x x x sin cos sin cos⎰⎰+=-+=C x e xdx e xdx e x e x x x x cos sin sin cos(4)⎰⎰++=-==C x x x xdx x x x sd cos sin sin sin sin(5)⎰⎰--+=--=2221)1(21arcsin 1arcsin xx d x x xx x xC x x x +-+=21arcsin(6)⎰⎰⎰⎪⎪⎭⎫ ⎝⎛+--+=+-+=+=dx x x x dx x x x x dx x 2222224412)4ln(42)4ln()4ln( C xx x x ++-+=2arctan 42)4ln(2(7)⎰⎰+--=+-=-=C x x x xdx x x x xd 2sin 212cos 2cos cos 2cos(8)⎰⎰---=-+---=dx x x s dx x xx x x x 111arctan )1(121121.1arctan 222222C x x x x +-+--=1ln 1arctan 22(9)⎰⎰+-====C t t t tdt e x t x x d x tln ln ln )(ln )ln(lnCx x C x x x +-=+-=)1)(ln(ln ln ln )ln(ln .ln(10)⎰⎰++=-==C x x x xdx x x x xd cos ln 2tan 2tan 2tan 2)(tan 2 (11)⎰⎰⎰⎪⎪⎭⎫ ⎝⎛+-+-=++-=-=dx x x x xxdx x x x x xxd 11arctan 111arctan )1(arctanC x x x x ++-+-=)1ln(21ln arctan 2 (12)⎰⎰-=--===tdt t t t tdt t tdtdx tx .cos 2cos sin sin arccos 22⎰⎰+--=--=-=C t t t t t tdt t t t t t td t t cos 2sin 2cos )sin sin (2cos sin 2cos 222C x x x x x +---=21arccos 2arccos 2(13)⎰⎰⎰-+--=⎪⎭⎫⎝⎛--=-=dx x x x x x xd dx x x21.121.ln 21ln )2(ln 2 C xx x x dx x x x x +-+--=⎪⎭⎫⎝⎛--+--=⎰2ln 212ln 121212ln(14)⎰⎰⎰+-=⎪⎪⎭⎫⎝⎛+-=xdx xxdx xdx x arctan 11arctan arctan 11122⎰⎰-+-=)(arctan arctan 1arctan x xd dx x xx xC x x x x +-+-=22arctan 21)1ln(21arctan(15)()()()dx xx x x x xd 223232311.1arctan 11arctan ++-+=⎥⎦⎤⎢⎣⎡+=⎰⎰()⎰+++-+=dx x x x x x112arctan 13623()⎰⎪⎪⎭⎫ ⎝⎛+-++--+=dx x x x x x x x 1212arctan 122423()()C x x x x x x x +++--+-+=1ln 3151arctan 1223523 (16)⎰==t x x xd tan )(tan tan ln 令⎰+-=+-==C x x x C t t t tdt tan tan ln .tan ln ln(17)()⎰⎰+-=-=xdx xx x x x x xd tan .cos 1.cos .cos cos .sec ln cos sec ln ⎰+--=+-=C x xdx x x cos sec ln .cos sin cos .sec ln ()C e x x ++=22121(18)()⎰⎰-==dx xx xx x x xd cos sin 1sin tan ln .sin sin tan ln 222⎰++=-=C x x x xdx x x cos ln tan ln .sin tan tan ln .sin 22(19)()⎰⎰⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=dx x x x x x x x x d x x 1321.ln 231ln 32ln 31ln 32ln 3132332 ⎰⎰--⎪⎭⎫ ⎝⎛+=dx x xdx x x x x 222392ln 32ln 32ln 31 ()⎰⎰--⎪⎭⎫ ⎝⎛+=dx x x xd x x 232392ln 92ln 32ln 31 ⎰⎰-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=dx x dx x x x x x 2232392.ln 92ln 32ln 31 C x x x x x x x +=-⎪⎭⎫ ⎝⎛+=23323ln 31.ln 92ln 32ln 31 (20)()⎰⎰+-==dx x xx x x x d x 233.21.1131arctan 31arctan 31 ⎰⎰⎪⎪⎪⎪⎭⎫ ⎝⎛+-++--=+-=dx x x x x x x x dx x x x x 1161arctan 31161arctan 312121233253C x x x x x x ++-+-=arctan 313191151arctan 31212325313.计算下列有理函数的不定积分. (1)⎰+x x x d )31(1 (2)⎰---)32)(1)((d x x x x(3)x x x x x d )2()1(12---- (4)⎰-++x x xx d 32322(5)⎰-1d 4x x(6)⎰++++x x x xx d 25412 (7)⎰-+-x x x xxd 123(8)⎰+---x x xx x d )1)(1(122(9)⎰+++x x x xx d 14 (10)⎰+---x x x x x d )2()1(18332解:(1)C xC x x dx x x++=++-=⎪⎭⎫⎝⎛+-=⎰311ln31ln ln 311313 (2)C x x x dx x x x +---=⎪⎪⎭⎫⎝⎛-+--+-=⎰2)2()3)(1(ln 21)3(2121)1(21 (3)C x x dx x x +---=⎥⎥⎦⎤⎢⎢⎣⎡-+-=⎰112ln 21)2(12(4)C x x dx x x +--+=⎥⎦⎤⎢⎣⎡-++=⎰1ln 453ln 43)1(45)3(43(5)⎰+--+-=⎪⎪⎭⎫ ⎝⎛+--=C x x x dx x x arctan 2111ln 4111112122 (6)C x x x dx x x x ++++-+-=⎥⎥⎦⎤⎢⎢⎣⎡+++++-=⎰2ln 51ln 41225)1(2142 (7)⎰⎰⎥⎦⎤⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛+-+-=⎥⎥⎦⎤⎢⎢⎣⎡-++-=dx x x x x dx x xx)1(2111121)1(21)1(21222()C x x x +-+++-=1ln 21arctan 211ln 412 (8)⎰⎰⎰⎰+-++----=⎪⎪⎭⎫⎝⎛+-+-+-=dx x xdx x x x dx x dx x x x x 1123121111211222C x x x x +⎪⎪⎭⎫ ⎝⎛-++---=312arctan 31ln 211ln 2 (9)()()()()⎰⎰⎰++++-+-=⎥⎥⎦⎤⎢⎢⎣⎡+++-=dx x dx x x x x dx x x x 121121211111222()⎰⎰++++++⎪⎭⎫ ⎝⎛-+-=1ln 2111211141212222x dx x x x d x x ()C x x x x x +++-++-=arctan 211ln 411ln 212122(10)()()⎰⎰⎰+--+-=--+-+--=C x x x dx x dx x dx x 21ln 1121111223(B )1.填空题(1)设x x f 21)(ln +=',则)(x f = . (2)设函数)(x f 满足下列条件 ①2)0(=f ,0)2(=-f ;②)(x f 在1-=x ,5=x 处有极值;③)(x f 的导数是x 的二次函数,则)(x f = . (3)若C x x x xf x +=⎰e d )(2,则⎰x x f xd )(e = . (4)设2ln)1(222-=-x x x f ,且[]x x f ln )(=ϕ,则=⎰x x d )(ϕ .(5)设x x f ln )(=,则='⎪⎪⎭⎫ ⎝⎛-⎰-x f x x x x d )e (e-2e e 43 .(6)='⎰x x f xx f d )(ln )(ln .(7)设)(x f 的一个原函数为xxsin ,则='⎰x x f x d )2( . (8)若⎰⎰-=x x f x f x x x f d )(cos )(sin d )(sin ,则=)(x f .解:(1)()C e x x f x ++=2()()()C e x x f e x f e x x f x x x ++=⇒+='⇒+=+='2212121ln ln(2)215623+--x x x由已知可设d cx bx ax x f +++=23)( 有()C bx ax x f ++='232()()()()⎪⎪⎩⎪⎪⎨⎧=-=-==⇒⎪⎪⎩⎪⎪⎨⎧=++==+-=-'=+-+-=-==⇒2156101075502310248220d c b a c b a f c b a f d c b a f d f()215623+--=⇒x x x x f(3)C x ++2ln()()()x x x x x xe e x f e x xe x xf C e x dx x xf +=⇒+=⇒+=⎰2222⎰⎰++=+=⇒C x dx xdx x f e x2ln 21)( (4)C x x +++1ln 21)(1)(ln 11ln)(1111ln2ln)1(22222-+⇒-+=⇒--+-=-=-x x x x x f x x x x x f ϕϕ ⎰⎰⎰+-+=-+=-+=⇒-+=⇒C x x dx x dx x x dx x x x x 1ln 2)121(11)(11)(ϕϕ (5)C e e e x x x ++-+--22ln24121222⎰⎰++-+-=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=---C e e e dx e e e dx ee e e x x x x x x x x x x 22ln 2412121.222242243原式 (6)C xf +)(ln 2C x f x f x f d +==⎰)(ln 2)(ln ))(ln (原式(7)C xxx +-42sin 42cos ⎰-=⇒+=2sin cos )(sin )(xxx x c f C x x dx x f C x xx x x x x x x x dx x f x xf x f xd +-=--=-==⎰⎰42sin 42cos 22sin 4142sin 2cos 2.21)2(41)2(21))2((21原式 (8)x ln⎰⎰'-=dx x f x f x x f x dx x g )()(cos )(sin )(sinC x x f xx f +=⇒='∴ln )(1)(,取x x f ln )(=2.选择题(1)设x x f 2cos )(sin =',则⎰=dx x f )(( B ) A .C x x +-331 B .1421212C Cx x x ++- C .C x x ++421212 C .C x x ++421212(2)设)()( , )(1)()( , )(1)()(2x g x F x f x f x g x f x f x F ='+=-=,且14=⎪⎭⎫⎝⎛πf ,则=)(x f ( A )A .x tanB .x cotC .x arctanD .x arc cot(3)若⎰+=C x x x f 2sin d )(,则⎰=--dx x x xf 12)12(22( B )A .C x +22sin 41B .C x +-)12sin(212 C .C x +-)12(sin 2122 D .C x +-)12sin(412 (4)设⎰⎰+∙=xdx x f x g dx xx f 22cot )()(sin)(,则)(x f ,)(x g 分别是( D )A .x x f cos ln )(=,x x g tan )(=B .x x f cos ln )(=,x x g cot )(-=C .x x f sin ln )(=,x x g tan )(=D .x x f sin ln )(=,x x g cot )(-= 解:(1)BC +-=⇒-='⇒-=='322x 31x )x (f x 1)x (f x sin 1x cos )x (sin f⎰++-=⇒142C x x 1212x f(x)dx C(2)A根据1)4f(=π,首先排除C 、D ,再将选项A 、B 分别代入原条件中,得A(3)B)1x 2sin(1x 2212x f 2xsinx f(x)2222--=-⇒= ⎰⎰+--=--=-=⇒C )1x 2sin(21)1d(2x )1x 2sin(2.41dx )1xsin(2x 22222原式,得B (4)D⎰⎰-=cotx)f(x)d(dx x sin f(x)取cotx g(x)-=则⎰+=xdf(x)cot f(x)g(x)上式 与条件比较,得cotxg(x) ,lnsinx f(x)cotx df(x)-==⇒=,得D3.计算下列不定积分(1)x xx x d 11ln 112-+-⎰(2)x x x x d cos 1)sin 1(e ⎰++(3)⎰+)e1(e d 2xxx(4)x xx d cos sin144⎰(5)⎰x x x x d cos e (6)⎰+++x x x x d 112(7)⎰xxcos d (8)⎰++x aax x xd 22(9)⎰-+293d x x (10)⎰-xx1 (提示 令t x 2sin =)(11)x x x d 283⎰++ (12)⎰-x xxxd 1arcsin 22(提示 令t x =arcsin ,t x sin =,再用分部积分法) (13)⎰x x x d )(arctan 2 (14)x xxx d e 1arctan arctan 2⎰+(15)⎰+x xxx d )3(ln 22(16)x x x d )sin(ln ⎰(提示 经过两次分部积分,又出现原积分形式,移项后便可得到所要结果)解:(1)C xxx x d x x ++-=+-+-=⎰11ln 41)11(ln 11ln 212 (2)dx x tg x tg e dx x xx e x x )2221(212cos )2cos 2(sin222++=+=⎰⎰⎰⎰++=dx e x tg dx e x tg e x x x 2212212 ⎰⎰+=++-+=C x tg e dx e x tg dx x tg e e x tg e x x x x x 2221)12(2122122 (3)⎰⎰+-=+=x xde eee ede )111()1(C e e x x +--=-arctan(4)C x x dx x +--==⎰cot cot 31sin 134C x x C x x x d x +--=⎥⎦⎤⎢⎣⎡+--=⎰2cot 382cot 82cot 2cot 31822sin 183134 (5)=[]c x x x x e x++-cos sin )1(21 (6)⎰⎰⎰+++++++=++-+=dx x x x x x d dx x x x 22222)23()21(1211)1(2112121C x x x x x C x x x x x ++++++++=++++++++=121ln 211121ln 2112.212222 (7)⎰⎰++=+==C x x x d x x d x32tan 31tan tan )tan 1()(tan cos 1(8)⎰⎰⎰++-+++++=++-+=dx aax x a aax x a ax x d dx a ax x aa x 222222221)2()(2122C a ax x ax a a ax x +++++-++=22222ln 2(9)t x sin 3==令,20π<<t 则⎰⎰⎰+-=+=+dt tdt t t dt t t )cos 111(cos 1cos cos 33cos 3⎰+-=-C tt t d t t 2arctan )2(2cos 12 C x x x C xx+-+-=+-=2933arcsin 23arcsintan3arcsin(10)t x 2sin ==令,20π<<t ,则⎰⎰⎰+==dt ttdt tdt t t t 22cos 12cos 2cos sin 2sin cos 2 C x x x t t dt t +-+=+=+=⎰2arcsin 2sin 21)2cos 1( (11)C x x x dx x x dx x x x ++-=++=++++=⎰⎰4342)42(2)42)(22(232(12)t x =arcsin 令,t x sin =,则⎰⎰⎰⎰+-=-===tdt t t t td dt tttdt tt tcot cot )cot (sincos cos sin22C x x xx C t t t ++--=++-=ln arcsin 1sin ln cot 2(13)xdx x x x x x d x arctan 1)(arctan 21)()(arctan 21222222⎰⎰+-==⎰⎰++-=xdx x xdx x x arctan 11arctan )(arctan 21222 C x x x x x x ++++-=2222)(arctan 21)1ln(21arctan )(arctan 21 (14)⎰⎰==dt te t x x d xe t x arctan )(arctan arctan arctan 令⎰⎰+-=+-=-==C e x C e t de te tde x t t t t arctan )1(arctan )1((15)⎰⎰⎰+++-=+-=++=dx xx x x x xd x d x x )3(1213ln 21)31(ln 21)3()3(ln 21222222C x x x x dx x x x x ++-++-=+-++-=⎰)3ln(121ln 613ln 21)311(613ln 212222 (16)⎰⎰+-=-=dx xx x x x d x 322ln cos 21)sin(ln 21)1()sin(ln 21 dx x xx xx x⎰---=322ln sin 41ln cos 41)sin(ln 21[]C x x x ++-=⇒ln cos ln sin 251原式。
微积分第一章课外习题参考答案

2 p10. 5. lim( e 1) x lim x 2. x x x 1 cos x x 1 t 1 cos t 6. lim lim 2 2 x 1 ( x 1) t 0 t 1 2 ( t ) 2 2 lim . 2 x 1 t 2
, 从而, 当n N时,
p4.
4.证明: >0,由 lim x2 k A, N 1 ,
n
当 k N 1 ,即当 2k 2 N 1时,| x2 k A | ; 同理,由 lim x2 k 1 A, N 2 ,
n
当 k N 2 ,即当 2k 1 2 N 2 +1时,| x2 k A | ; 取 N max{2 N 1 , 2 N 2 1}, 则当 n N时,| xn A | , lim xn A.
x 1 x 1
lim f ( x )不存在.
x 1
三.lim f ( x ) 1,lim ( x )不存在.
x 0 x 0
(1) p6. 四.解:(1) 取 xn 2n , 则
y( x ) 2n cos 2n ( n ),
(1) n
y x cos x在( , )上无界.
1 x 4. , x 1 , 1 x
x, 0 x 1 . x1 ln x ,
x p1.5.(1) y u , u arcsin v , v . 2
2
(2) y e u , u arctan v , v 2 x, 6. 2 x , 8. 9. 0 x2 2 x4
2
p8. 2.证明 : (1)
x1 2 2, 设xn 2, 则
大学数学微积分第二版上册课后练习题含答案

大学数学微积分第二版上册课后练习题含答案前言数学是一门抽象的学科,需要大量的练习才能真正理解和掌握。
微积分作为数学中的基础学科,更是如此。
本文将为大家提供大学数学微积分第二版上册的课后习题及其答案,供大家参考和练习。
课后习题及答案第一章函数与极限习题1.11.计算以下极限:1.$\\lim\\limits_{x\\rightarrow 1}\\frac{x-1}{x^2-1}$2.$\\lim\\limits_{x\\rightarrow 0}\\frac{\\sqrt{1+x}-1}{x}$3.$\\lim\\limits_{x\\rightarrow 0}(\\frac{1}{\\sin{x}}-\\frac{1}{x})$答案:1.$\\frac{1}{2}$2.$\\frac{1}{2}$3.02.求曲线$y=\\frac{1}{x}$与直线y=x在第一象限中形成的夹角。
答案:$\\frac{\\pi}{4}$3.证明:$\\lim\\limits_{x\\rightarrow 0}x\\sin\\frac{1}{x}=0$答案:对任意$\\epsilon>0$,取$\\delta=\\epsilon$,则当$0<|x|<\\delta$时,有$|x\\sin\\frac{1}{x}-0|<|x|<\\delta=\\epsilon$ 习题1.21.求下列函数的导数:1.y=2x3+3x2−4x+12.$y=\\frac{1}{2}x^3-x^2+2x-1$3.$y=\\frac{1}{\\sqrt{x}}+x\\ln{x}$答案:1.y′=6x2+6x−42.$y'=\\frac{3}{2}x^2-2x+2$3.$y'=-\\frac{1}{2x^{\\frac{3}{2}}}+\\ln{x}+1$2.求函数y=xe x在x=1处的导数。
答案:y′=e+13.求f(x)=|x−2|的导函数。
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第11章

t t 1 t 1 1 1 yt (1)i 2t i 1 2t 1 ( )i 2t 2 3 i 0 i 0
由 (11 2 4) 式,得所给方程的通解
1 yt A(1)t 2t 3
(A 为任意常数)
*
(4)对应齐次差分方程为 yt 1 yt 0 ,其通解为 yt A , 设原方程特解为
yt 2t ( B1 cos πt B2 sin πt ) 代入原方程得:
2t 1[ B1 cos π(t 1) B2 sin π(t 1)] 2t ( B1 cos πt B2 sin πt ) 2t cos πt
yt 1
1 4 yt ,其中 3 3
1 4 a , b ,由通解公式 (11 2 7) 得原方程的通解为: 3 3
1 yt y A (t ) yt A( )t 1 (A 为任意常数) 3 1 3 t 1 3 1 (2)方程可化为 yt 1 yt ,其中 a , b0 , b1 ,故由通解公式 2 2 2 2 2 2 (11 2 9) 得方程的通解为: 3 1 1 1 t 1 7 t yt A( ) 2 2 2 t 即 yt A( )t . 1 1 1 2 9 3 2 1 (1 ) 2 1 2 2 2
t
(4) a 4 , π , b1 0 , b2 3 , D (4 cos π) sin π=9 0 ,且
2 2
由公式 (11 2 14) 得 = [0 (4 cos π) 3 sin π]=0 , = [3(4 cos π) 0 sin π]=1 , 方程通解为 yt A(4) sin πt ,以 t 0 时 y0 1 代入上式,得 A 1 ,故原方程特解为:
微积分课后题答案习题详解

微积分课后题答案习题详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!n n =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在.(1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。
微积分曹定华版课后题答案习题详解

第二章习题2-11. 试利用本节定义5后面的注3证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时此时1n k N +>有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =-1n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立;3. 利用夹逼定理证明:1 lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; 2 lim n →∞2!n n =0. 证:1因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. 2因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. 1 x n =11n e +,n =1,2,…;2 x 1x n +1n =1,2,…. 证:1略;2因为12x <,不妨设2k x <,则故有对于任意正整数n ,有2n x <,即数列{}n x 有上界,又 1n n x x +-=,而0n x >,2n x <,所以 10n n x x +-> 即 1n n x x +>, 即数列是单调递增数列;综上所述,数列{}n x 是单调递增有上界的数列,故其极限存在;习题2-21※. 证明:0lim x x →fx =a 的充要条件是fx 在x 0处的左、右极限均存在且都等于a .证:先证充分性:即证若0lim ()lim ()x x x x f x f x a -+→→==,则0lim ()x x f x a →=. 由0lim ()x x f x a -→=及0lim ()x x f x a +→=知: 10,0εδ∀>∃>,当010x x δ<-<时,有()f x a ε-<,20δ∃>当020x x δ<-<时,有()f x a ε-<;取{}12min ,δδδ=,则当00x x δ<-<或00x x δ<-<时,有()f x a ε-<, 而00x x δ<-<或00x x δ<-<就是00x x δ<-<, 于是0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<, 所以 0lim ()x x f x a →=.再证必要性:即若0lim ()x x f x a →=,则0lim ()lim ()x x x x f x f x a -+→→==, 由0lim ()x x f x a →=知,0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<,由00x x δ<-<就是 00x x δ<-<或00x x δ<-<,于是0,0εδ∀>∃>,当00x x δ<-<或00x x δ<-<时,有()f x a ε-<.所以 0lim ()lim ()x x x x f x f x a -+→→== 综上所述,0lim x x →fx =a 的充要条件是fx 在x 0处的左、右极限均存在且都等于a .2. 1 利用极限的几何意义确定0lim x → x 2+a ,和0lim x -→1e x; 2 设fx = 12e ,0,,0,xx x a x ⎧⎪<⎨⎪+≥⎩,问常数a 为何值时,0lim x →fx 存在.解:1因为x 无限接近于0时,2x a +的值无限接近于a ,故2lim()x x a a →+=.当x 从小于0的方向无限接近于0时,1e x 的值无限接近于0,故10lim e 0xx -→=. 2若0lim ()x f x →存在,则00lim ()lim ()x x f x f x +-→→=, 由1知 22lim ()lim()lim()x x x f x x a x a a +--→→→=+=+=, 所以,当0a =时,0lim ()x f x →存在;3. 利用极限的几何意义说明lim x →+∞sin x 不存在.解:因为当x →+∞时,sin x 的值在-1与1之间来回振摆动,即sin x 不无限接近某一定直线y A =,亦即()y f x =不以直线y A =为渐近线,所以lim sin x x →+∞不存在;习题2-31. 举例说明:在某极限过程中,两个无穷小量之商、两个无穷大量之商、无穷小量与无穷大量之积都不一定是无穷小量,也不一定是无穷大量.解:例1:当0x →时,tan ,sin x x 都是无穷小量,但由sin cos tan xx x=当0x →时,cos 1x →不是无穷大量,也不是无穷小量;例2:当x →∞时,2x 与x 都是无穷大量,但22xx=不是无穷大量,也不是无穷小量; 例3:当0x +→时,tan x 是无穷小量,而cot x 是无穷大量,但tan cot 1x x =不是无穷大量,也不是无穷小量;2. 判断下列命题是否正确:1 无穷小量与无穷小量的商一定是无穷小量;2 有界函数与无穷小量之积为无穷小量;3 有界函数与无穷大量之积为无穷大量;4 有限个无穷小量之和为无穷小量;5 有限个无穷大量之和为无穷大量;6 y =x sin x 在-∞,+∞内无界,但lim x →∞x sin x ≠∞;7 无穷大量的倒数都是无穷小量;8 无穷小量的倒数都是无穷大量. 解:1错误,如第1题例1; 2正确,见教材§定理3;3错误,例当0x →时,cot x 为无穷大量,sin x 是有界函数,cot sin cos x x x =不是无穷大量;4正确,见教材§定理2;5错误,例如当0x →时,1x 与1x -都是无穷大量,但它们之和11()0x x+-=不是无穷大量;6正确,因为0M ∀>,∃正整数k ,使π2π+2k M >,从而ππππ(2π+)(2π+)sin(2π+)2π+2222f k k k k M ==>,即sin y x x =在(,)-∞+∞内无界,又0M ∀>,无论X 多么大,总存在正整数k ,使π>k X ,使(2π)πsin(π)0f k k k M ==<,即x →+∞时,sin x x 不无限增大,即lim sin x x x →+∞≠∞;7正确,见教材§定理5;8错误,只有非零的无穷小量的倒数才是无穷大量;零是无穷小量,但其倒数无意义; 3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量. 1 fx =234x -,x →2; 2 fx =ln x ,x →0+,x →1,x →+∞; 3 fx = 1e x,x →0+,x →0-; 4 fx =2π-arctan x ,x →+∞;5 fx =1x sin x ,x →∞; 6 fx = 21xx →∞. 解:122lim(4)0x x →-=因为,即2x →时,24x -是无穷小量,所以214x -是无穷小量,因而234x -也是无穷大量; 2从()ln f x x =的图像可以看出,1lim ln ,limln 0,lim ln x x x x x x +→→+∞→=-∞==+∞,所以,当0x +→时,x →+∞时,()ln f x x =是无穷大量;当1x →时,()ln f x x =是无穷小量;3从1()e x f x =的图可以看出,110lim e ,lim e 0x xx x +-→→=+∞=, 所以,当0x +→时,1()e xf x =是无穷大量; 当0x -→时,1()e xf x =是无穷小量;4πlim(arctan)02xx→+∞-=,∴当x→+∞时,π()arctan2f x x=-是无穷小量;5当x→∞时,1x是无穷小量,sin x 是有界函数,∴1sin xx是无穷小量;6当x→∞时,21x是无穷小量,∴;习题2-41.若limx x→fx存在,limx x→gx不存在,问limx x→fx±gx,limx x→fx·gx是否存在,为什么解:若limx x→fx存在,limx x→gx不存在,则1limx x→fx±gx不存在;因为若limx x→fx±gx存在,则由()()[()()]g x f x f x g x=--或()[()()]()g x f x g x f x=+-以及极限的运算法则可得limx x→gx,与题设矛盾;2limx x→fx·gx可能存在,也可能不存在,如:()sinf x x=,1()g xx=,则limsin0xx→=,1limx x→不存在,但limx x→fx·gx=1lim sin0xxx→=存在;又如:()sinf x x=,1()cosg xx=,则π2limsin1xx→=,π21limcosx x→不存在,而0limx x→fx·gxπ2lim tanxx→=不存在;2. 若limx x→fx和limx x→gx均存在,且fx≥gx,证明limx x→fx≥limx x→gx.证:设limx x→fx=A,limx x→gx=B,则0ε∀>,分别存在1δ>,2δ>,使得当010x xδ<-<时,有()A f xε-<,当020x xδ<-<时,有()g x Bε<+令{}12min,δδδ=,则当0x xδ<-<时,有从而2A Bε<+,由ε的任意性推出A B≤即00lim()lim()x x x xf xg x→→≤.3. 利用夹逼定理证明:若a1,a2,…,a m为m个正常数,则limn →∞nma ++=A , 其中A =max{a 1,a2,…,a m }.n n n m a m A ≤++≤,即而lim n A A →∞=,1lim nn mA A →∞=,由夹逼定理得nm n a A ++=.4※. 利用单调有界数列必存在极限这一收敛准则证明:若x1=,x 2x n +1=1,2,…,则lim n →∞x n 存在,并求该极限.证:因为12x x ==有21x x >今设1k k x x ->,则1k k x x -=>=,由数学归纳法知,对于任意正整数n有1n n x x +>,即数列{}n x 单调递增;又因为12x =<,今设2k x <,则12k x -=<=,由数学归纳法知,对于任意的正整数 n 有2n x <,即数列{}n x 有上界,由极限收敛准则知lim n n x →∞存在;设lim n n x b →∞=,对等式1n x +=两边取极限得b =即22b b =+,解得2b =,1b =-由极限的保号性,舍去,所以lim 2n n x →∞=.5. 求下列极限:1 lim n →∞33232451n n n n n +++-+;2 lim n →∞1cos n ⎡⎤⎛⎢⎥⎝⎣⎦; 3 lim n →∞4 limn →∞11(2)3(2)3n nn n ++-+-+; 5 lim n →∞1112211133n n ++++++. 解:1原式=23232433lim 11155nn n n n n→∞++=+-+;2因为lim(10n →∞=,即当n →∞时,1是无穷小量,而cos n 是有界变量,由无穷小量与有界变量的乘积是无穷小量得:lim (10n n →∞⎡⎤=⎢⎥⎣⎦;322lim(n n n→∞=而lim 0nn→∞→∞==, 2n n →∞∴==∞;41111121(1)()(2)31333limlim2(2)33(1)()13nn n n n n n n n n ++→∞→∞++-+-+==-+-+; 5111111()21111114[1()]42222lim lim lim 1111311()3[1()]3333113n n n n n n n n n ++→∞→∞→∞++-+++--===+++---.6. 求下列极限: 1 3limx →239x x --; 2 1limx →22354x x x --+; 3 lim x →∞3426423x x x ++;4 2limx π→sin cos cos 2x xx -; 5 0lim h →33()x h x h+-; 6 3lim x→7 1lim x →21n x x x n x +++--; 8 lim x →∞sin sin x x x x +-;9 lim x →+∞ 10 1lim x →313()11x x---; 11 0lim x →21(sin )x x.解:23333311(1)limlim lim 9(3)(3)36x x x x x x x x x →→→--===--++2211lim(54)0,lim(23)1x x x x x →→-+=-=-3344226464lim lim 03232x x x x x x x x→∞→∞++==++; 4π2ππsincos sin cos 22lim1cos 2cos πx x xx →--==-; 5[]223300()()()()lim limh h x h x x h x h x x x h x h h→→⎡⎤+-+++++-⎣⎦= 222lim ()()3h x h x h x x x →⎡⎤=++++=⎣⎦;633(23)92)x x x →→+-=343x x →→===;72211(1)(1)(1)limlim 11n n x x x x x n x x x x x →→+++--+-++-=--1123(1)2n n n =++++=+; 8sin lim0x x x →∞=无穷小量1x与有界函数sin x之积为无穷小量sin 1sin lim lim 1sin sin 1xx x x x x xx x x→∞→∞++∴==--; 922limlimx x→+∞=limlim1x x ===;101lim x →313()11x x---231(1)3lim 1x x x x →++-=- 11当0x →时,2x 是无穷小量,1sinx是有界函数,∴它们之积21sinx x 是无穷小量,即201lim sin 0x x x →⎛⎫= ⎪⎝⎭;习题2-5求下列极限其中a >0,a ≠1为常数: 1. 0limx →sin 53x x; 2. 0lim x →tan 2sin 5xx ; 3. 0lim x →x cot x ;4. 0lim x→; 5. 0lim x →2cos5cos 2x x x -; 6. lim x →∞1xx x ⎛⎫⎪+⎝⎭; 7. 0lim x →()cot 13sin xx +; 8. 0lim x →1x a x-; 9. 0lim x →x x a a x --;10. lim x →+∞ln(1)ln x x x +-; 11. lim x →∞3222xx x -⎛⎫⎪-⎝⎭; 12.lim x →∞211xx ⎛⎫+ ⎪⎝⎭; 13. 0limx →arcsin x x ; 14. 0lim x →arctan xx; .解:1. 000sin 55sin 55sin 55lim lim lim 335353x x x x x x x x x →→→===;2. 000tan 2sin 221sin 25lim lim lim sin 5cos 2sin 55cos 22sin 5x x x x x x x x x x x x x→→→== 0205021sin 252lim lim lim 5cos 22sin 55x x x x x x x x →→→==; 3. 0000lim cotlim cos lim limcos 1cos01sin sin x x xx x xx x x x x x →→→→=⋅==⨯=;4. 0000sin22limlim22x x x x x x x→→→→=== 0sin2221222xx →===; 5. 2200073732sin sin sin sin cos5cos 2732222lim lim lim (2)732222x x x x x x x x x x x x x →→→⎡⎤-⎢⎥-==-⋅⋅⋅⋅⎢⎥⎢⎥⎣⎦0073sin sin 212122limlim 732222x x x x x x →→=-⋅=-;6. 111lim lim lim 111e (1)xxx x x x x x x x x →∞→∞→∞⎛⎫ ⎪⎛⎫=== ⎪ ⎪++⎝⎭ ⎪+⎝⎭; 7. 3cos cos 1cot sin 3sin 0lim(13sin )lim(13sin )lim (13sin )xx xxx x x x x x x →→→⎡⎤+=+=+⎢⎥⎣⎦8.令1xu a =-,则log (1)a x u =+,当0x →时,0u →,111ln log elimlog (1)a ua u a u →===+. 9. 000(1)(1)11lim lim lim x x x x x x x x x a a a a a a x x xx ---→→→⎛⎫------==+ ⎪-⎝⎭ 利用了第8题结论01limln x x a a x→-=; 10. ln(1)ln 11limlim lnx x x x xx x x→+∞→+∞+-+=⋅ 1111lim ln(1)lim lim ln(1)0x x x x x x x→+∞→+∞→+∞=+=+=; 11. 22223211lim lim 1lim 1222222x xxxxx x x x x x x --→∞→∞→∞⎡⎤-⎛⎫⎛⎫⎛⎫=+=+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1232lim e 22xx x x -→∞-⎛⎫∴= ⎪-⎝⎭; 12. 1221222111ln (1)lim ln(1)2211lim(1)lim (1)lim eex x xxx xx x x xx x x x x →∞⎡⎤++⎢⎥⎣⎦→∞→∞→∞⎡⎤+=+==⎢⎥⎣⎦2121lim lim ln(1)0lne 0e e e 1xx x x x→∞→∞+⋅====;13.令arcsin x u =,则sin x u =,当0x →,0u →,000arcsin 1limlim 1sin sin limx u u x u u x u u→→→===;14.令arctan x u =,则tan x u =,当0x →,0u →,00000arctan 1lim lim lim cos lim limcos 1sin tan sin x u u u u x u u u u u xu u u→→→→→====. 习题2-61. 证明: 若当x →x 0时,αx →0,βx →0,且αx ≠0,则当x →x 0时,αx ~βx 的充要条件是0lim x x →()()()x x x αβα-=0. 证:先证充分性.若0lim x x →()()()x x x αβα-=0,则0lim x x →()(1)()x x βα-=0, 即0()1lim 0()x x x x βα→-=,即0()lim 1()x x x x βα→=. 也即0()lim 1()x x x x αβ→=,所以当0x x →时,()()x x αβ. 再证必要性:若当0x x →时,()()x x αβ,则0()lim 1()x x x x αβ→=, 所以0lim x x →()()()x x x αβα-=0lim x x →()(1)()x x βα-=0()1lim ()x x x x βα→-=011110()lim ()x x x x αβ→-=-=. 综上所述,当x →x 0时,αx ~βx 的充要条件是0lim x x →()()()x x x αβα-=0. 2. 若βx ≠0,0lim x x →βx =0且0lim x x →()()x x αβ存在,证明0lim x x →αx =0. 证:0000()()lim ()lim ()lim lim ()()()x x x x x x x x x x x x x x x αααββββ→→→→==0()lim 00()x x x x αβ→== 即 0lim ()0x x x α→=. 3. 证明: 若当x →0时,fx =ox a ,gx =ox b ,则fx ·gx =o a b x+,其中a ,b 都大于0,并由此判断当x →0时,tan x -sin x 是x 的几阶无穷小量.证: ∵当x →0时, fx =ox a ,gx =ox b ∴00()()lim(0),lim (0)a bx x f x g x A A B B x x →→=≠=≠ 于是: 0000()()()()()()lim lim lim lim 0a b a b a b x x x x f x g x f x g x f x g x AB x x x x x +→→→→⋅=⋅=⋅=≠ ∴当x →0时, ()()()a b f x g x O x +⋅=,∵tan sin tan (1cos )x x x x -=-而当x →0时, 2tan (),1cos ()x O x x O x =-=,由前面所证的结论知, 3tan (1cos )()x x O x -=,所以,当x →0时,tan sin x x -是x 的3阶无穷小量.4. 利用等价无穷小量求下列极限:1 0lim x →sin tan ax bx b ≠0;2 0lim x →21cos kx x-; 3 0lim x→; 4 0lim x→5 0lim x →arctan arcsin x x ;6 0lim x →sin sin e e ax bx ax bx-- a ≠b ; 7 0limx →ln cos 2ln cos3x x ; 8 设0lim x →2()3f x x-=100,求0lim x →fx . 解 00sin (1)lim lim .tan x x ax ax a bx bx b→→== 8由20()3lim 100x f x x →-=,及20lim 0x x →=知必有0lim[()3]0x f x →-=, 即 00lim[()3]lim ()30x x f x f x →→-=-=, 所以 0lim ()3x f x →=. 习题2-71.研究下列函数的连续性,并画出函数的图形:1 fx = 31,01,3,12;x x x x ⎧+≤<⎨-≤≤⎩ 2 fx =,111,1 1.x x x x -≤<⎧⎨<-≥⎩,或 解: 1300lim ()lim(1)1(0)x x f x x f ++→→=+== ∴ fx 在x =0处右连续,又11lim ()lim(3)2x x f x x ++→→=-= ∴ fx 在x =1处连续.又 22lim ()lim(3)1(2)x x f x x f --→→=-== ∴ fx 在x =2处连续.又fx 在0,1,1,2显然连续,综上所述, fx 在0,2上连续.图形如下:图2-12 11lim ()lim 1x x f x x --→→==∴ fx 在x =1处连续.又11lim ()lim 11x x f x -+→-→-== 故11lim ()lim ()x x f x f x -+→-→-≠ ∴ fx 在x =-1处间断, x =-1是跳跃间断点.又fx 在(,1),(1,1),(1,)-∞--+∞显然连续.综上所述函数fx 在x =-1处间断,在(,1),(1,)-∞--+∞上连续.图形如下:图2-22. 说明函数fx 在点x 0处有定义、有极限、连续这三个概念有什么不同又有什么联系 略.3.函数在其第二类间断点处的左、右极限是否一定均不存在试举例说明.解:函数在其第二类间断点处的左、右极限不一定均不存在. 例如0(),010x x f x x x x ≤⎧⎪==⎨>⎪⎩是其的一个第二类间断点,但00lim ()lim 0x x f x x --→→==即在0x =处左极限存在,而001lim ()lim x x f x x++→→==+∞,即在0x =处右极限不存在. 4.求下列函数的间断点,并说明间断点的类型:1 fx = 22132x x x -++;2 fx =sin sin x x x+; 3 fx = ()11x x+; 4 fx = 224x x +-; 5 fx = 1sinx x . 解: 1由2320x x ++=得x =-1, x =-2∴ x =-1是可去间断点,x =-2是无穷间断点.2由sin x =0得πx k =,k 为整数.∴ x =0是跳跃间断点.4由x 2-4=0得x =2,x =-2.∴ x =2是无穷间断点,x =-2是可去间断点. 5 001lim ()lim sin 0,()x x f x x f x x→→==在x =0无定义 故x =0是fx 的可去间断点.5.适当选择a 值,使函数fx = ,0,,0x e x a x x ⎧<⎨+≥⎩在点x =0处连续.解: ∵f 0=a ,要fx 在x =0处连续,必须00lim ()lim ()(0)x x f x f x f +-→→==. 即a =1.6※.设fx = lim x →+∞x xx x a a a a ---+,讨论fx 的连续性. 解: 22101()lim lim sgn()10100x x xx x x a a x a aa f x x x a a a x --→+∞→+∞-<⎧--⎪====>⎨++⎪=⎩ 所以, fx 在(,0)(0,)-∞+∞上连续,x =0为跳跃间断点. 7. 求下列极限:1 2lim x →222x x x +-; 2 0lim x→; 3 2lim x →ln x -1; 4 12lim x →5 lim x e→ln x x . 解: 222222(1)lim 1;2222x x x x →⨯==+-+- 习题2-81. 证明方程x 5-x 4-x 2-3x =1至少有一个介于1和2之间的根.证: 令542()31f x x x x x =----,则()f x 在1,2上连续,且 (1)50f =-<, (2)50f =>由零点存在定理知至少存在一点0(1,2),x ∈使得0()0f x =.即 542000031x x x x ---=, 即方程54231x x x x ---=至少有一个介于1和2之间的根.2. 证明方程ln 1+e x -2x =0至少有一个小于1的正根.证: 令()ln(1)2e x f x x =+-,则()f x 在(,)-∞+∞上连续,因而在0,1上连续, 且 0(0)ln(1)20ln 20e f =+-⨯=>由零点存在定理知至少存在一点0(0,1)x ∈使得0()0f x =.即方程ln(1)20e xx +-=至少有一个小于1的正根.3※. 设fx ∈C -∞,+∞,且lim x →-∞fx =A , lim x →+∞fx =B , A ·B <0,试由极限及零点存在定理的几何意义说明至少存在一点x 0∈-∞,+∞,使得fx 0=0.证: 由A ·B <0知A 与B 异号,不防设A >0,B <0由lim ()0,lim ()0x x f x A f x B →-∞→+∞=>=<,及函数极限的保号性知,10X ∃>,使当1x X <-,有()0,f x >20X ∃<,使当2x X >时,有()0f x <.现取1x a X =<-,则()0f a >,2x b X =>,则()0f b <,且a b <,由题设知()f x 在[,]a b 上连续,由零点存在定理,至少存在一点0(,)x a b ∈使0()0f x =, 即至少存在一点0(,)x ∈-∞+∞使0()0f x =.4.设多项式P n x =x n +a 11n x-+…+a n .,利用第3题证明: 当n 为奇数时,方程P n x =0至少有一实根.证: 122()1n n n n a a a P x x x x x ⎛⎫=++++ ⎪⎝⎭()lim 10n nx P x x →∞∴=>,由极限的保号性知. 0X ∃>,使当X x >时有()0nn P x x>,此时()n P x 与n x 同号,因为n 为奇数,所以2X n 与-2X n 异号,于是(2)n P X -与(2)n P X 异号,以()n P x 在[2,2]X X -上连续,由零点存在定理,至少存在一点0(2,2)X X X ∈-,使0()0n P x =,即()0n P x =至少有一实根.。
《微积分》上册部分课后习题答案

微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。