高考物理选考热学计算题(二)含答案与解析

高考物理选考热学计算题(二)含答案与解析
高考物理选考热学计算题(二)含答案与解析

高考物理选考热学计算题(二)

组卷老师:莫老师

一.计算题(共50小题)

1.如图所示,一个高为H的导热汽缸,原来开口,将其开口向上竖直放置。在气温为27℃、气压为760mm Hg、相对湿度为75%时,用一质量可不计的光滑活塞将开口端封闭。求将活塞下压多大距离时,将开始有水珠出现。

2.有一粗细均匀的U形管,当温度为31℃时,封闭端和开口端的水银面在同一水平面上,如图所示.封闭端内的空气柱长8cm,大气压强为76cmHg,问:(i)温度升高到多少摄氏度时,封闭端气柱将增加到9cm?

(ii)在(i)问的操作结束后,如果再从开口端缓慢灌入水银(灌入的水银与开口端的水银面相连,其间没有气泡),使封闭端内的空气柱恢复到原长,此过程保持气体温度不变,那么封闭端和开口端的水银面相差几厘米?

3.如图所示,两竖直固定且正对放置的导热气缸内被活塞各封闭一定质量的理想气体,活塞a、b用刚性轻杆相连,上下两活塞的横截面积S a:S b=1:2,活塞处于平衡状态时,A、B中气体的体积均为V0,温度均为300K,B中气体压强为0.75P0,P0为大气压强(两活塞及杆质量不计,活塞与气缸内壁间摩擦不计)。(1)求A中气体的压强;

(2)现对B中气体加热,同时保持A中气体温度不变,活塞重新达到平衡状态后,A中气体的压强为P0,求此时B中气体的温度。

4.如图,两汽缸A、B粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A的直径是B的2倍,A上端封闭,B上端与大气连通;两汽缸除A顶部导热外,其余部分均绝热。两汽缸中各有一厚度可忽略的绝热轻活塞a、b,活塞下方充有氮气,活塞a上方充有氧气;当大气压为p0、外界和汽缸内气体温度均为7℃且平衡时,活塞a离汽缸顶的距离是汽缸高度的,活塞b在汽缸正中间。

(1)现通过电阻丝缓慢加热氮气,当活塞b恰好升至顶部时,求氮气的温度;(2)继续缓慢加热,使活塞a上升,当活塞a上升的距离是汽缸高度的时,求氧气的压强。

5.如图所示,横截面积分别为2S、3S的圆筒形导热容器,底部通过一细管相接通,圆筒高均为40cm,左圆筒开口,右圆简封闭,底部装入水银,稳定时,右侧封闭理想气体高30cm,左侧水银面距圆筒口15cm,现用一轻质话塞封住左侧筒口,并用力缓慢向下推活塞,直至两圆筒内水银面相平,已知大气压强P0=75cmHg,不考虑周围环境温度的变化,求此过程中活塞下降的高度。

6.如图所示,两个水平相对放置的固定气缸通过一根带阀门K的容积不计的细管连通,两轻质活塞用刚性轻杆固连,可在气缸内无摩擦地移动,两活塞面积分别为S A=0.8m2和S B=0.2m2.开始时阀门K关闭,A中充有一定质量的理想气体,

B内为真空,气缸中的活塞与缸底的距离a=b=30cm,活塞静止,设温度不变,气缸内壁光滑,外界大气压强p0=1.0×105Pa保持不变,求:

①阀门K关闭时,A中气体的压强;

②阀门K打开后,活塞A向何处移动,移动多远?

7.北方某地的冬天室外气温很低,吹出的肥皂泡会很快冻结。若刚吹出时肥皂泡内气体温度为T1,压强为p1,肥皂泡冻结后泡内气体温度降为T2.整个过程中泡内气体视为理想气体,不计体积和质量变化,大气压强为p0.求冻结后肥皂膜内外气体的压强差。

8.绝热气缸倒扣在水平地面上,缸内装有一电热丝,缸内有一光滑的绝热活塞,封闭一定质量的理想气体,活塞下吊着一重为G的重物,活塞重为G0,活塞的截面积为S,开始时封闭气柱的高为h,气体的温度为T1,大气压强为p0.现给电热丝缓慢加热,若气体吸收热量Q时,活塞下降了h,求:

①气体的温度升高多少?

②气体的内能增加多少?

9.如图所示,左端封闭、内径相同的U形细玻璃管竖直放置,左管中封闭有长为L=20cm,温度为t=27°的空气柱,两管水银面相平,水银柱足够长.已知大气压强为p0=75cmHg.若将图中的阀门S打开,缓慢流出部分水银,然后关闭阀门S,右管水银面下降了H=35cm,求:

①左管水银面下降的高度;

②对左管封闭气体加热,使左右两管水银面相平时的温度.

10.如图,一图柱形绝热气缸竖直放置,在距气缸底2h处有固定卡环(活塞不会被顶出).质量为M、横截面积为S,厚度可忽略的绝热活塞可以无摩擦地上下移动,活塞下方距气缸底h处还有一固定的可导热的隔板将容器分为A、B两部分,A、B中分别封闭着一定质量的同种理想气体。初始时气体的温度均为27℃,B中气体强为1.5p0、外界大气压为p0,活塞距气缸底的高度为1.5h.现通过电热丝缓慢加热气体,当活塞恰好到达气缸底部卡环处时,求A、B中气体的压强和温度(重力加速度为g,气缸壁厚度不计)。

11.如图所示,“T”形活塞将绝热气缸内的气体分隔成A、B两部分,活塞左右两侧截面积分别为S1、S2,活塞至气缸两端底部的距离均为L,活塞与缸壁间无摩擦.气缸上a、b两个小孔用细管(容积不计)连通.初始时缸内气体的压强等于外界大气压强P0,温度为T0.现对缸内气体缓慢加热,发现活塞向右移动了△L的距离(活塞移动过程中不会经过小孔),试求:

(1)再次稳定时,气体的压强;

(2)求缸内气体的温度.

12.科学家可以运用无规则运动的规律来研究生物蛋白分子.资料显示,某种蛋

白的摩尔质量为66kg/mol,其分子可视为半径为3×10﹣9m的球,已知阿伏伽德罗常数为6.0×1023mol﹣1.请估算该蛋白的密度.(计算结果保留一位有效数字)13.一粗细均匀的U形管ABCD的A端封闭,D端与大气相通.用水银将一定质量的理想气体封闭在U形管的AB一侧,并将两端向下竖直放置,如图所示.此时AB侧的气体柱长度l1=25cm.管中AB、CD两侧的水银面高度差h1=5cm.现将U形管缓慢旋转180°,使A、D两端在上,在转动过程中没有水银漏出.已知大气压强p0=76cmHg.求旋转后,AB、CD两侧的水银面高度差.

14.一种测量稀薄气体压强的仪器如图(a)所示,玻璃泡M的上端和下端分别连通两竖直玻璃细管K1和K2.K1长为l,顶端封闭,K2上端与待测气体连通;M 下端经橡皮软管与充有水银的容器R连通.开始测量时,M与K2相通;逐渐提升R,直到K2中水银面与K1顶端等高,此时水银已进入K1,且K1中水银面比顶端低h,如图(b)所示.设测量过程中温度、与K2相通的待测气体的压强均保持不变.已知K1和K2的内径均为d,M的容积为V0,水银的密度为ρ,重力加速度大小为g.求:

(i)待测气体的压强;

(ii)该仪器能够测量的最大压强.

15.一热气球体积为V,内部充有温度为T a的热空气,气球外冷空气的温度为

T b.已知空气在1个大气压、温度为T0时的密度为ρ0,该气球内、外的气压始终都为1个大气压,重力加速度大小为g.

(i)求该热气球所受浮力的大小;

(ii)求该热气球内空气所受的重力;

(iii)设充气前热气球的质量为m0,求充气后它还能托起的最大质量.

16.如图,容积均为V的汽缸A、B下端有细管(容积可忽略)连通,阀门K2位于细管的中部,A、B的顶部各有一阀门K1、K3,B中有一可自由滑动的活塞(质量、体积均可忽略).初始时,三个阀门均打开,活塞在B的底部;关闭K2、K3,通过K1给汽缸充气,使A中气体的压强达到大气压p0的3倍后关闭K1.已知室温为27℃,汽缸导热.

(i)打开K2,求稳定时活塞上方气体的体积和压强;

(ii)接着打开K3,求稳定时活塞的位置;

(iii)再缓慢加热汽缸内气体使其温度升高20℃,求此时活塞下方气体的压强.

17.成年人在正常状态下1分钟呼吸18次,每次吸入的空气约为500mL,空气中氧气的含量约为21%,氧气的密度约为1.4kg/m3、摩尔质量为3.2×10﹣2 kg/mol,阿伏加德罗常数N A取6.0×1023/mol.求一个成年人在一昼夜的时间内:

①吸入氧气的质量;

②吸入氧气的分子数。(上述结果均保留一位有效数字)

18.2016年10月22 日是世界传统医药日,按摩拔火罐等中医疗法成办公室年轻人新宠.如图所示,若罐的容积为45cm3,罐内空气温度为27℃.已知大气压P0=1×105Pa,求:

①罐内空气在标准状况下占的体积;

②设想罐内的空气从27℃等压降温到0℃,由W=p0△V计算外界对这些空气做的功为多少?

若同时这些空气放出热量0.5 J,则这些空气的内能变化了多少.

19.水的摩尔质量是M=18g/mol,水的密度为ρ=1.0×103kg/m3,阿伏伽德罗常数N A=6.0×1023mol﹣,求:

①一个水分子的质量;

②一瓶600ml的纯净水所含水分子数目.

20.如图所示,下端封闭且粗细均匀的“7”型细玻璃管,竖直部分长l=50cm,水平部分足够长,左边与大气相通,当温度t1=27℃时,竖直管内有一段长为h=10cm 的水银柱,封闭着一段长为l1=30cm的空气柱,外界大气压始终保持P0=76cmHg,设0℃为273K,试求:

①被封闭气柱长度为l2=40cm时的温度t2;

②温宿升高至t3=177℃时,被封闭空气柱的长度l3.

21.如图所示,封闭有一定质量理想气体的长气缸固定在水平桌面上,开口向右,活塞的横截面积为S.活塞与质量为m的物块用跨过定滑轮上的轻绳连接,滑轮两侧的轻绳分别处于水平和竖直状态,劲度系数为k的竖直轻弹簧下端固定,上端与物块连接。开始时,活塞与气缸底部的间距为L,绝对温度为T1,弹簧处于拉伸状态且弹力大小F1=mg.已知大气压p0=(n>2,g为重力加速度大小).不计一切摩擦,弹簧始终处于弹性限度内。求:

(Ⅰ)若对被封闭气体缓慢加热直至弹簧弹力大小为零,求此时被封闭气体的绝对温度T2;

(Ⅱ)当被封闭气体的绝对温度为T2时,立即撤去弹簧且不再对被封闭气体加热,经过一段较长时间后,被封闭气体的绝对温度又降回到T1,求此时活塞与气

缸底部的间距L′。

22.如图所示,一根劲度系数为k=200N/m的轻弹簧支持着一个竖直倒立的圆柱形气缸和活塞;活塞A的质量为m=0.5kg,横截面积为S=1×10﹣4m2,厚度不计;气缸B的质量也为m,横截面积为S,高度为H=0.4m,下端开一气孔C,气缸和活塞均导热良好,摩擦不计;气缸和活塞均静止时,环境温度为T1=1200K,缸内被封闭的理想气体气柱高H/2,缸口距离地面高度为H/8;现在缓慢降低环境温度,重力加速度为g=10m/s2,大气压强为P0=1×105P a则:

(1)缸口刚接触地面时,环境的温度为多少:

(2)弹簧恢复原长时,环境的温度为?

23.如图所示为一太阳能空气集热器,底面及侧面为隔热材料,顶面为透明玻璃板,集热器容积为V0,开始时内部封闭气体的压强为p0.经过太阳曝晒,气体温度由T0=300K升至T1=400K.

(1)求此时气体的压强.

(2)缓慢抽出部分气体,并使温度降为360K,此时,集热器内气体的压强回到p0,求集热器内剩余气体的质量与原来总质量的比值.

24.在水平面有一个导热气缸,如图甲所示,活塞与气缸之间密封了一定质量的理想气体.最初密封气体的温度为23℃,气柱长10cm;给气体加热后,气柱长

变为12cm.已知气缸内截面积为0.001m2,大气压p0=1.0×105Pa,g取10m/s2.(i)求加热后气体的温度;

(ii)若保持加热后气体的温度不变,将气缸直立后(如图乙所示)气柱长度又恢复为10cm,求活塞质量.

25.如图,粗细均匀的U型玻璃管两端开口,底部的水平管内有长度分别为10cm、5cm的两段空气柱a、b,左右两管竖直,水银柱的长度如图中标注所示,在左管内缓慢注入一定量的水银,稳定后右管的水银面比原来高h=10cm,已知大气压强P0=76cmHg,环境稳定恒定,求向左管注入的水银柱长度.

26.如图均匀薄壁U形管,左管上端封闭,右管开口且足够长,管内水银柱封住A部分气体,当A部分气体的温度为300K时,左、右两管内水银面等高,A 气柱的长度L=10cm,大气压强为75cmHg

①现使A气柱的温度缓慢升高,使温度升高到多少K时,左管水银面下降2.5cm?

②如果保持升高后的A内气体的温度不变,在右管内加入多长的水银,可以使A 的水银面重新回到原位置?

27.受啤酒在较高压强下能够溶解大量二氧化碳得启发,科学家设想了减低温室效应得“中国办法”:用压缩机将二氧化碳送入深海底,由于海底压强很大,海水能够溶解大量得二氧化碳使其永久储存起来,这样就为温室气体找到了一个永远的“家”.现将过程简化如下:在海平面上,开口向上、导热良好的气缸内封存有

一定量的CO2气体,用压缩机对活塞施加竖直向下的压力F,此时缸内气体体积为V0、温度为T0.保持F不变,将该容器缓慢送入温度为T、距海平面深为h的海底.已知大气压强为P0,活塞横截面为S,海水的密度为P,重力加速度为g.不计活塞质量,缸内的CO2始终可视为理想气体,求:

(i)在海底时CO2的体积.

(ii)若打开阀门K,使容器内的一半质量的二氧化碳缓慢排出,当容器的体积变为打开阀门前的时关闭阀门,则此时压缩机给活塞的压力F′是多大?

28.如图所示,U形管右管内径为左管内径的倍,管内水银在左管内封闭了一段长为76cm、温度为300K的空气柱,左右两管水银面高度差为6cm,大气压为76cmHg.

(i)给左管的气体加热,则当U形管两边水面等高时,左管内气体的温度为多少?

(ii)在(i)问的条件下,保持温度不变,往右管缓慢加入水银直到左管气柱恢复原长,问此时两个水银面的高度差.

29.如图所示,大气压强为p0,玻璃管的横截面积为S,水银柱的长度为h,水

银的密度为ρ,当玻璃管被水平固定在水平面上时,密封的空气柱的长度为L1;当玻璃管开口向上,在竖直方向上向下做加速度大小为g的匀加速线运动时,空气柱的长度为多少?(已知环境温度不变,重力加速度为g)

30.如图所示,一顶部导热、侧壁和底部绝热的气缸静止在地面上,一厚度不计的绝热活塞将其分隔上、下两部分,活塞可沿气缸无摩擦滑动,且与气缸密闭性良好.开始时,进气口封闭,气缸上、下两部分装有同种理想气体,上部分气体压强为P0,上、下两部分的气体体积均为V0、温度均为T0,活塞静止.现从进气口缓慢打进压强为2P0,体积为V0的同种理想气体.打进压强为2P0的同种理想气体.打进气体后活塞再次平衡时,上、下两部分气体的体积之比为3:2.取重力加速度为g,已知活塞质量为m,横截面积为S,且mg=P0S,环境温度不变,忽略进气管内气体的体积.求:

(1)再次平衡时上部分气体的压强;

(2)再次平衡时下部分气体的温度.

31.在水平面上有一内壁光滑的导热气缸,如图所示,活塞与气缸之间密封了一定质量的理想气体.最初密封气体温度t1=27℃,气柱长l1=10cm;给气体加热后,气柱长度变为l2=12cm.已知活塞横截面积为s=0.001m2,大气压强P0=1.0×105Pa,重力加速度g取10m/s2.

(i)求加热后气体的温度T2;

(ii)若保持加热后气体的温度不变,将气缸直立后(如图乙所示)气柱长度又恢复为10cm,求活塞的质量m.

32.一“凸”形气缸如图所示,A、B两部分横截面积分别为S和4S,B部分高度为h,A部分足够高且上端与大气相通,下端用一质量与厚度均不计的活塞封闭一定质量的理想气体,当密闭气体温度T1=280K时活塞恰好处于A、B两部分的分界处,已知大气压强P0=76cmHg,活塞与气缸间无摩擦.

①现缓慢升高密闭气体温度使活塞上升可h高度,求此时密闭气体的温度T2.

②保持密闭气体温度T2不变,通过缓慢加注水银的方式使活塞回到初始位置,则所加的水银柱高度H为多少?

33.如图所示,上端开口的光滑圆柱形绝热气缸竖直放置,质量m=5kg、截面积S=50cm2的活塞将一定质量的理想气体封闭在气缸内,在气缸内距缸底为h=0.3m 处有体积可忽略的卡环a、b,使活塞只能向上滑动。开始时活塞搁在a、b上,缸内气体的压强等于大气压强,温度为T0=300K.现通过内部电热丝缓慢加热气缸内气体,直至活塞恰好离开a、b.已知大气压强p0=1.0×105Pa.(g取10m/s2),求

①活塞恰要离开ab时,缸内气体的压强p1;

②当活塞缓慢上升△h=0.1m时(活塞未滑出气缸)缸内气体的温度T为多少?

③若全过程电阻丝放热95J,求气体内能的变化△U。

34.一端封闭而另一端开口的玻璃管总长L=62cm,初始时玻璃管开口向上竖直

静止放置,管中有一段高h=5cm的水银柱封闭了一段长l1=35cm的空气柱,如图甲,接着将玻璃管缓慢旋转至开口向下的竖直位置,如图乙,此时上端空气柱的长度变为l2=40cm,气体的温度保持不变,

(1)求大气压强P0为多少cmHg?

(2)从玻璃管管口塞入一个薄活塞,活塞不漏气,缓慢向上推动活塞,直到上端空气柱的长度恢复为l1=35cm,如图丙,求此时活塞离管口的距离d.

35.一支足够长且粗细均匀的玻璃管,倒插在深而大的水银槽中,玻璃管封闭的上端有一段50cm长的水银柱,管内下端水银面与槽内水银面相平,其间封有48cm长的空气柱,如图所示.

求:(已知大气压强p0=75cmHg)

(i)管内水银柱与玻璃管的顶端间的压强

(ii)将玻璃管缓慢上提多少距离后,管内水银柱与玻璃管的顶端间弹力恰好为零?

36.如图所示,一横截面积为3×10﹣4m2的U形管竖直放置,左侧封闭,右端开口,两侧水银面高度差为△L=5cm,左侧封闭理想气体长为L1=12.5cm,右侧被一轻质活塞(不计重力)封闭的理想气体的长度为L2=10cm.已知大气压强为ρ0=76cmHg.

①若缓慢向下压活塞,使左右两侧液面相平,气体温度保持不变,求此时施加的

压力;

②左右两侧液面相平时活塞下移的距离是多少?

37.如图,一带有缺口并与大气相通的水平平台上放置一开口向上的导热气缸,气缸的高度为16cm、质量为8kg,缸内活塞质量为8kg、横截面积为40cm2,活塞和气缸的厚度及摩擦不计,缸内封闭有一定质量的某种气体,气体温度为27℃,活塞离缸底8cm,已知大气压强为p0=1.0×105Pa,g=10m/s2 现将气缸开口向下倒置在平台上缺口正上方,求:

(1)气体状态稳定后气缸内封闭气体的长度;

(2)若对缸内气体加热,当缸内气体温度多高时,活塞接触平台且气缸筒恰好对平台无压力?

38.如图所示,开口向上的汽缸C静置于水平桌面上,用一横截面积S=50cm2的轻质活塞封闭了一定质量的理想气体,一轻绳一端系在活塞上,另一端跨过两个定滑轮连着一劲度系数k=2800N/m的竖直轻弹簧A,A下端系有一质量m=14kg 的物块B.开始时,缸内气体的温度t1=27℃,活塞到缸底的距离L1=120cm,弹簧恰好处于原长状态.已知外界大气压强恒

为p0=1.0×105 Pa,取重力加速度g=10m/s2,不计一切摩擦.现使缸内气体缓慢冷却,求:

(1)当B刚要离开桌面时汽缸内封闭气体的温度;

(2)气体的温度冷却到﹣93℃时B离桌面的高度H.(结果保留两位有效数字)

39.如图所示,一个粗细均匀的“∩”形导热玻璃管竖直放置,“∩”形管左端封闭一段空气柱(可视为理想气体)长L=15cm,右端开口向下,大气压强P0=75cmHg,管内的两端水银面高度差h=5cm,环境温度T0=300k.

①保持温度不变,让该管在竖直平面自由落体,求两端水银面高度差h′;

②若让管子静止在竖直平面内,改变环境温度使两端液面相平,求此时环境温度(水银不溢出).

40.如图所示,两个截面积都为S的圆柱形容器,右边容器高为H,上端封闭,左边容器上端是一个可以在容器内无摩擦滑动的质量为M的活塞.两容器由装有阀门的极细管道相连,容器、活塞和细管都是绝热的.开始时阀门关闭,左边容器中装有理想气体,平衡时活塞到容器底的距离为H,右边容器内为真空.现将阀门缓慢打开,活塞便缓慢下降,直至系统达到新的平衡,此时理想气体的温度增加为原来的1.2倍,已知外界大气压强为P0,求此过程中气体内能的增加量.

41.如图所示,导热性能良好的圆筒形密闭气缸水平放置,可自由活动的活塞将气缸分隔成A、B两部分.活塞与气缸左侧面连接一轻质弹簧,当活塞与气缸右侧面接触时弹簧恰好无形变.开始时环境温度为t1=27℃,B内充有一定质量的理想气体,A内是真空.稳定时B部分气柱长度为L1=0.10m,此时弹簧弹力与活塞重力大小之比为3:4.已知活塞的质量为m=3.6kg,截面积S=20cm2,重力加

速度g=10m/s2.

(1)将活塞锁定,将环境温度缓慢上升到t2=127℃,求此时B部分空气柱的压强;

(2)保持环境温度t2不变,解除活塞锁定,将气缸缓慢旋转90°成竖直放置状态,B部分在上面.求稳定时B部分空气柱的长度.

42.如图所示,粗细均匀的U形玻璃管一端封闭,另一端与大气相通且足够长,玻璃管内两段水银柱封闭了两段空气柱A和B,两段空气柱的长度分别为L A=5cm,L B=15cm,下端水银面高度差h=6cm,A上端水银柱长h1=4cm,大气压强P0=76cm Hg,外界环境温度保持不变,现从右端开口处缓慢向管中加入水银,当下段水银面高度差h=0时,求:

(1)B部分气体的压强;

(2)A部分气体的长度(结果保留三位有效数字).

43.一个气球,气体的压强P o=1×105Pa时,容积为V0=10L.已知气球的容积与球内气体的压强成正比.现保持温度不变,再向气球内充入压强为P o=1×l05Pa 的气体30L,此后气球的容积和压强分别是多大?

44.如图所示,一质量为2m的气缸,用质量为m的活塞封有一定质量的理想气体,当气缸开口向上且通过活塞悬挂静止时,空气柱长度为L1(如图甲所示).现将气缸旋转180°悬挂缸底静止(如图乙所示),已知大气压强为P0,活塞的横截面积为S,气缸与活塞之间不漏气且无摩擦,整个过程封闭气体温度不变.求:

(i)图乙中空气柱的长度L2;

(ii)从图甲到图乙,气体吸热还是放热,并说明理由.

45.如图所示,有两段横截面积不同的圆筒连接而成的汽缸,开口向上竖直放置,上下两段的横截面积分别为S1、S2,S1=4S2,缸内两活塞封闭着两段质量一定的理想气体,活塞的质量不计,开始时S2恰好在下段圆筒的上口,两段圆筒中气柱的高度分别为h1和h2,大气压强为P0,温度为T0,汽缸的导热性良好,重力加速度为g,不计活塞的厚度,现在上面的活塞上放一质量为m的物块,求两活塞静止时,活塞S1、S2向下移动的距离分别为多少?

46.一足够高的直立气缸上端开口,用一个厚度不计的活塞封闭了一段高为80cm 的气柱,活塞的横截面积为0.01m2,活塞与气缸间的摩擦不计,气缸侧壁通过一个开口与U形管相连.开口离气缸底部的高度为70cm,开口管内及U形管内的气体体积忽略不计.已知图所示状态时气体的温度为7℃,U形管内水银面的高度差h1=5cm,大气压强p0=1.0×105Pa保持不变,水银的密度ρ=13.6×103 kg/m3,取g=10m/s2.求

①活塞的质量;

②现在活塞上添加铁砂,同时对气缸内的气体加热,始终保持活塞的高度不变,此过程缓慢进行,当气体的温度升高到47℃时,U形管内水银面的高度差为多少?

47.如图甲所示,开口竖直向上、内径均匀的玻璃管长L=100cm,其中有一段长h=15cm的水银柱把一部分空气封闭在管中,封闭气柱A的长度L1=30cm,现将管在竖直平面内缓慢转过180°至开口竖直向下,如图乙所示,之后,再将开口端竖直向下缓慢锸入水银槽中,直至封闭气柱A的长度仍为30cm时为止,如图丙所示,已知大气压强P0=75cmHg,整个过程温度保持不变,求:

①乙图中气柱A的长度L2?

②丙图中封闭气柱B的长度?

48.如图,两个横截面积都为S的圆柱形容器,左边容器中装有理想气体,其上端有一个可无摩檫滑动的、质量为M的活塞;右边容器高为H.上端封闭,内为真空.两容器由装有阀门K的极细管道相连,K关闭,活塞平衡时到容器底的距离为H,将K打开,活塞便缓慢下降,系统达到新的平衡.此时气体的热力学温度增加为原来的1.2倍,已知外界大气压强为P0,容器和细管都是绝热的.求此过程中

(1)活塞下降的距离;

(2)气体内能的增加量.

49.总体积为7m3的汽缸内部用一个绝热光滑的活塞分割成两部分,左端为A 右端为B,活塞不动即两侧压强相等,初始气温均为27°,现对A部分气体加热至温度升高到127°,B部分气体温度保持不变.

(i)A气体的体积变为多少;

(ii)B气体在该过程中是放热还是吸热.

50.如图为一下粗上细且上端开口的薄壁玻璃管,管内有一部分水银封住密闭气体,图中大小截面积分别为S1=2cm2、S2=1cm2,粗、细管内水银长度分别为h1=h2=2cm,封闭气体长度为L=22cm,水银面上方管长H=30cm.大气压强为P0=76cmHg,气体初始温度为57℃.求:

①若缓慢升高气体温度,升高至多高方可将所有水银全部挤入细管内?

②为不溢出水银,温度不能高于多少?

高考物理选考热学计算题(二)

参考答案与试题解析

一.计算题(共50小题)

1.如图所示,一个高为H的导热汽缸,原来开口,将其开口向上竖直放置。在气温为27℃、气压为760mm Hg、相对湿度为75%时,用一质量可不计的光滑活塞将开口端封闭。求将活塞下压多大距离时,将开始有水珠出现。

【分析】根据玻意耳定律列式直接计算。

【解答】解:对水蒸气研究:

初状态

末状态

根据玻意耳定律,由p1V1=p2V2得:

V2===0.75V

所以下压距离h=时开始有水珠出现。

答:活塞下压距离h=时开始有水珠出现。

【点评】解决本题的关键是知道相对湿度的概念,注意气体实验定律对饱和气不适用,而未饱和汽近似遵循气体实验定律。

2.有一粗细均匀的U形管,当温度为31℃时,封闭端和开口端的水银面在同一水平面上,如图所示.封闭端内的空气柱长8cm,大气压强为76cmHg,问:(i)温度升高到多少摄氏度时,封闭端气柱将增加到9cm?

(ii)在(i)问的操作结束后,如果再从开口端缓慢灌入水银(灌入的水银与开口端的水银面相连,其间没有气泡),使封闭端内的空气柱恢复到原长,此过程

高考物理真题热学

高考物理真题——选修3-3 热学 2016年 (全国新课标I 卷,33)(15分) (1)(5分)关于热力学定律,下列说确的是__________。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分) A .气体吸热后温度一定升高 B .对气体做功可以改变其能 C .理想气体等压膨胀过程一定放热 D .热量不可能自发地从低温物体传到高温物体 E .如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡 (2)(10分)在水下气泡空气的压强大于气泡表面外侧水的压强,两压强差p ?与气泡半径r 之间的关系为2p r σ?=,其中0.070N/m σ=。现让水下10m 处一半径为0.50cm 的气泡缓慢上升。已知大气压强50 1.010Pa p =?,水的密度 331.010kg /m ρ=?,重力加速度大小210m/s g =。 (i)求在水下10m 处气泡外的压强差; (ii)忽略水温随水深的变化,在气泡上升到十分接近水面时,求气泡的半径与其原来半径之比的近似值。 (全国新课标II 卷,33)(15分) ⑴(5分)一定量的理想气体从状态a 开始,经历等温或 等压过程ab 、bc 、cd 、da 回到原状态,其p -T 图像如图 所示.其中对角线ac 的延长线过原点O .下列判断正确 的是 . A .气体在a 、c 两状态的体积相等 B .气体在状态a 时的能大于它在状态c 时的能 C .在过程cd 中气体向外界放出的热量大于外界对气体做的功 D .在过程da 中气体从外界吸收的热量小于气体对外界做的功 E .在过程bc 中外界对气体做的功等于在过程da 中气体对外界做的功 ⑵(10分)一氧气瓶的容积为30.08m ,开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气30.36m .当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实

备战2020年高考物理计算题专题复习《向心力的计算》(解析版)

《向心力的计算》 一、计算题 1.如图所示,长为L的细绳一端与一质量为m的小球可看成质点 相连,可绕过O点的水平转轴在竖直面内无摩擦地转动.在最 低点a处给一个初速度,使小球恰好能通过最高点完成完整的圆 周运动,求: 小球过b点时的速度大小; 初速度的大小; 最低点处绳中的拉力大小. 2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直 轨道相切,半径,物块A以的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动。P点左侧轨道光滑,右侧轨道呈粗糙段,光滑段交替排列,每段长度都为。物块与各粗糙段间的动摩擦因数都为,A、B的质量均为重力加速度g 取;A、B视为质点,碰撞时间极短。 求A滑过Q点时的速度大小V和受到的弹力大小F; 若碰后AB最终停止在第k个粗糙段上,求k的数值; 求碰后AB滑至第n个光滑段上的速度与n的关系式。

3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管 道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过秒后又恰好垂直与倾角为的斜面相碰到。已知圆轨道半径为,小球的质量为,g取求 小球在斜面上的相碰点C与B点的水平距离 小球经过圆弧轨道的B点时,受到轨道的作用力的大小和方向? 小球经过圆弧轨道的A点时的速率。 4.如图所示,倾角为的粗糙平直导轨与半径为R的光 滑圆环轨道相切,切点为B,整个轨道处在竖直平面内。一 质量为m的小滑块从轨道上离地面高为的D处无初速 下滑进入圆环轨道,接着小滑块从圆环最高点C水平飞出, 恰好击中导轨上与圆心O等高的P点,不计空气阻力。求: 小滑块在C点飞出的速率; 在圆环最低点时滑块对圆环轨道压力的大小; 滑块与斜轨之间的动摩擦因数。

(完整word版)初中物理热学专题训练试题(完整版)

初中物理热学专题训练试题 1:炒菜时,碘盐不宜与油同时加热.这是因为碘在高温下很容易() A.凝华 B.汽化 C.升华D.熔化 2:我国幅员辽阔,相同纬度上内陆地区的昼夜温差比沿海地区大,其主要原因是()A.地势的高低不同 B.水和陆地的比热容不同 C.日照的时间不同D.离太阳的远近不同 3:下列现象属于液化的是() A、夏天,从冰箱中取出的鸡蛋会“冒汗” B、寒冷的冬天,室外冰冻的衣服也会干 C、盘子里的水,过一段时间会变少 D、杯子中的冰块,过一段时间也会变成水4:下列说法中正确的是() A、萝卜放在泡菜坛里会变咸,这个现象说明分子是运动的 B两块表面干净铅块压紧后会结合在一起,说明分子间存在斥力 C锯木头时锯条会发热是通过热传递使锯条的内能发生了改变 D、太阳能热水器是通过做功把光能转化为内能的 5:一箱汽油用掉一半后,关于它的说法下列正确的是() A、它的密度变为原来的一半 B、它的比热容变为原来的一半 C、它的热值变为原来的一半 D、它的质量变为原来的一半 6:关于温度、热量和内能,下列说法正确的是() A、物体的温度越高,所含热量越多 B、温度高的物体,内能一定大 C、0℃的冰块,内能一定为零 D、温度相同的两物体间不会发生热传递 7(简答)有些宾馆、饭店的洗手间里装有感应式热风干手器,洗手后把手放在它的下方,热烘烘的气体就会吹出来,一会儿手就被烘干了.它能很快把手烘干的理由是: 8:在下列过程中,利用热传递改变物体内能的是() A. 钻木取火 B. 用锯锯木板,锯条发热 C. 用热水袋取暖 D. 两手互相搓搓,觉得暖和 9:下列物态变化过程中,属于吸热过程的是() A. 春天来到,积雪熔化 B. 夏天的清晨,草地上出现露珠 C. 秋天的早晨,出现大雾 D. 初冬的清晨,地面上出现白霜 10:下列措施中,能使蒸发变快的是() A. 给盛有水的杯子加盖 B. 把新鲜的蔬菜装入塑料袋中 C. 把湿衣服放在通风的地方 D把蔬菜用保鲜膜包好后放入冰箱 11::物态变化现象在一年四季中随处可见,下列关于这些现象说法正确的是 A.春天的早晨经常出现大雾,这是汽化现象,要吸收热量 B.夏天用干冰给运输中的食品降温,这是应用干冰熔化吸热 C.秋天的早晨花草上出现的小露珠这是液化现象要吸收热量 D.初冬的早晨地面上会出现白白的一层霜,这是凝华现象 12: 关于四冲程汽油机的工作过程有以下几种说法中正确的是 ①在做功冲程中,是机械能转化为内能②在做功冲程中,是内能转化为机械能 ③只有做功冲程是燃气对外做功④汽油机和柴油机的点火方式相同 A.只有②③ B.只有①③ C.只有②④ D.只有 ②③④ 13: 木炭的热值是,完全燃烧500g木炭,能放出____________J的热量。做饭时,厨 房里弥漫着饭菜的香味,这是____________现象。 14.汽车急刹车时轮胎与地面摩擦常有冒烟现象,在此过程中_____能转化成___能。 15.甲乙两物体他们升高的温度之比是2:1,吸收的热量之比是4:1,若它们是用同 种材料制成,则甲乙两物体的质量之比是________。 16.把手放进冰水混合物中,手接触到冰时总感觉到比水凉,是因为______________。 17.对于某些高烧的病人,有时医生要在病人身上涂擦酒精,这是利用酒精___________ 时,要向人体_______的道理。 18.吸烟有害健康,在空气不流动的房间里,只要有一个人吸烟,整个房间都弥漫着 烟味,这是由于__________________的现象。所以为了保护环境,为了你和他人的健 康,请不要吸烟。 19.在我国实施的“西气东输”工程中,西部的优质天然气被输送到缺乏能源的东部 地区,天然气与煤相比,从热学的角度分析它的突出优点是______________;从环保 角度分析它突出的优点是__________________________________。 20.写出下列物态变化的名称: (1)深秋,夜间下霜:_______; (2)潮湿的天气,自来水管“出汗”________; (3)出炉的钢水变成钢锭:_________; (4)日光灯管用久两端变黑______________。 21.木炭的热值是3.4×107J/kg,6kg木炭完全燃烧可放出____________的热量。若 炉中的木炭只剩下0.1kg,它的热值是_______________。 22.一杯水将其到掉一半,则他的比热容__________________。 23.据报载,阿根廷科技人员发明了一项果蔬脱水新方法──升华脱水法。其原理很 简单:先将水果蔬菜冷冻后,放进低压的环境中,使冰直接从固态变为_______态。 24.火药在子弹壳里燃烧生成的高温。高压的燃气推出弹头后温度______,这是用 ________方法使燃气内能_________,将燃气的一部分内能转化为弹头的_____能。 24.设计一个简单实验,“验证蒸发的快慢与液体的表面积有关”,写出实验过程和观 察到的现象。 25.某校师生在学习了能量的转化与守恒以后,组织兴趣小组调查学校几种炉灶的能 量利用效率。他们发现学校的一个老式锅炉烧水时,经常冒出大量的黑烟,且烧水时 锅炉周围的温度很高,锅炉的效率很低。 (1)请你根据调查中发现的现象分析此锅炉效率低的原因,并提出相应的改进措施。 (2)要减少烟气带走的热量,可以采用什么办法? 26.物理兴趣小组设计一个实验:用500克20度的水放入烧杯中,用煤油炉给烧杯中 的水加热,并用温度计测量温度,当水温升至80度时,消耗10克煤油。 (1)计算水吸收了多少热量? (2)能用水吸收的热量来计算煤油的热值吗?说明理由。 28.有两位同学制作了一台简易太阳能热水器。在夏天,这台热水器可将60kg水的温 度由20°C升高至70°C,如果由电热水器产生这些热量,则要消耗多少kW。h的电 能? 29.用煤气灶既方便又环保。一般的煤气灶正常工作时,15分钟可使4千克、23℃ 的水沸腾,该城市水的沸点为93℃。求: (1)水吸收的热量; (2)若煤气灶放出的热量65%被水吸收,煤气灶实际放出的热量。

高考物理热学问题创新题

热学问题 1.下列说法中正确的是: A.水和酒精混合后总体积减小主要说明分子间有空隙 B.温度升高,布朗运动及扩散现象将加剧 C.由水的摩尔体积和每个水分子的体积可估算出阿伏伽德罗常数 D.物体的体积越大,物体内分子势能就越大 2.关于分子力,下列说法中正确的是: A.碎玻璃不能拼合在一起,说明分子间斥力起作用 B.将两块铅压紧以后能连成一块,说明分子间存在引力 C.水和酒精混合后的体积小于原来体积之和,说明分子间存在引力 D.固体很难被拉伸,也很难被压缩,说明分子间既有引力又有斥力 3.如图所示是医院给病人输液的部分装置的示意图.在输液的 过程中: A.A瓶中的药液先用完 B.B瓶中的药液先用完 C.随着液面下降,A瓶内C处气体压强逐渐增大 D.随着液面下降.A瓶内C处气体压强保持不变 4.一定质量的理想气体经历如图所示的四个过程,下面说 法正确的是: A.a→b过程中气体密度和分子平均动能都增大 B.b→c过程.压强增大,气体温度升高 C.c→d过程,压强减小,温度升高 D.d→a过程,压强减小,温度降低 5.在标准状态下,水蒸气分子间的距离大约是水分子直径的: A.1.1×104倍 B.1.1×103倍 C.1.1 ×102倍 D.11倍 6.如图所示.气缸内充满压强为P0、密度为ρ0的空气,缸 底有一空心小球,其质量为m,半径为r.气缸内活塞面 积为S,质量为M,活塞在气缸内可无摩擦地上下自由移 动,为了使小球离开缸底。在活塞上至少需加的外力大小 为(不计温度变化). 7.如图所示,喷洒农药用的某种喷雾器,其药液桶的总 容积为15L,装入药液后,封闭在药液上方的空气体 积为1.5 L,打气简活塞每次可以打进1 atm、250cm3 的空气,若要使气体压强增大到6atm,应打气多少次? 如果压强达到6 atm时停止打气,并开始向外喷药,那 么当喷雾器不能再向外喷药时,筒内剩下的药液还有

2019高考物理真题汇编——计算题

目录 牛顿第二定律 (2) 功能 (3) 动量 (3) 力学综合 (3) 动量能量综合 (4) 带电粒子在电场中的运动 (6) 带电粒子在磁场中的运动 (7) 电磁感应 (8) 法拉第电磁感应定律(动生与感生电动势) (8) 杆切割 (8) 线框切割 (9) 感生电动势 (9) 电磁感应中的功能问题 (10) 电磁科技应用 (11) 热学 (12) 光学 (14) 近代物理 (15) 思想方法原理类 (16)

牛顿第二定律 1.【2019天津卷】完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并 取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图2,AB长L1=150m,BC水平投影L2=63m,图中C点切线方向与水平方向的夹角θ=12°(sin12°≈0.21)。若舰载机从A点由静止开始做匀加速直线运动,经t=6s到达B点进入BC.已知飞行员的质量m=60kg,g=10m/s2,求 (1)舰载机水平运动的过程中,飞行员受到的水平力所做功W; (2)舰载机刚进入BC时,飞行员受到竖直向上的压力F N多大。 2.【2019江苏卷】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐。 A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。最大静摩擦力等于滑动摩擦力,重力加速度为g。求: (1)A被敲击后获得的初速度大小v A; (2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′; (3)B被敲击后获得的初速度大小v B。

高中物理3-3《热学》计算题专项练习题(含答案)

高中物理3-3《热学》计算题专项练习题(含 答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热学计算题(二) 1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求: Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长? Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出. 2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧. (i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少? (ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱气体的温度变为多少(大气压强P0=75cmHg,图中标注的长度单位均为cm) 3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求: ①粗管中气体的最终压强;②活塞推动的距离。

4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度. 5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度. 6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P 0表示结果)和温度(用热力学温标表达)

2020高考物理计算题专题练习题含答案

计算题 1.如图所示的电路中,用电动势E=6V,内阻不计的电池组向电阻R0=20Ω,额电压U0=4.5V的灯泡供电,求: (1)要使系统的效率不低于η0=0.6,变阻器的阻值及它应承受的最大电流是多大? (2)处于额定电压下的灯泡和电池组的最大可能效率是多少?它们同时适当选择的变阻器如何连接,才能取得最大效率? 2.环保汽车将为2008年奥运会场馆服务。某辆以蓄电池为驱动能源的环保汽车,总质量3 m=?。当它在水平路面上以v=36km/h的速度匀速行驶310kg 时,驱动电机的输入电流I=50A,电压U=300V。在此行驶状态下 ; (1)求驱动电机的输入功率P 电 (2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P机,求汽车所受阻力与车重的比值(g取10m/s2);

(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积。结合计算结果,简述你对该设想的思考。 已知太阳辐射的总功率260410W P =?,太阳到地球的距离111.510m r =?,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%。

3.太阳与地球的距离为1.5×1011m,太阳光以平行光束入射到地面。地球表面2/3的面积被水面所覆盖,太阳在一年中辐射到地球表面水面部分的总能量W约为1.87×1024J。设水面对太阳辐射的平均反射率为7%,而且将吸收到的35%能量重新辐射出去。太阳辐射可将水面的水蒸发(设在常温、常压下蒸发1 kg水需要2.2×106 J的能量),而后凝结成雨滴降落到地面。 (1)估算整个地球表面的年平均降雨量(以毫米表示,球面积为4πR2 地球的半径R=6.37×106 m)。 (2)太阳辐射到地球的能量中只有约50%到达地面,W只是其中的一部分。太阳辐射到地球的能量没能全部到达地面,这是为什么?请说明二个理由。

2020年高考物理复习练习:热力学定律与能量守恒定律

限时规范训练(单独成册) [基础巩固题组](20分钟,50分) 1.(多选)下列说法中正确的是() A.热量可以从低温物体传递到高温物体 B.科技的进步可以使内燃机成为单一热源的热机 C.能源危机指能量的过度消耗导致自然界的能量不断减少 D.功可以全部转化为热量,热量也可以全部转化为功 E.第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律 解析:选ADE.空调可以使热量从低温物体向高温物体传递,A 对;由热力学第二定律知不可能有单一热源的热机,B错;能量是守恒的,C错;功可以全部转化为热量,根据热力学第二定律可知,在外界的影响下,热量也可以全部转化为功,D对;第一类永动机违背能量守恒定律,第二类永动机违背热力学第二定律,但不违背能量守恒定律,E对. 2.(多选)关于气体的内能,下列说法正确的是() A.质量和温度都相同的气体,内能一定相同 B.气体温度不变,整体运动速度越大,其内能越大 C.气体被压缩时,内能可能不变 D.一定量的某种理想气体的内能只与温度有关 E.一定量的某种理想气体在等压膨胀过程中,内能一定增加解析:选CDE.质量和温度都相同的气体,虽然分子平均动能相

同,但是不同的气体,其摩尔质量不同,即分子个数不同,所以分子总动能不一定相同,A 错误;宏观运动和微观运动没有关系,所以宏 观运动速度大,内能不一定大,B 错误;根据pV T =C 可知,如果等温 压缩,则内能不变;等压膨胀,温度增大,内能一定增大,C 、E 正确;理想气体的分子势能为零,所以一定量的某种理想气体的内能只与分子平均动能有关,而分子平均动能和温度有关,D 正确. 3.(多选)根据热力学定律,下列说法正确的是( ) A .第二类永动机违反能量守恒定律,因此不可能制成 B .效率为100%的热机是不可能制成的 C .电冰箱的工作过程表明,热量可以从低温物体向高温物体传递 D .从单一热源吸收热量,使之完全变为功是提高机械效率的常用手段 E .吸收了热量的物体,其内能也不一定增加 解析:选BCE.第二类永动机不可能制成,是因它违反了热力学第二定律,故A 错误;效率为100%的热机是不可能制成的,故B 正确;电冰箱的工作过程表明,热量可以从低温物体向高温物体传递,故C 正确;在外界影响下从单一热源吸收热量,使之完全变为功是可能的,但机械效率并不一定提高.故D 错误;改变内能的方式有做功和热传递,吸收了热量的物体,其内能也不一定增加,E 正确. 4.(多选)夏天,小明同学把自行车轮胎上的气门芯拔出的时候,

高考物理热力学综合题

1.根据热力学定律,下列说法正确的是() A.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递 B.空调机在制冷过程中,从室内吸收的热量少于向室外放出的热量 C.科技的进步可以使内燃机成为单一的热源热机 D.对能源的过度消耗使自然界的能量不断减少,形成“能源危机” 【答案】AB 【考点】热力学第一定律、热力学第二定律 【解析】在外界帮助的情况下,热量可以从低温物体向高温物体传递,A 对;空调在制冷时,把室内的热量向室外释放,需要消耗电能,同时产生热量,所以向室外放出的热量大于从室内吸收的热量,B 对;根据热力学第二定律,可知内燃机不可能成为单一热源的热机,C 错;因为自然界的能量是守恒的,能源的消耗并不会使自然界的总能量减少,D 错。 2.液体与固体具有的相同特点是 (A)都具有确定的形状(B)体积都不易被压缩 (C)物质分子的位置都确定(D)物质分子都在固定位置附近振动 答案:B 解析:液体与固体具有的相同特点是体积都不易被压缩,选项B正确。 3.已知湖水深度为20m,湖底水温为4℃,水面温度为17℃,大气压强为1.0×105Pa。当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g=10m/s2,ρ=1.0×103kg/m3) (A)12.8倍(B)8.5倍(C)3.1倍(D)2.1倍 答案:C 解析:湖底压强大约为3个大气压,由气体状态方程,当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,选项C正确。 4. 图6为某同学设计的喷水装置,内部装有2L水,上部密封1atm的空气0.5L,保持阀门关闭,再充入1atm的空气0.1L,设在所有过程中空可看作理想气体,且温度不变,下列说法正确的有 A.充气后,密封气体压强增加 B.充气后,密封气体的分子平均动能增加 C.打开阀门后,密封气体对外界做正功 D.打开阀门后,不再充气也能把水喷光 【答案】AB 【考点】热力学第一定律、热力学第二定律 【解析】在外界帮助的情况下,热量可以从低温物体向高温物体传递,A 对;空调在制冷时,把室内的热量向室外释放,需要消耗电能,同时产生热量,所以向室外放出的热量大于从室内吸收的热量,B 对;根据热力学第二定律,可知内燃机不可能成为单一热源的热机,C 错;因为自然界的能量是守恒的,能源的消耗并不会使自然界的总能量减少,D 错。 5.A.[选修3-3](12分)如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A。其中,和为等温过程,和为绝热过程(气体与外界无热量交换)。这就是著名的“卡诺循环”。

2020高考物理计算题专题训练含答案

计算题 1.为了使航天员能适应在失重环境下是的工作和生活,国家航天局组织对 航天员进行失重训练。故需要创造一种失重环境;航天员乘坐到民航客机 上后,训练客机总重5×104kg,以200m/s速度沿300倾角爬升到7000米 高空后飞机向上拉起,沿竖直方向以200m/s 的初速度向上作匀减速直线 运动,匀减速的加速度为g,当飞机到最高点后立即掉头向下,仍沿竖直 方向以加速度为g加速运动,在前段时间内创造出完全失重,当飞机离地 2000米高时为了安全必须拉起,后又可一次次重复为航天员失重训练。若 飞机飞行时所受的空气阻力f=Kv(k=900N·s/m),每次飞机速度达到 350m/s 后必须终止失重训练(否则Array飞机可能失速)。 求:(1)飞机一次上下运动为航天员创 造的完全失重的时间。 (2)飞机下降离地4500米时飞机 发动机的推力(整个运动空间重力加速 度不变)。 (3)经过几次飞行后,驾驶员想在保持其它不变,在失重训练时间不 变的情况下,降低飞机拉起的高度(在B点前把飞机拉起)以节约燃油, 若不考虑飞机的长度,计算出一次最多能节约的能量。

2.如图所示是一种测定风速的装置,一个压力传感器固定在竖直墙上,一弹簧一端固定在传感器上的M 点,另一端N 与导电的迎风板相连,弹簧穿在光滑水平放置的电阻率较大的金属细杆上,弹簧是不导电的材料制成的。测得该弹簧的形变量与压力传感器示数关系见下表。 迎风板面积S =0.50m 2,工作时总是正对着风吹来的方向。电路的一端与迎风板相连,另一端在M 点与金属杆相连。迎风板可 在金属杆上滑动,且与金属杆接触良好。定值电阻R =1.0Ω,电源的电动势E =12V ,内阻r =0.50Ω。闭合开关,没有风吹时,弹簧处于原长L 0=0.50m ,电压 传感器的示数U 1=3.0V ,某时刻由于风吹迎风板,电压传感器的示数变为 U 2=2.0V 。求: (1)金属杆单位长度的电阻; 形变量(m ) 0 0.1 0.2 0.3 0.4 压 力(N ) 0 130 260 390 520

高考物理计算题

考前题 1.(18分)如图所示,O 点为固定转轴,把一个长度为l 的细绳上端固定在O 点,细绳下端系一个质量为m 的小摆球,当小摆球处于静止状态时恰好与平台的右端点B 点接触,但无压力。一个质量为M 的小钢球沿着光滑的平台自左向右运动到B 点时与静止的小摆球m 发生正碰,碰撞后摆球在绳的约束下作圆周运动,且恰好能够经过最高点A ,而小钢球M 做平抛运动落在水平地面上的C 点。测得B 、C 两点间的水平距离DC=x ,平台的高度为h ,不计空气阻力,本地的重力加速度为g ,请计算: (1)碰撞后小钢球M 做平抛运动的初速度大小; (2)小把球m 经过最高点A 时的动能; (3)碰撞前小钢球M 在平台上向右运动的速度大小。 1.解析 (1)设M 做平抛运动的初速度是v , 2 21,gt h vt x = = h g x v 2= (2)摆球m 经最高点A 时只受重力作用, l v m mg A 2 = 摆球经最高点A 时的动能为A E ; mgl mv E A A 2 1212= = (3)碰后小摆球m 作圆周运动时机械能守恒, mgl mv mv A B 22 12 1 22+= gl v B 5= 设碰前M 的运动速度是 v ,M 与m 碰撞时系统的动量守恒 B mv Mv Mv +=0 gl M m h g x v 52+ = 2.如图,光滑轨道固定在竖直平面内,水平段紧贴地面,弯曲段的顶部切线水平、离地高为h ;滑块A 静止在水平轨道上, v 0=40m/s 的子弹水平射入滑块A 后一起沿轨道向右运动,并从轨道顶部水平抛出.已知滑块A 的质量是子弹的3倍,取g=10m/s 2,不计空气阻力.求: (1)子弹射入滑块后一起运动的速度; (2)水平距离x 与h 关系的表达式; (3)当h 多高时,x 最大,并求出这个最大值.

高中物理之热学专题复习与练习

高中物理之热学专题复 习与练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第七章热学 一、主要内容 本章内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。 二、基本方法 本章中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。 三、错解分析 在本章知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本章中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V—T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。 例1 设一氢气球可以自由膨胀以保持球内外的压强相等,则随着气球的不断升高,因大气压强随高度而减小,气球将不断膨胀。如果氢气和大气皆可视为理想气体,大气的温度、平均摩尔质量以及重力和速度随高度变化皆可忽略,则氢所球在上升过程中所受的浮力将______(填“变大”“变小”“不变”) 【错解】错解一:因为气球上升时体积膨胀,所以浮力变大。 错解二:因为高空空气稀薄,所以浮力减小。

2020最新高考物理热学讲解与解析

选修3-3 第一章热学 第1讲分子支理论热力学定律与能量守恒 图1-1-4 1.(2020·广东,13) (1)远古时代,取火是一件困难的事,火一般产生于雷击或磷的自燃.随着人类文明的进步,出现了“钻木取火”等方法.“钻木取火” 是通过________方式改变物体的内能,把________转变成内能. (2)某同学做了一个小实验:先把空的烧瓶放入冰箱冷冻,一小时后取出烧瓶, 并迅速把一个气球紧密地套在瓶颈上,然后将烧瓶放进盛满热水的烧杯里,气球逐渐膨胀起来,如图1-1-4.这是因为烧瓶里的气体吸收了水的________,温度________,体积________. 解析:(1)热力学第一定律是对能量守恒定律的一种表述方式.热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变.所以钻木取火是通过做功把机械能转化为内能. (2)内能可以从一个物体传递给另一个物体(高温到低温),使物体的温度升高; 一定质量的气体,当压强保持不变时,它的体积V随温度T线性地变化.所以从冰箱里拿出的烧瓶中的空气(低温)吸收水(高温)的热量温度升高,体积增大. 答案:(1)做功机械能(2)热量升高增大 2.(1)物质是由大量分子组成的,分子直径的数量级一般是________ m.能说明分子都在永不停息地做无规则运动的实验事实有________(举一例即可).在两分子间的距离由r0(此时分子间的引力和斥力相互平衡,分子作用力为零)逐渐增大的过程中,分子力的变化情况是________(填“逐渐增大”“逐渐减小”“先增大后减小”“先减小后增大”). (2)一定质量的理想气体,在保持温度不变的情况下,如果增大气体体积,气 体压强将如何变化?请你从分子动理论的观点加以解释.如果在此过程中气体对外界做了900 J的功,则此过程中气体是放出热量还是吸收热量?放出

高考物理-计算题专题突破

计算题专题突破 计算题题型练3-4 1.一列横波在x轴上传播,t1=0和t2=0.005 s时的波形如图中的实线和虚线所示. (1)设周期大于(t2-t1),求波速; (2)设周期小于(t2-t1),并且波速为6 000 m/s,求波的传播方向. 解析:当波传播时间小于周期时,波沿传播方向前进的距离小于一个波长;当波传播时间大于周期时,波沿传播方向前进的距离大于一个波长,这时从波形的变化上看出的传播距离加上n个波长才是波实际传播的距离. (1)因Δt=t2-t1T,所以波传播的距离大于一个波长,在0.005 s内传播的距离为 Δx=vΔt=6 000×0.005 m=30 m. 而Δx λ= 30 m 8 m=3 3 4,即Δx=3λ+ 3 4λ.

因此可得波的传播方向沿x轴负方向. 答案:(1)波向右传播时v=400 m/s;波向左传播时v=1 200 m/s(2)x轴负方向 2. (厦门一中高三检测)如图所示,上下表面平行的玻璃砖折射率为n=2,下表面镶有银反射面,一束单色光与界面的夹角θ=45°射到玻璃表面上,结果在玻璃砖右边竖直光屏上出现相距h=2.0 cm的光点A和B(图中未画出). (1)请在图中画出光路示意图(请使用刻度尺); (2)求玻璃砖的厚度d. 解析:(1)画出光路图如图所示. (2)设第一次折射时折射角为θ1,

2020年高考物理计算题强化专练-热学解析版

计算题强化专练-热学 一、计算题(本大题共5小题,共50.0分) 1.如图所示,质量为m=6kg的绝热气缸(厚度不计),横截面积为S=10cm2,倒扣在 水平桌面上(与桌面有缝隙),气缸内有一绝热的“T”型活塞固定在桌面上,活塞与气缸封闭一定质量的理想气体,活塞在气缸内可无摩擦滑动且不漏气.开始时,封闭气体的温度为t0=27℃,压强P=0.5×105P a,g取10m/s2,大气压强为 P0=1.0×105P a.求: ①此时桌面对气缸的作用力大小; ②通过电热丝给封闭气体缓慢加热到t2,使气缸刚好对水平桌面无压力,求t2的值 . 2.如图所示,用质量为m=1kg、横截面积为S=10cm2的活塞在气 缸内封闭一定质量的理想气体,活塞与气缸壁之间的摩擦忽 略不计。开始时活塞距气缸底的高度为h=10cm且气缸足够 高,气体温度为t=27℃,外界大气压强为p0=1.0×105Pa,取 g=10m/s2,绝对零度取-273℃.求: (i)此时封闭气体的压强; (ii)给气缸缓慢加热,当缸内气体吸收4.5J的热量时,内能 的增加量为2.3J,求此时缸内气体的温度。

3.如图所示,竖直放置的U形管左端封闭,右端开口,左管横截面积为右管横截面 积的2倍,在左管内用水银封闭一段长为l,温度为T的空气柱,左右两管水银面高度差为hcm,外界大气压为h0cmHg . (1)若向右管中缓慢注入水银,直至两管水银面相平(原右管中水银没全部进入水平 部分),求在右管中注入水银柱的长度h1(以cm为单位); (2)在两管水银面相平后,缓慢升高气体的温度至空气柱的长度变为开始时的长度l ,求此时空气柱的温度T′. 4.一内壁光滑、粗细均匀的U形玻璃管竖直放置,左端开口,右端封闭,左端上部 有一轻活塞.初始时,管内水银柱及空气柱长度如图所示.已知大气压强p0=75cmHg ,环境温度不变. (1)求右侧封闭气体的压强p右; (2)现用力向下缓慢推活塞,直至管内两边水银柱高度相等并达到稳定.求此时右侧封闭气体的压强p右; (3)求第(2)问中活塞下移的距离x.

高三高考物理复习专题练习:热 学

热学 1.[多选]在“用油膜法估测分子大小”的实验中,下列做法正确的是() A.用注射器吸取配制好的油酸酒精溶液,把它一滴一滴地滴入小量筒中,若100滴溶液的体积是1 mL,则1滴溶液中含有油酸10-2 mL B.往浅盘里倒入适量的水,再将痱子粉或细石膏粉均匀地撒在水面上 C.用注射器往水面上滴1滴油酸酒精溶液,同时将玻璃板放在浅盘上,并立即在玻璃板上描下油酸膜的形状 D.将画有油酸膜轮廓的玻璃板放在坐标纸上,计算轮廓范围内正方形的个数,并求得油膜的面积 E.根据1滴油酸酒精溶液中油酸的体积V和油膜面积S就可以算出油膜厚度d=,即油酸分子的大小 2.[多选]运用分子动理论的相关知识,判断下列说法正确的是() A.分子间距离增大时,可能存在分子势能相等的两个位置 B.气体分子单位时间内与单位面积器壁碰撞的次数仅与单位体积内的分子数有关 C.某气体的摩尔体积为V,每个分子的体积为V0,则阿伏加德罗常数可表示为N A= D.阳光从缝隙射入教室,从阳光中看到的尘埃的运动不是布朗运动 E.生产半导体器件时需要在纯净的半导体材料中掺入其他元素,这可以在高温条件下利用分子的扩散来完成 3.[多选]下列说法正确的是() A.单晶体在不同方向上的导热性、导电性、机械强度等物理性质不一样 B.热量不可能从低温物体向高温物体传递 C.一定质量的理想气体,保持气体的压强不变,温度越高,体积越大 D.功可以完全转化为热量,而热量不能完全变为功,即不可能从单一热源吸热使之全部变为有用的功 E.若气体的温度不变,压强增大,说明每秒撞击单位面积器壁的分子数增多 4.[多选]如图所示,在一定质量的理想气体压强随体积变化的p-V图象中,气体先后经历了ab、bc、cd、da四个过程,其中ab垂直于cd,ab垂直于V轴且与p轴平行,bc、da是两条等温线.下列判断正确的是()

高中物理热学知识点归纳全面很好

选修3-3热学知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值: 设微观量为:分子体积V 0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子平均占据的空间大小) 分子直径: 球体模型: V d N =3A )2(34π 303 A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1 A 1A A N V V N V M N V N M n ====ρμρμ 2. 分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。 (2)布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。 (3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。 (4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素

高考物理二轮复习 计算题专题训练

计算题专题训练 第1组 1.(2012·惠州一中月考)如图所示,一弹丸从离地高度H =1.95 m 的A 点以v 0=8.0 m/s 的初速度水平射出,恰以平行于斜面的速度射入静止在固定斜面顶端C 处的一木块中,并立 即与木块具有相同的速度(此速度大小为弹丸进入木块前一瞬间速度的1 10 )共同运动,在斜 面下端有一垂直于斜面的挡板,木块与它相碰没有机械能损失,碰后恰能返回C 点。已知斜面顶端C 处离地高h =0.15 m ,求:(1)A 点和C 点间的水平距离。(2)木块与斜面间的动摩擦因数μ。(3)木块从被弹丸击中到再次回到C 点的时间t 。 2.(2012·广州一模,35)如图所示,有小孔O 和O ′的两金属板正对并水平放置,分别与平行金属导轨连接,Ⅰ、Ⅱ、Ⅲ区域有垂直导轨所在平面的匀强磁场。金属杆ab 与导轨垂直且接触良好,并一直向右匀速运动。某时刻ab 进入Ⅰ区域,同时一带正电小球从O 孔竖直射入两板间。ab 在Ⅰ区域运动时,小球匀速下落;ab 从Ⅲ区域右边离开磁场时,小球恰好从O ′孔离开。已知板间距为3d ,导轨间距为L ,Ⅰ、Ⅱ、Ⅲ区域的磁感应强度大小相等、宽度均为d 。带电小球质量为m ,电荷量为q ,ab 运动的速度为v 0,重力加速度为g 。求: (1)磁感应强度的大小。 (2)ab 在Ⅱ区域运动时,小球的加速度大小。 (3)小球射入O 孔时的速度v 。 第2组 3.如图所示,AB 、BC 、CD 三段轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度L =5 m ,轨道CD 足够长且倾角θ=37°,A 点离轨道BC 的高度为H =4.30 m 。质量为m 的小滑块自A 点由静止释放,已知小滑块与轨道BC 间的动摩擦 因数μ=0.5,重力加速度g 取10 m/s 2 ,sin 37°=0.6,cos 37°=0.8,求: (1)小滑块第一次到达C 点时的速度大小; (2)小滑块第一次与第二次通过C 点的时间间隔; (3)小滑块最终停止位置距B 点的距离。 4.如图所示,磁感应强度为B =2.0×10-3 T 的磁场分布在xOy 平面上的MON 三角形区域,其中M 、N 点距坐标原点O 均为1.0 m ,磁场方向垂直纸面向里。坐标原点O 处有一个粒子源,不断地向xOy 平面发射比荷为q m =5×107 C/kg 的带正电粒子,它们的速度大小都是v =5×104

高考物理计算题(共29题)

高考物理计算题(共29 题) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

学生错题之计算题(共29题) 计算题力学部分:(共12题) (2) 计算题电磁学部分:(共13题) (15) 计算题气体热学部分:(共3题) (35) 计算题原子物理部分:(共1题) (38) 计算题力学部分:(共12题) 1.长木板A静止在水平地面上,长木板的左端竖直固定着弹性挡板P,长木板A的上表面分为三个区域,其中PO段光滑,长度为1 m;OC段粗糙,长度为1.5 m;CD段粗糙,长度为1.19 m。可视为质点的滑块B静止在长木板上的O点。已知滑块、长木板的质量均为1 kg,滑块B与OC段动摩擦因数为0.4,长木板与地面间的动摩擦因数为0.15。现用水平向右、大小为11 N的恒力拉动长木板,当弹性挡板P将要与滑块B相碰时撤去外力,挡板P与滑块B发生弹性碰撞,碰后滑块B最后停在了CD段。已知质量相等的两个物体发生弹性碰撞时速度互换,g=10 m/s2,求: (1)撤去外力时,长木板A的速度大小; (2)滑块B与木板CD段动摩擦因数的最小值; (3)在(2)的条件下,滑块B运动的总时间。 答案:(1)4m/s (2)0.1(3)2.45s 【解析】(1)对长木板A由牛顿第二定律可得,解得; 由可得v=4m/s; (2)挡板P与滑块B发生弹性碰撞,速度交换,滑块B以4m/s的速度向右滑行,长木板A静止,当滑上OC段时,对滑块B有,解得 滑块B的位移; 对长木板A有; 长木板A的位移,所以有,可得或(舍去) (3)滑块B匀速运动时间;

滑块B在CD段减速时间; 滑块B从开始运动到静止的时间 2.如图所示,足够宽的水平传送带以v0=2m/s的速度沿顺时针方向运行,质量m=0.4kg的小滑块被光滑固定挡板拦住静止于传送带上的A点,t=0时,在小滑块上施加沿挡板方向的拉力F,使之沿挡 板做a=1m/s2的匀加速直线运动,已知小滑块与传送带间的动摩擦因数,重力加速度g=10m /s2,求: (1)t=0时,拉力F的大小及t=2s时小滑块所受摩擦力的功率; (2)请分析推导出拉力F与t满足的关系式。 答案: (1)0.4N;(2) 【解析】(1)由挡板挡住使小滑块静止的A点,知挡板方向必垂直于传送带的运行方向; t=0时对滑块:F=ma 解得F=0.4N;t=2s时, 小滑块的速度v=at=2m/s摩擦力方向与挡板夹角,则θ=450 此时摩擦力的功率P=μmgcos450v, 解得 (2)t时刻,小滑块的速度v=at=t, 小滑块所受的摩擦力与挡板的夹角为 由牛顿第二定律 解得(N)

相关文档
最新文档