高等数学基础作业答案
电大高等数学基础形考作业~参考答案

【高等数学基础】形考作业4答案第5章不定积分 第6章定积分及其应用(一)单项选择题1 1.若f(x)的一个原函数是—,则f (x)( D )•xlnx 4 — f 下列等式成立的是(D ).x x x-Jf (x)dx f (x) df (x) f (x) d f (x)dx f (x) 一 f (x)dx f (x)若 f (x) dx f (x)dx (B ).2.若函数F(x)与G(x)是同一函数的原函数,则F(x) G(x) c(常数).7•若无穷积分1—p dx 收敛,xsin x c cosx c sin x c d cosx c - dx x 2f (x 3 4)dx(B).1 1 1 _ f (x 3)二 f (x)二 f (x 3)若 f (x)dx F(x) c ,则 一 f( _x)dx (B 1 c -=F ^/x) c 下列无穷限积分收敛的是(D).x 尝(二)填空题 x f (x)dx .3 2 3 1 1〜f(x 3)x 2匚加二 c ,.3 3 F(.x) c2F(..x) cF(2..x) dx —7 .•函数f(x)的不定积分是dx x 1356. 3(sin x2)dx 32. 3. (三)计算题 1 cos- 汁dx x 如 e . ---- dx x -^dx xln x xsin 2xdx cos 1 d(1)x x .1 sin xe x d 、x 2e x c 1 d(ln x)lnx1 xcos2x2In(ln x)1 cos2xdx 21 x cos 2x 1 si n2x c2 4cosx ,贝UF(x)与G(x)之间有关系式9cos(3x)e3 In x e115.dx.(3 In x)d(3In x)(3In x):1 x12212x .1 2x 1 1 1 2x . 12 1 2x 1 1 2 1 6.xe dx-e x—e dx-e -e 0 -e — 0 20 2 02 44 4e2 x e1 e2 e 17.xln xdx——Inxdx12 1 2 1 24eln x . 1 , ee 1 , 1 1 e2 ,& d2 dx — I—dx11 xx 11xe x1e(四)证明题a1.证明:若f(x)在[a, a ]上可积并为奇函数,则f(x)dx 0 .aaaa=0 f( x)dx o f (x)dx J f (x) f ( x)]dx 证毕f (x)dxaaf( t)dt a f( at)dtf(t)dtf(x)dxa f (x)dxaa f (x)dxa0证毕2.证明:若f (x)在[a, a]上可积并为偶函数,0 f (x)dxaaaf(x)dx0 f (x)dxa 证:a3•证明: 证:af(x)dx oa o[f (X )af(x)dx of (x)dxf ( x)]dxf (x)dxf( aaaf(x)dxax)dx o f(x)dxa0 f(x)dx .x x23. d e dx e4. (tan x) dx tan x c5.若f(x)dx cos3x c,贝U f (x)。
《高等数学》基础阶段课后作业参考答案(12月25日)

基础阶段《微积分》课后作业参考答案注:请同学们仔细做复习资料中的无穷级数部分,这部分试题老师都给同学们写了详细参考答案,这部分老师讲得太快,请同学们认真思考老师写的每一步,下学期冲刺的时候,我们首先复习无穷级数,一定要争取使无穷级数不丢分. 1. 设sin()xz y xy =+,求dz . 解:因为ln cos x zy y y xy x∂=+∂,1cos x z xy x xy y -∂=+∂,所以z z dz dx dy x y ∂∂=+∂∂1(ln cos )(cos )x x y y y xy dx xy x xy dy -=+++.2. 设cos()xz y xy =+,求dz . 解:因为ln sin()x zy y y xy x∂=-∂,1sin()x z xy x xy y -∂=-∂,所以1[ln sin()][sin()]x x z zdz dx dy y y y xy dx xy x xy dy x y-∂∂=+=-+-∂∂. 3. 设2sin()z xy =,求zx∂∂. 解:22cos()zy xy x∂=∂. 4. 计算sin Dxdxdy x ⎰⎰,其中D 是由直线y x =及抛物线2y x =所围成的区域. 解:(图形同学们自己画)如图所示,积分区域为2{(,)01,}D x y x x y x =≤≤≤≤,所以211110000sin sin (sin sin )sin sin x x Dx x dxdy dx dy x x x dx x x xdx x x ==-=-⎰⎰⎰⎰⎰⎰⎰ 11100sin cos (cos cos sin )1sin1x xd x x x x x =+=-+-=-⎰⎰.5. 计算二重积分2xDe dxdy ⎰⎰,其中D 是由直线0y =, y x =和1x =所围成的区域.解:(图形同学们自己画)由图所示可知,积分区域为{(,)01,0}D x y x y x =≤≤≤≤,所以22222111100000011()(1)22xxx x x x x De dxdy dx e dy e y dx xe dx ee =====-⎰⎰⎰⎰⎰⎰. 6、微分方程5140y y y '''--=的通解为 .解:因为该微分方程为常系数齐次线性微分方程,其特征方程为25140r r --=,解得12r =-,27r =,所以该微分方程的通解为2712x x y C e C e -=+.7. 解微分方程2150y y y '''--=,07x y ='=,03x y ==.解:该微分方程为二阶常系数齐次线性微分方程,其特征方程为22150r r --=,解得13r =-,25r =,其通解为3512xx y C eC e -=+,又351235x x y C e C e -'=-+,将07x y ='=,03x y ==代入通解及y ',得121122313572C C C C C C +==⎧⎧⇒⎨⎨-+==⎩⎩,所以,该微分方程的特解为352x xy e e -=+. 8.设n u =,35nn n v =,则( )A 、1nn u∞=∑收敛,1nn v∞=∑发散 B 、1nn u∞=∑发散,1nn v∞=∑收敛C 、1nn u∞=∑发散,1nn v∞=∑发散 D 、1nn u∞=∑收敛,1nn v∞=∑收敛解:1n n u ∞=∑为p 级数且213p =<,发散;1n n v ∞=∑为等比级数且315q =<,收敛.。
高等数学基础作业答案1.doc

3.解: 《髙等数学基础》作业丄参考贅案第1章 函 数 第2章极限与连续/(2)—2,/(0) = 0,/ ⑴"之.2x —1 ------ >0, x x^O.•.函数y = lg 红丄的定义域为(-8, 0)ol-,+oo I.如图,梯形ABCD 为半圆o 的内接梯形,ABDDC, AB=2R,高DE=x连接OD,则DDEO 为直角三角形,OD=R, QE=^J R 2-X 2, DC = IOC= 2^R 2-x 2,梯形的面积S=gr >E (DC+AB )=[(27?+2保 一/) +兀2),(其中0<兀<人)X sin 3x 2x 3 3“ sin3x “ 2x 34.解:原式=lim -------------------- =—lim -------- lim ------- =—io 3X sin 2x 2 2 3x sin 2x 2解:原式=lim 沁•丄 = 31im 沁Jim 丄" XTO 3x cos 3x “To 3X XTOCOS 3兀二、填空题1.(3,+8);2.—X ; 3.? ; 4.e;5.兀=0 ;6.无穷小量.一、单项选择题1.C2. C3.B4. C5. D6. C7. A三、计算题2.解: 要使ig2口 有意义,必须X 5.X+1解:原式=lim —(x-1) = lim — xT-isin(x + l) xT-isi _¥ + ]———・lim(x-1) = -2sin(x + l)工*+ x 2解:原式=limXT Olimx 2 •smx+ x 2 +1 • sin x(5)解:/ = --—^―——2x sinx-(lnx-x 2)cosx sin x x 丿1-2x 2 x 2 - In x = -------------- H ---------- T ----- COS X• • 2xsmx sin x(6)解:二 4兀3 — cos 兀In 兀一 *m 兀.8.解:原式=limXT8 x+3x-1x+39.解:原式=lim XT 4 (x-4)(x-2) (x —4)(x —1) = i im £z^ = Z XT4 X -1 3 第三章 导数与微、 单项选择题 l.B 2.D 3. A 4.D 5. C 二、填空题 21nx+511. 0;2.;3.—;x24. y —1 = 0;5. 2%2X(in x+1);6.三、计算题 1.求下列函数的导数;/:(W : 3 —x^e 2、 y 丿 C 3 込+3 /,・•・ (2)解: y = ----- ——2xlnx + x 2 • —= ----- ——2xlnx+xsin x x sin xxIn 2x(21nx-l).1cosx + 2x)-3x ln3(sinx+x 2)J⑵解:y - 1 •(cosx ) cos x ( 12 (3)解:y = X x - X 1I 7 J(4)解:y =2 sin x-(sinx) =2sinx-cos x =sin 2x.(8)解:= e x tan x + e x------- + — COS X X x ( 1)1—c tan x -\ ------ - — H —.V COS X) X 2.求下列函数的导数;/:(1)解:V 二”・(石)-~—j=e^.(5) 解:/ = cosx 2 -(x 2) = 2xcos x (6) 解:)/二—sine" •(/) = -e x -sin e x ・(7) 解:y = n sin n_1 x-cosx-cos nx +sin n x (-sinnx)-n =n sin n_1 x• (cosxcos nx-sin x sin nx) - nsin M_1 x-cos(n + l)x (8) 解:/ = 5sinx -In5 (sin x) = 5sinx cosxIn5. (9)解:y =严空容打=—sin 兀严二 3.在下列方程中,y = y(x)是由方程确定的函数,求;/:(1) 解:/cosx+ y(-sinx) = e 2y - 2y\ y(cosx-^2y ) = ysin x,⑺解:y'\2smx ----- = -tanx cosxZ 7 -1ysinx 「•y=-cosx-^ 丿(2)解:/ = -sin y- /Inx+ C0S ,xa • i x , cosy(l + smylnx)y = -------- ,x.,_ cos yx(l + sin yin x)(3)解:ysiny = p两边求导,得,.丄,1y smy + ycosy y =—,.,= 12(siny+ycosy)(4)解:y=i+—=i+—.y y(5)解丄+ e y -y' = 2y- /,x1(6)解:2y y =e x sin y + e x・cosy[ly-e x cosy)y = e siny,, e x sin y・•・y = ----------- .2y-e x cosy(7)解:e y -y=e x-3y2 -y,("+3b)y = k/ b-(8)解:y = 5x ln5 + 2y ln2-y,(l-2y ln2)/ = 5r ln5,,5Tn5.•- y = .1-2524.求下列函数的微分芳:(1)解:y' = — esc2 x-cot2 x esc x = - esc x(cotx + esc x), dy = y dx —一esc x (cot x + esc x) dx.— sin x 一 cos xln x.(c 、心 / r sin x - xcos xln x 2 解:v y = 2 ------------- --- ---------- = ------------- -- ---------sin x xsin x , sin x -兀cos xln x . ay = --------------- -- ------- ax. x sin x (3) 解:T y f = 2 sin % cos x = sin 2x, dy = sin 2xdx. (4)解:・.・ y - sec 2 e x • e x = e x sec 2 x, dy = e x sec 2 xdx.5. 求下列函数的二阶导数:(2)解:y = 3Tn3, = 3X In 2 3.⑶解:y=-,X“ 1(4)解:/ = sinx + xcosx,^ = cosx + (cosx-xsinx) = 2cosx-xsin x.四、证明题证:由题设,有/ (一兀)=一 / (兀),••• [/(—X )]' = [_八尢)]'' 即/'(-兀)(- 1)= -厂(兀), 厂(-兀)=厂(兀) /.厂(X )是偶函数.《髙等数学基础》、作业3参考答案'第四章导数的应用一、单项选择题1. D2. D3. A4.C5. C6. A二、填空题1.极小值;2. 0;3. (-00,0);4.(0,+8);5. /(a);6. (0,2).三、 计算题1•解:令# =(兀-5『+ 2(兀+1)(兀一5) = 3(兀一 5)(兀一1) = 0, 得:x x = l,x 2 =5.(i)解:y=^=2 I 2 丿 432列表如下・・・函数y的单调增区间为(-汽1),(5,+-),单调减区间为(1,5). 当x二1时,函数取得极大值32;当x二5时,函数取得极小值0.2.解:令# = 2兀一2 = 2(兀一1) = 0,得兀=1.当兀丘[0,1)时,y <0;当兀w(1,3]时,y >0.・・・函数y = / _ 2兀+3在区间[0,3]上的极值点为兀=1.又・・・y(O)= 3,y(l) = 2,y(3)= 6,・・・函数y = X2-2X+3在[0,3]上的最大值为6,最小值为0.3解设所求的点P(兀,y),|PA| = d,则尸=2x,(x> 0)〃=J(x_2)2 +(y _0『=y/x2 -4x + 4 + 2x = A/X2-2X +4令F__ :x_2 _ 兀_]2A/X2— 2x+4 yj — 2x+4得兀二]易知,兀=1是函数d的极小值点,也是最小值点.此时,y2 = 2x1 = 2, y = ±V2,・・・所求的点为P(1,V2)或4.解:如图所示,圆柱体高/z与底半径厂满足A2 + r2 = £2I圆柱体的体积公式为rV = 7rr2h L L将/ =L2-7Z2代入得V二兀①一代)h求导得令宀°得靑L ,并由此解出r伞.即当底半径吕,高"晅厶时’圆柱体的体积3答mg・•・R= £最大.5.解:设圆柱体半径为R,高为h,则h = " ,S 夷面和=2兀Rh + 27rR 2 - 2匕 + 27T R 2 TT R2表面积 R 令& = 4历7?—学=0 得R =R-\171当Refo 30时,S'<0,当RwI 工是函数S 的极小值点,也是最小值点. 2龙此时h=淫.\ 714Vh = 3——时表面积最大.V 716.角军:设长方体的底边长为兀米,高为h 米.则 由62.5 = x 2/z 得 h —62?x250用料的面积为:S — %2 + 4x/z = x 2 ,(兀>0)x令 S‘ = 2;r -2^ = 0 得 x 3 = 125, x = 5x易知,兀=5是函数S 的极小值点,也是最小值点. 答:当该长方体的底边长为5米,高为2. 5米时用料最省。
高等数学基础作业答案及分析

高等数学基础作业1第1章 函数第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g分析:判断函数相等的两个条件(1)对应法则相同(2)定义域相同 A 、2()()f x x x ==,定义域{}|0x x ≥;x x g =)(,定义域为R 定义域不同,所以函数不相等; B 、2()f x x x ==,x x g =)(对应法则不同,所以函数不相等;C 、3()ln 3ln f x x x ==,定义域为{}|0x x >,x x g ln 3)(=,定义域为{}|0x x > 所以两个函数相等D 、1)(+=x x f ,定义域为R ;21()11x g x x x -==+-,定义域为{}|,1x x R x ∈≠ 定义域不同,所以两函数不等。
故选C⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = 分析:奇函数,()()f x f x -=-,关于原点对称偶函数,()()f x f x -=,关于y 轴对称()y f x =与它的反函数()1y f x -=关于y x =对称,奇函数与偶函数的前提是定义域关于原点对称设()()()g x f x f x =+-,则()()()()g x f x f x g x -=-+= 所以()()()g x f x f x =+-为偶函数,即图形关于y 轴对称故选C⒊下列函数中为奇函数是(B ).A. )1ln(2x y +=B. x x y cos =C. 2xx a a y -+= D. )1ln(x y += 分析:A 、()()()()22ln(1)ln 1y x x x y x -=+-=+=,为偶函数B 、()()()cos cos y x x x x x y x -=--=-=-,为奇函数 或者x 为奇函数,cosx 为偶函数,奇偶函数乘积仍为奇函数C 、()()2x xa a y x y x -+-==,所以为偶函数 D 、()ln(1)y x x -=-,非奇非偶函数故选B⒋下列函数中为基本初等函数是(C ).A. 1+=x yB. x y -=C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y 分析:六种基本初等函数(1) y c =(常值)———常值函数(2) ,y x αα=为常数——幂函数 (3) ()0,1x y a a a =>≠———指数函数 (4) ()log 0,1a y x a a =>≠———对数函数(5) sin ,cos ,tan ,cot y x y x y x y x ====——三角函数(6) [][]sin ,1,1,cos ,1,1,tan ,cot y arc x y arc x y arc x y arc x=-=-==——反三角函数分段函数不是基本初等函数,故D 选项不对 对照比较选C⒌下列极限存计算不正确的是(D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim=∞→x x x D. 01sin lim =∞→xx x 分析:A 、已知()1lim 00n x n x→∞=>2222222211lim lim lim 1222101x x x x x x x x x x x →∞→∞→∞====++++B 、0limln(1)ln(10)0x x →+=+=初等函数在期定义域内是连续的C 、sin 1limlim sin 0x x x x xx →∞→∞==x →∞时,1x是无穷小量,sin x 是有界函数,无穷小量×有界函数仍是无穷小量D 、1sin1lim sin lim1x x x x x x→∞→∞=,令10,t x x =→→∞,则原式0sin lim 1t t t →== 故选D⒍当0→x 时,变量(C )是无穷小量.A.xxsin B. x 1C. xx 1sin D. 2)ln(+x分析;()lim 0x af x →=,则称()f x 为x a →时的无穷小量A 、0sin lim1x xx →=,重要极限B 、01lim x x→=∞,无穷大量C 、01lim sin 0x x x→=,无穷小量x ×有界函数1sin x 仍为无穷小量D 、()0limln(2)=ln 0+2ln 2x x →+=故选C⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
高等数学基础形成性考核册答案(附题目)

【高等数学基础】形成性考核册答案【高等数学基础】形考作业1答案:第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,(C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(=D. 1)(+=x x f ,11)(2--=x x x g 分析:判断函数相等的两个条件(1)对应法则相同(2)定义域相同A 、2()f x x ==,定义域{}|0x x ≥;x x g =)(,定义域为R定义域不同,所以函数不相等;B 、()f x x ==,x x g =)(对应法则不同,所以函数不相等;C 、3()ln 3ln f x x x ==,定义域为{}|0x x >,x x g ln 3)(=,定义域为{}|0x x >所以两个函数相等D 、1)(+=x x f ,定义域为R ;21()11x g x x x -==+-,定义域为{}|,1x x R x ∈≠ 定义域不同,所以两函数不等。
故选C⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y =分析:奇函数,()()f x f x -=-,关于原点对称偶函数,()()f x f x -=,关于y 轴对称()y f x =与它的反函数()1y f x -=关于y x =对称,奇函数与偶函数的前提是定义域关于原点对称设()()()g x f x f x =+-,则()()()()g x f x f x g x -=-+=所以()()()g x f x f x =+-为偶函数,即图形关于y 轴对称故选C⒊下列函数中为奇函数是(B ).A. )1ln(2x y += B. x x y cos = C. 2xx a a y -+= D. )1ln(x y += 分析:A 、()()()()22ln(1)ln 1y x x x y x -=+-=+=,为偶函数B 、()()()cos cos y x x x x x y x -=--=-=-,为奇函数或者x 为奇函数,cosx 为偶函数,奇偶函数乘积仍为奇函数C 、()()2x xa a y x y x -+-==,所以为偶函数D 、()ln(1)y x x -=-,非奇非偶函数故选B⒋下列函数中为基本初等函数是(C ).A. 1+=x yB. x y -=C. 2x y =D. ⎩⎨⎧≥<-=0,10,1x x y 分析:六种基本初等函数(1) y c =(常值)———常值函数(2) ,y x αα=为常数——幂函数(3) ()0,1x y a a a =>≠———指数函数(4) ()log 0,1a y x a a =>≠———对数函数(5) sin ,cos ,tan ,cot y x y x y x y x ====——三角函数 (6) [][]sin ,1,1,cos ,1,1,tan ,cot y arc x y arc x y arc x y arc x=-=-==——反三角函数分段函数不是基本初等函数,故D 选项不对对照比较选C⒌下列极限存计算不正确的是(D ). A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→xx x 分析:A 、已知()1lim 00n x n x→∞=> 2222222211lim lim lim 1222101x x x x x x x x x x x→∞→∞→∞====++++ B 、0limln(1)ln(10)0x x →+=+= 初等函数在期定义域内是连续的C 、sin 1limlim sin 0x x x x xx →∞→∞== x →∞时,1x 是无穷小量,sin x 是有界函数, 无穷小量×有界函数仍是无穷小量D 、1sin1lim sin lim 1x x x x x x →∞→∞=,令10,t x x =→→∞,则原式0sin lim 1t t t →== 故选D⒍当0→x 时,变量(C )是无穷小量. A. xx sin B. x 1C. xx 1sin D. 2)ln(+x 分析;()lim 0x af x →=,则称()f x 为x a →时的无穷小量 A 、0sin lim 1x x x→=,重要极限 B 、01lim x x→=∞,无穷大量 C 、01lim sin 0x x x →=,无穷小量x ×有界函数1sin x仍为无穷小量 D 、()0limln(2)=ln 0+2ln 2x x →+= 故选C⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
高等数学基础形成性作业及答案1-4

⾼等数学基础形成性作业及答案1-4⾼等数学基础形考作业1:第1章函数第2章极限与连续(⼀)单项选择题⒈下列各函数对中,(C )中的两个函数相等. A.2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C.3ln )(xx f =,x x g ln 3)(= D.1)(+=x x f ,11)(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D.x y =⒊下列函数中为奇函数是(B ). A.)1ln(2x y += B. x x y cos =C.2x x a a y -+=D.)1ln(x y +=⒋下列函数中为基本初等函数是(C ). A.1+=x y B. x y -=C.2xy = D.,1x x y ⒌下列极限存计算不正确的是(D ). A.12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x xC. 0sin lim=∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量(C )是⽆穷⼩量.A. x x sinB. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满⾜(A ),则)(x f 在点0x 连续。
A.)()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C.)()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(⼆)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x0,)1()(1x k x x x x f x ,在0=x 处连续,则=ke .⒌函数?≤>+=0,sin 0,1x x x x y 的间断点是0=x .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的⽆穷⼩量0x x →。
高等数学基础形成性作业及答案1-4

A.
B.
C.
D.
⒌下列极限存计算不正确的是(D).
A.
B.
C.
D.
⒍当时,变量(C)是无穷小量.
A.
B.
C.
D.
⒎若函数在点满足(A),则在点连续。
A.
B. 在点的某个邻域内有定义
C.
D.
(二)填空题
⒈函数的定义域是.
⒉已知函数,则 x2-x .
⒊.
⒋若函数,在处连续,则 e .
⒌函数的间断点是.
⒍若,则当时,称为。
⒋函数满足的点,一定是的(C ).
A. 间断点
B. 极值点
C. 驻点
D. 拐点
⒌设在内有连续的二阶导数,,若满足( C ),则在取到极小值.
A. B.
C. D.
⒍设在内有连续的二阶导数,且,则在此区间内是( A ).
A. 单调减少且是凸的
B. 单调减少且是凹的
C. 单调增加且是凸的
D. 单调增加且是凹的
⒋曲线在处的切线方程是。
⒌设,则
⒍设,则。
(三)计算题
⒈求下列函数的导数:
⑴
解:
⑵
解:
⑶ 解: ⑷ 解: ⑸
解: ⑹ 解: ⑺ 解: ⑻ 解: ⒉求下列函数的导数: ⑴ 解: ⑵ 解: ⑶ 解: ⑷ 解: ⑸ 解: ⑹ 解:? ⑺ 解: ⑻ 解: ⑼ 解: ⒊在下列方程中,是由方程确定的函数,求: ⑴ 解: ⑵ 解: ⑶ 解:
第5章
第6章
(一)单项选择题
⒈若的一个原函数是,则(D).
A.
B.
C.
D.
不定积分 定积分及其应用
⒉下列等式成立的是(D).
A
高等数学基础作业答案doc资料

高等数学基础第一次作业点评1第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,(C )中的两个函数相等.A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于( C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是( B ).A. )1ln(2x y += B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是( C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量( C )是无穷小量.A. x x sinB. x 1C. xx 1sin D. 2)ln(+x点评:无穷小量乘以有界变量为无穷小量⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=二、填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是 .}33{>-≤x x x 或 ⒉已知函数x x x f +=+2)1(,则=)(x f .x x -2⒊=+∞→xx x)211(lim .21e⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k .e⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 .0=x⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 .无穷小量三计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:2)2(-=-f0)0(=f e e f ==1)1(点评:求分段函数的函数值主要是要判断那一点是在哪一段上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学基础第一次作业点评1第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,(C )中的两个函数相等.A 、 2)()(x x f =,x x g =)( B 、 2)(x x f =,x x g =)(C 、 3ln )(x x f =,x x g ln 3)(= D 、 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于( C )对称.A 、 坐标原点B 、 x 轴C 、 y 轴D 、 x y = ⒊下列函数中为奇函数就是( B ).A 、 )1ln(2x y += B 、 x x y cos =C 、 2xx a a y -+= D 、 )1ln(x y +=⒋下列函数中为基本初等函数就是( C ).A 、 1+=x yB 、 x y -=C 、 2xy = D 、 ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的就是( D ).A 、 12lim 22=+∞→x x x B 、 0)1ln(lim 0=+→x x C 、 0sin lim =∞→x x x D 、 01sin lim =∞→x x x⒍当0→x 时,变量( C )就是无穷小量.A 、 x x sinB 、 x 1C 、 xx 1sin D 、 2)ln(+x点评:无穷小量乘以有界变量为无穷小量⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。
A 、 )()(lim 00x f x f x x =→ B 、 )(x f 在点0x 的某个邻域内有定义C 、 )()(lim 00x f x f x x =+→ D 、 )(lim )(lim 0x f x f x x x x -+→→=二、填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域就是 .}33{>-≤x x x 或 ⒉已知函数x x x f +=+2)1(,则=)(x f .x x -2⒊=+∞→xx x)211(lim .21e⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k .e⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点就是 .0=x⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 .无穷小量三计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:2)2(-=-f0)0(=f e e f ==1)1(点评:求分段函数的函数值主要就是要判断那一点就是在哪一段上。
即正确选择某段函数。
⒉求函数xx y 12lglg -=的定义域. 解:欲使函数有意义,必使012lg >-xx ,即:112>-xx 亦即:x x >-12解得函数的定义域就是:1>x点评:函数的定义域就就是使函数有意义的自变量的变化范围。
⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解:设梯形的高CM=x,则22x R DM -=梯形的上底222x R DC -=,下底R AB 2=则梯形的面积2)22(22xR x R s +-=)0()(22R x x R x R <<+-=⒋求xxx 2sin 3sin lim0→.解:原式=23112322sin lim 33sin lim2300=⨯=⨯→→xx x xx x 点评:正确利用两个重要极限,将函数作适当变形。
⒌求)1sin(1lim 21+--→x x x .解:原式=2121)1sin(lim )1(lim 1)1sin(1lim 111-=-=++-=++--→-→-→x x x x x x x x x点评:正确利用两个重要极限,将函数作适当变形。
⒍求x xx 3tan lim 0→.解:311133cos 1lim 33sin lim 33cos 133sin lim 33cos 3sin lim 0000=⨯⨯=⨯=⨯=→→→→x x x x x x x x xx x x x点评:同上。
⒎求xx x sin 11lim 20-+→.解:原式=010sin 1lim11limsin )11()11)(11(lim202220=⨯=⨯++=++++-+→→→xx x x xx x x x x x 点评:同上。
⒏求xx x x )31(lim +-∞→. 解:原式=333131-+→∞⎪⎭⎫⎝⎛+-•⎪⎭⎫ ⎝⎛+-x x x x lim x x =33343343-+∞→⎪⎭⎫ ⎝⎛+-+•⎪⎭⎫⎝⎛+-+x x x x lim x x=33341341-∞→+∞→⎪⎭⎫ ⎝⎛+-+•⎪⎭⎫ ⎝⎛+-+x lim x lim x x x =3341+∞→⎪⎭⎫ ⎝⎛+-+x x x lim=443341--+∞→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+x x x lim =443341--+∞→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+x x x lim =4-e⒐求4586lim 224+-+-→x x x x x .解:原式=3212lim )1)(4()2)(4(lim44=--=----→→x x x x x x x x ⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f讨论)(x f 的连续性,并写出其连续区间.点评:讨论分段函数在分段点处的连续性,只要研究函数)(x f 在该点处的左右极限情况,然后再由函数连续性的定义判断。
解:先瞧函数在分段点1-=x 处的情况,∵011)1()(lim lim 11=+-=+=---→-→x x f x x 1)(lim lim 11-==++-→-→x x f x x∴)()(lim lim 11x f x f x x +--→-→≠,故)(lim 1x f x -→不存在。
∴1-=x 为函数)(x f 的间断点。
再瞧函数在分段点1=x 处的情况,∵1)(limlim11==--→→x x f x x 1)2()(211limlim =-=++→→x x f x x ∴)()(lim lim 11x f x f x x +-→→=,故1)(lim 1=→x f x 。
又因为1)1(1===x x f所以)1()(lim 1f x f x =→故1=x 就是函数)(x f 的连续点。
函数)(x f 在连续区间就是:),1()1,(+∞-⋃--∞。
高等数学基础第二次作业第3章 导数与微分(一)单项选择题⒈设0)0(=f 且极限x x f x )(lim0→存在,则=→xx f x )(lim 0(B).A 、 )0(fB 、 )0(f 'C 、 )(x f 'D 、 0⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000(D). A 、 )(20x f '- B 、 )(0x f ' C 、 )(20x f ' D 、 )(0x f '-⒊设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim 0(A).A 、 eB 、 e 2C 、 e 21D 、 e 41⒋设)99()2)(1()(---=x x x x x f ,则=')0(f (D).A 、 99B 、 99-C 、 !99D 、 !99- ⒌下列结论中正确的就是( C ).A 、 若)(x f 在点0x 有极限,则在点0x 可导.B 、 若)(x f 在点0x 连续,则在点0x 可导.C 、 若)(x f 在点0x 可导,则在点0x 有极限.D 、 若)(x f 在点0x 有极限,则在点0x 连续.(二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f ,则=')0(f 0 . ⒉设xx x f e 5e )e (2+=,则=x x f d )(ln d xx 5ln 2+ ⒊曲线1)(+=x x f 在)2,1(处的切线斜率就是 21.⒋曲线x x f sin )(=在)1,2π(处的切线方程就是1=y .⒌设x x y 2=,则='y ()2ln 22+x x x.⒍设x x y ln =,则=''y x1. (三)计算题⒈求下列函数的导数y ':⑴xx x y e )3(+=解:xx x xxe e x e x e e x y 323)3(232123++='+='=)323(2123++x x e x⑵x x x y ln cot 2+=解:)ln 2sin cos cos sin sin ()ln sin cos (222x x x x xx x x x x x x x y ++--='+=' =x x x x ++-ln 2sin 12⑶xx y ln 2=解:x x x x x x x y 22ln )1ln 2(ln ln 2-=-=' ⑷32cos x x y x+=解:6233)2(cos )2ln 2sin (xx x x x y x x ⋅+-+-=' =423cos 322ln sin x x x x x xx ⋅--⋅+-⑸x x x y sin ln 2-=解:xx x x x x x y 22sin )(ln cos sin )21(---=' =xx x x x x x 222sin )cos(ln sin )21(---⑹x x x y ln sin 4-=解:)sin ln (cos 43x xx x x y +⨯-=' =xx x x x sin ln cos 43-⨯-⑺xx x y 3sin 2+= 解:xx x x x x x y 223)(sin 3ln 33)2(cos +-+='=xx x x x 3)(sin 3ln 2cos 2+-+ ⑻x x y xln tan e +=解:x xe x e y x x1)cos tan (2++=' =x xx x e x 1cos )1cos (sin 2++ ⒉求下列函数的导数y ':⑴xy e=解:x xexey xx221=⋅='⑵x y cos ln =解:x xxy tan cos sin -=-='⑶x x x y =解:因为87814121x x x x y =⋅⋅=所以 8187-='x y⑷x y 2sin =解:因为x x x y 2sin cos sin 2=⋅=所以 )211()(313221x x x y ++='-⑸2sin x y =解:22cos 22cos x x x x y =⋅='⑹xy e cos =解:='y xx e e ⋅-sin=xx e e sin - ⑺nx x y ncos sin =解:)(cos sin cos )(sin '⋅+'='nx x nx x y nn=n nx x nx x x n n n ⋅-⋅+⋅⋅-)sin (sin cos cos sin1=)sin sin cos (cos sin 1nx x nx x x n n -- ⑻xy sin 5=解:设xu y usin 5==x u u y y '⋅'='=x x xu cos 55ln cos 5ln 5sin ⋅⋅=⋅ ⑼xy cos e=解:设xu e y ucos ==x u u y y '⋅'='=x ex e x u sin )sin (cos -=-⋅ ⒊在下列方程中,y y x =()就是由方程确定的函数,求'y : 解:将方程两边对x 求导: x y x y sin cos -'=y e y'⋅22移项 x y e x y ysin )2(cos 2=-'所以:yex xy y 22cos sin -=' ⑵x y y ln cos =解:将方程两边对x 求导:)(ln cos ln )(cos '+'='x y x y yx yx y y y cos ln sin +'⋅-=' 移项 xyx y y cos )ln sin 1(=⨯+'所以:)sin ln 1(cos y x x yy +='⑶yx y x 2sin 2=解:'222'2'22cos 22y y x y x yy x xy y y x simy -=-=⋅+ 22222'cos 222cos 222xy xy simy y xy yx y x simyy xy +-=+-= ⑷y x y ln +=解:因为:y y y '+='1解得 11-='y y⑸2e ln y x y =+解:将方程两边对x 求导:y y y e xy '⋅='⋅+21整理得:)2(1ye y x y -='⑹y y xsin e 12=+ 解:将方程两边对x 求导:y y e y e y y x x '⋅+='⋅cos sin 2整理得:ye y ye y x x cos 2sin -='⑺3e e y x y -=解:将方程两边对x 求导:y y e y e x y '⋅-='⋅23整理得:23y e e y y x+='⑻yx y 25+=解:将方程两边对x 求导:y y y x '⋅+='2ln 25ln 5整理得:2ln 215ln 5yx y -=' ⒋求下列函数的微分y d : ⑴x x y csc cot +=解:因为 x xx x x y 222sin cos sin 1)sin 1(sin 1--='+-=' =x x2sin cos 1+- 所以 dx xxdy 2sin cos 1+-= ⑵xx y sin ln =解:因为 xx x x x y 2sin ln cos sin 1⋅-=' =x x xx x x 2sin ln cos sin ⋅-所以 dy=x x xx x x 2sin ln cos sin ⋅-dx ⑶x sin 2=y解:设 x u u y sin ,2== 则 x u u y y '⋅'='=x x x u cos sin 2cos 2⋅=⋅=x 2sin 所以 dy=x 2sin dx ⑷xy e tan = 解:设: xe u u y ==,tan则 x u u y y '⋅'='=x e u ⋅2cos 1=xxe e 2cos 所以 dy=xxee 2cos dx ⒌求下列函数的二阶导数: ⑴x y = 解:xy 21='2341)21(--='=''x xy⑵xy 3=解:3ln 3xy ='3ln 3ln 3)3ln 3(⨯='=''xx y= ⑶x y ln = 解:xy 1=' 21)1(x x y -='=''⑷x x y sin =解:x x x y cos sin +='xx x x x x x x x x y sin cos 2sin cos cos )cos (sin -=-+='+=''(四)证明题设)(x f 就是可导的奇函数,试证)(x f '就是偶函数. 证明:因为)(x f 就是奇函数,所以又因为)(x f 可导,函数)(x f -为复合函数。