地基中的附加应力计算.ppt
合集下载
第三章附加应力

Z γ2 H2
γ3 H3
容重:地下水位以上用天然容重γ 地下水位以下用浮容重γ’
第三章 地基中的应力
总结
二、基底压力计算
矩形面积中心荷载
P
矩形面积偏心荷载
P
p(x, y) P Mxy Myx
A Ix
Iy
b
b
Mx Pey;
My Pex
x
L
x
e
L
ex y
y
y
pP A
pmax
P 1 A
6e b
dF p0dx • dy
d z
2
3 p0 z3 x2 y2 z2
5 2
dxdy
z
3 p0 z3
2
1
A
x2 y2 z2
5 2
dxdy
y
dF pndxdy p
b
z
M
z
l
x
第三章 地基中的应力 利用三角函数的变换可得到:
z c p0
式中: c
1 2
mn 1 m2 n2
1
o x
平面应变条件下,土体在
x, z平面内可以变形,但在
y
z
y方向没有变形。
第三章 地基中的应力
3.6.1 费拉曼解及其应用
竖直线荷载作用下的地基附加应力 线荷载:作用于半无限空间表面宽度趋近于零沿无限长直线
均布的荷载。
思路: dF pdy
d z
3z 3
2
p
x2 y2 z2
5 2
dy
z
(3)E点下应力。通过O点将矩形荷载分为4个相等矩形 OEAJ,OJDI,OICK,OKBE
l/b=2 ,z/b=2
土中应力计算课件

y
Rz
dzy
dzx dxz
M
dyz dy dyx
dxy
dx
z
3P z3
பைடு நூலகம்
3P
cos3
2 R5 2R 2
R r2 z2
z
3P z3
2 R5
z
3P
2
(r 2
z3 z2 )5/2
3
2
1 [(r / z)2 1]5/ 2
P z2
z
P z2
3.3.3 矩形和圆形荷载下地基附加应力计 算——积分法
3.3 土中附加应力
3.3.1 基本概念
1、定义
附加应力是因为外荷载作用,在地基中产生旳应力增量。
2、基本假定
地基土是各向同性旳、均质旳线性变形体,而且在深度和水平 方向上都是无限延伸旳。
3.3.2 竖向集中力作用时旳地基附加应 力布辛奈斯克解答
P
x
r x2 y2
r
y
x
R r2 z2
dz
z2
arctan
z
lb
]
(l 2 b2 z2 )
z c p0
c
1 2
(m2
mn(m2 2n2 1) n2 )(1 n2 ) m2 n2
1
arctan n
m ]
(m2 n2 1)
c ——均布矩形荷载角点下旳竖向附加应力系数,简称角点 应力系数,可查表得到。
* 对于均布矩形荷载附加应力计算点不位于角点下旳情况:
2z3 p
z b
b
d
0 [(x )2 z 2 ]2
z
p
[n(arctan
n m
arctan
4.4地基附加应力的计算

过程:取元素面积 dA rdrd ,
则均布荷载可等效为一个集中荷 载 dQ p0dA P0rdrd 。在圆面 积范围内求积分可得 z 值:
z
A
d z
3 p0 z3
2
2 0
r0 0
(r2
l2
rdrd - 2r/cos
z2 )5/2
c p0
l 0
x dxdy
b
b
0 ( x2 y2 z2 )5
mnp
2
1 m2 n2
(1 m2 )
m2 1 n2
m2
t1 p
t1 ——应力系数,是 l / b 和 z / b 的函数,可制成表备查。
同理,可以求得荷载最大值边的角点下深度z处N点的竖向应
b 0.5
b 0.5
查表得应力系数 c =0.1202
zG GADH GBCH (0.2016-0.1202) 100=8.1kPa
6、 矩形面积上作用三角形分布荷载时竖向应力的计算
目的:在矩形面积上作用三角形分布布荷载
p x b
p ,求荷载为
零的角点下某深度处
M点的竖向应力 z值。
的 z值,并绘出分布图;
解:
z (m) r (m) r/z
z
Q z2
(kPa)
0
0
0 0.4775
∞
1
0
0 0.4775
95.5
3
0
0 0.4775
23.9
4
0
0 0.4775
10.6
5
0
0 0.4775
则均布荷载可等效为一个集中荷 载 dQ p0dA P0rdrd 。在圆面 积范围内求积分可得 z 值:
z
A
d z
3 p0 z3
2
2 0
r0 0
(r2
l2
rdrd - 2r/cos
z2 )5/2
c p0
l 0
x dxdy
b
b
0 ( x2 y2 z2 )5
mnp
2
1 m2 n2
(1 m2 )
m2 1 n2
m2
t1 p
t1 ——应力系数,是 l / b 和 z / b 的函数,可制成表备查。
同理,可以求得荷载最大值边的角点下深度z处N点的竖向应
b 0.5
b 0.5
查表得应力系数 c =0.1202
zG GADH GBCH (0.2016-0.1202) 100=8.1kPa
6、 矩形面积上作用三角形分布荷载时竖向应力的计算
目的:在矩形面积上作用三角形分布布荷载
p x b
p ,求荷载为
零的角点下某深度处
M点的竖向应力 z值。
的 z值,并绘出分布图;
解:
z (m) r (m) r/z
z
Q z2
(kPa)
0
0
0 0.4775
∞
1
0
0 0.4775
95.5
3
0
0 0.4775
23.9
4
0
0 0.4775
10.6
5
0
0 0.4775
《地基中的应力》PPT课件

(z 2) t 2 pt
t1 F(z / a) t2
a--圆形面积的半径
查表3.5.6
44
3.6平面问题条件下的地基附加应力(l/B>=10)
利用费拉曼理论
45
46
3.6.2条形基底均布荷载作用下地基附加应力
σz zsp0
s z
F( x b
,
z) b
查表3.6.1
y
B
p
x
z
x
M
z
47
3.6.3条形基底三角形分布荷载作用下地基附加应力
作用位置离墙基础前缘A点3.2m;因
土压力等作用墙背受到水平力,
H 400KN/其m 作用点距离基底面2.4m 。设地基土重度为19kN/m3,若不计
1.5m
A
墙后填土附加应力的影响,试求因P
,H作用基础中心点下深度z=7.2m处 z
M点的附加应力。
3.2m
P 2400KN/m
H 400KN/m
εx εy 0 σx σy
根据弹性力学中广义虎克定律:εx
1 E
σx
υ
σy
σz
0
σcx σcy K 0σcz
σx
1
ν
ν
σ
z
k0σz
9
2.计算点在地下水位以下
地下水位以下用浮容重γ’
地面
σcz γH1 γ'H2
γ' γsat γ w
H1
地下水位
H2
sz
sx
sy
10
3.成层土中自重应力
σz
s t
p
T
查表3.6.2
pt
ts
F( x b
t1 F(z / a) t2
a--圆形面积的半径
查表3.5.6
44
3.6平面问题条件下的地基附加应力(l/B>=10)
利用费拉曼理论
45
46
3.6.2条形基底均布荷载作用下地基附加应力
σz zsp0
s z
F( x b
,
z) b
查表3.6.1
y
B
p
x
z
x
M
z
47
3.6.3条形基底三角形分布荷载作用下地基附加应力
作用位置离墙基础前缘A点3.2m;因
土压力等作用墙背受到水平力,
H 400KN/其m 作用点距离基底面2.4m 。设地基土重度为19kN/m3,若不计
1.5m
A
墙后填土附加应力的影响,试求因P
,H作用基础中心点下深度z=7.2m处 z
M点的附加应力。
3.2m
P 2400KN/m
H 400KN/m
εx εy 0 σx σy
根据弹性力学中广义虎克定律:εx
1 E
σx
υ
σy
σz
0
σcx σcy K 0σcz
σx
1
ν
ν
σ
z
k0σz
9
2.计算点在地下水位以下
地下水位以下用浮容重γ’
地面
σcz γH1 γ'H2
γ' γsat γ w
H1
地下水位
H2
sz
sx
sy
10
3.成层土中自重应力
σz
s t
p
T
查表3.6.2
pt
ts
F( x b
水利工程土力学教学课件:任务4.3地基中的附加应力

z 10m :
8
z zi 4 0.045 0.047 0.368kPa i 1
地基附加应力计算
水平向集中力作用下附加应力计算
Qo
r
x R
—西罗提(Cerruti)课题
x
y
z
z
y
x
M y
z
地基附加应力计算
水平向集中力作用下附加应力计算 —西罗提(Cerruti)课题
z
3Q
2R5
3. 土中任意点的竖向附加应力——角点法
基本方法:
将荷载作用 面积分块
各分块产生的 竖向附加应力
叠加
土中任意点的 竖向附加应力
角点下竖向附加 应力计算公式
地基附加应力计算
矩形面积竖向均布荷载作用下附加应力计算
3. 土中任意点的竖向附加应力——角点法
a
h
d 情况一:M点投影在矩形荷载
作用面积范围之内
等值线(应力泡)
集中荷载作用下的地面沉降
s Q(1 2 ) E0r
E0 —土的变形模量
—土的泊松比
例题 4.3
在地表面作用集中力Q=200kN,计 算地面深度z=3m处水平面上竖向法向应 力σz分布,以及距Q作用点r=1m处竖直 面上竖向法向应力σz分布。
解答
解答
例题 4.4
O
有一矩形基础,b=2m,l=4m, 作用均布荷载p=10kPa,计算矩形 基础中点O下深度z=2m及10m处 的竖应力σz 值。
地基附加应力计算
均布线荷载作用下附加应力计算—弗拉曼(Flamant)解
M
地基附加应力计算
均布条形荷载作用下附加应力计算
z u p
应力系数
u
8
z zi 4 0.045 0.047 0.368kPa i 1
地基附加应力计算
水平向集中力作用下附加应力计算
Qo
r
x R
—西罗提(Cerruti)课题
x
y
z
z
y
x
M y
z
地基附加应力计算
水平向集中力作用下附加应力计算 —西罗提(Cerruti)课题
z
3Q
2R5
3. 土中任意点的竖向附加应力——角点法
基本方法:
将荷载作用 面积分块
各分块产生的 竖向附加应力
叠加
土中任意点的 竖向附加应力
角点下竖向附加 应力计算公式
地基附加应力计算
矩形面积竖向均布荷载作用下附加应力计算
3. 土中任意点的竖向附加应力——角点法
a
h
d 情况一:M点投影在矩形荷载
作用面积范围之内
等值线(应力泡)
集中荷载作用下的地面沉降
s Q(1 2 ) E0r
E0 —土的变形模量
—土的泊松比
例题 4.3
在地表面作用集中力Q=200kN,计 算地面深度z=3m处水平面上竖向法向应 力σz分布,以及距Q作用点r=1m处竖直 面上竖向法向应力σz分布。
解答
解答
例题 4.4
O
有一矩形基础,b=2m,l=4m, 作用均布荷载p=10kPa,计算矩形 基础中点O下深度z=2m及10m处 的竖应力σz 值。
地基附加应力计算
均布线荷载作用下附加应力计算—弗拉曼(Flamant)解
M
地基附加应力计算
均布条形荷载作用下附加应力计算
z u p
应力系数
u
地基附加应力资料课件

上部结构荷载
荷载类型
不同类型的荷载(如恒载、活载)对地基附加应力的影响不同。恒载引起的地基附加应力较为稳定,而活载则可 能引起较大的瞬间应力变化。
荷载大小
随着荷载的增大,地基附加应力也相应增大。在相同条件下,较大的荷载会导致更不均匀和较大的地基附加应力 。
其他因素
地下水
地下水位的变化会影响土的力学性能, 从而影响地基附加应力。当地下水位上 升时,土的有效重量减小,导致地基附 加应力减小;反之则增大。
03
地基附加应力散布规律
基础底面压力散布规律
基础底面压力散布不均匀
由于基础底面形状、尺寸和土层散布等因素的影响,基础底面压力散布不均匀 ,通常在基础边缘区域压力较大,中心区域压力较小。
压力随深度增加而减小
随着基础埋深的增加,基础底面压力逐渐减小,这是因为土层对基础的支撑作 用逐渐减弱。
竖向附加应力散布规律
对建筑物的影响
基础沉降
地基附加应力是引起基础沉降的主要 因素之一,过大的附加应力可能导致 基础沉降过大,影响建筑物的正常使 用和安全。
基础侧向位移
建筑物裂缝
地基附加应力不均匀可能导致建筑物 出现裂缝,影响建筑物的外观和使用 寿命。
过大的附加应力可能导致基础侧向位 移,影响建筑物的稳定性和安全性。
02
详细描述
该案例针对某桥梁地基附加应力影响因素进 行了系统分析,从土层性质、荷载散布、施 工方法等多个方面进行了研究,提出了相应 的优化措施,为桥梁工程的设计和施工提供
了有益的参考。
THANKS
感谢观看
地基附加应力资料课 件
目录
• 地基附加应力概述 • 地基附加应力计算方法 • 地基附加应力散布规律 • 地基附加应力影响因素 • 地基附加应力案例分析
第四章 地基中附加应力与变形计算

20 18 16
Elevation (metres)
14 12 10 8 6 4 2 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Distance - metres
圆形基底均布压力-地基竖向应力等值线分布 Lesson 1: Pressure distribution under a circular footing
当水平场地地基表面作用局部均布荷载时,仍然假定 土柱的变形属于侧向变形条件,只产生竖向变形。但 是,随深度增大,水平面上的竖向压应力逐渐减小, 需要分层确定竖向应变和竖向变形量。
s
H1
H2
H3
s = ∑εi Hi
i =1
3
侧限压缩变性特性
地基土的侧限压缩变形特性可以由侧限压缩试验测试
p
H H
H 1 + eo
Distance - metres
条形基底均布压力-地基竖向应力等值线分布 Lesson 2: Pressure distribution under a strip footing
3m Footing 100 kPa E = 5000 kPa, Poisson's Ratio = 0.334
20
80
18
90
20
10
Elevation (metres)
12
10
8
6
30
4
2
0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
40
50
14
60
16
70
Distance - metres
条形基底均布压力-地基水平向应力等值线分布 Lesson 2: Pressure distribution under a strip footing
土力学课件第二章地基中的应力计算

•矩形基底面的抗弯截面系数
•(二)偏心荷载下的基底压力
•e<r时,基底压力成梯形分布;
•e= r时,基底压力为三角形分布;
•e>r时,基底压力pmin<0
•pmin<0,由于地基与基础之间不能承受拉力,此时基底与地基局部脱离而 使基底压力重新分布。根据基底压力与偏心荷载相平衡的条件,三角形反
力分布如图(c)中的实线所示的形心应在P+G的合力Fv作用线上,由此可 计算基础边缘的最大压力pmax为
的水平面; • (2) 土层为各向同性的弹性介质。
• 因土体中任一垂直截面都为对称面,故任 何垂直截面上的应力均为零,即 txy=txz=tyz=0。所以σx、σy、σz均为主应力 。把上述条件代入应力连续方程得
•二、垂直自重有效压力
•1、不考虑地表荷载
•地下水位以下,用有效重量; 不同土层的重量可以叠加
•地表临空
基本假定
地基土是各向同性、均质、线性变形体 地基土在深度和水平方向都是无限的
•地基:均质各向同性线性变形半空间体 •应用弹性力学关于弹性半空间的理论解答
•一、垂直集中荷载
•位 移 •应 力
•图3-26 集中荷载作用下的应力
•Valentin Joseph Boussinesq (1842-1929)
• 侧向应变为零,即x=y=0,地基在自重作用下的应力状态即属此应力
状态,任何对称面都是对称面,则
三 土力学中应力符号的规定
•表示一点应力状态的最佳工具——摩尔应力圆 •土力学中应力符号的规定:法向应力以压为正,剪应力逆时针为正。 •注意与材料力学规定的不同
•图3.3 关于应力符号的规定
四 应力连续方程
• 一 基底压力的分布规律
• 基底压力的精确数值与分布形式是一个很复杂的问题,涉及上部结
•(二)偏心荷载下的基底压力
•e<r时,基底压力成梯形分布;
•e= r时,基底压力为三角形分布;
•e>r时,基底压力pmin<0
•pmin<0,由于地基与基础之间不能承受拉力,此时基底与地基局部脱离而 使基底压力重新分布。根据基底压力与偏心荷载相平衡的条件,三角形反
力分布如图(c)中的实线所示的形心应在P+G的合力Fv作用线上,由此可 计算基础边缘的最大压力pmax为
的水平面; • (2) 土层为各向同性的弹性介质。
• 因土体中任一垂直截面都为对称面,故任 何垂直截面上的应力均为零,即 txy=txz=tyz=0。所以σx、σy、σz均为主应力 。把上述条件代入应力连续方程得
•二、垂直自重有效压力
•1、不考虑地表荷载
•地下水位以下,用有效重量; 不同土层的重量可以叠加
•地表临空
基本假定
地基土是各向同性、均质、线性变形体 地基土在深度和水平方向都是无限的
•地基:均质各向同性线性变形半空间体 •应用弹性力学关于弹性半空间的理论解答
•一、垂直集中荷载
•位 移 •应 力
•图3-26 集中荷载作用下的应力
•Valentin Joseph Boussinesq (1842-1929)
• 侧向应变为零,即x=y=0,地基在自重作用下的应力状态即属此应力
状态,任何对称面都是对称面,则
三 土力学中应力符号的规定
•表示一点应力状态的最佳工具——摩尔应力圆 •土力学中应力符号的规定:法向应力以压为正,剪应力逆时针为正。 •注意与材料力学规定的不同
•图3.3 关于应力符号的规定
四 应力连续方程
• 一 基底压力的分布规律
• 基底压力的精确数值与分布形式是一个很复杂的问题,涉及上部结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c
(c) O点在荷载面的边缘外侧:
o
荷载面(abcd)= 面积Ⅰ(ofbg)- 面积Ⅱ(ofah)
h
g
+ 面积Ⅲ(oecg)- 面积Ⅳ(oedh) f a b
则:
z (Kc Kc Kc KcV ) p
(d) O点在荷载面的角点外侧
ed
c
荷载面(abcd)= 面积Ⅰ(ohce)- 面积Ⅱ(ohbf) f a
所引起的附加应力
竖直均布压力作用举行基底角点下的附加应力
Ks是竖直均布压力矩形基底角点下的附 加应力系数,它是m,n的函数,其中 m=l/b,n=z/b。l是矩形的长边,b是矩 形的短边,z是从基底起算的深度,pn是 基底净压力。
Ks可直接查表
表4-4 矩形均布荷载角点下竖向附
加应力系数Kz1
(b) O点在荷载面内:
z (K z K z K z K zV ) p
ⅠO Ⅱ
当 O 位于荷载中心,则有: z 4K z p
其中KzI 、KzII、KzIII 、KzIV 为相应于面积 I、II、III、IV 的角点 附加应力系数。
角点法计算任意位置附加应力
ed
对于HAcQ,HAdS两块面积,长度l宽度b均相同,由例 图
l/b=2/0.5=4 z/b=1/0.5=2 查表2-2,得Ks=0.1350,则σzH可按叠加原理求得: σzH=(2×0.2350- 2×0.1350 )×131=26.2(kPa)
矩形面积基底受三角形分布荷载时角点下的附加 应力
第二章 土体应力计算
地基中的附加应力计算
附加应力:由外荷引起的土中应力。
一 地表集中力下地基中附加应力
虽然理论上的集中力实际上是不存在的,但集中力作用下 弹性半空间地基理论解(即布辛涅斯克解)是求解其他 形式荷载作用下地基中附加应力分布的基础。 (一)布辛涅斯克解(法国Boussinesq,1885)
(4)求H点下1m深度处竖向应力σzH。 H点是HGbQ, HSaG,HAcQ,HAdS的公共角点。σzH是由四块面积各 自引起的附加应力的叠加。对于HGbQ,HSaG两块面积
,长度l宽度b均相同,由例图
l/b=2.5/2=1.25
z/b=1/2=0.5
查表2-2,利用双向线性插值得Ks=0.2350
(3)求A点下1m深处竖向附加应力σzA。
A点是ACbG,AdaG两块矩形的公共角点,这两块面积相
等,长度l宽度b均相同,故其附加应力系数Ks相同。根据l
,b,z的值可得
l/b=2 /2=1
z/b=1/2=0.5
查表2-1应用线性插值方法可得Ks=0.2315,所以
σzA=2 Kspn=2×0.2315 ×131=60.65(kPa)
根据等代荷载法原 理,将基底面积划 分成无穷多块,每 块面积趋向于无穷
小,将σz用积分 表示
竖直均布压力作用举行基底角点下的附加应力
将 R x2 y2 z2
lb
z d z Kz1 pn
00
代入并沿整个基底面
积积分,即可得到竖
直均布压力作用矩形
基底角点O下z深度处
pn=p-γod=140-18×0.5=131kPa
(2)求O点下1m深处地基附加应力 σzo。O点是矩形面积OGbE,OGaF ,OAdF,OAcE的共同角点。这四块 面积相等,长度l宽度b均相同,故其 附加应力系数Ks相同。根据l,b,z的 值可得
l/b=2 /1=2
z/b=1/1=1
查表2-2得Ks=0.1999,所以 σzo=4 Kspn=4×0.1999 ×131= 104.75(kPa)
图4-3 集中荷载作用下地基中应力
Valentin Joseph Boussinesq (1842-1929)
法国著名物理家和数学家,对数学物理、流体力 学和固体力学都有贡献。
竖向集中力作用下地基附加应力
弹性力学解答 Boussinesq 解
竖向集中力作用下地基附加应力
z
3Pz 3
2R5
应力叠加原理应用
将基底面基底净压力 的分布划分为若干小 块面积并将其上的分 布荷载合成为小的集 中力,即可应用公式 (2-24)计算。
这种方法适用于基底 面不规则的情况,每 块面积划分得越小, 计算精度就越高。
二 矩形基础底面铅直荷载下的附加应力
1.竖直均布压力作用举行基底角点下的附加应力
角点法计算任意位置附加应力
角点法:即通过计算点o将原矩形荷载分成若干个新矩形荷载,从而使 O 成为划分出的各个新矩形的公共角点,然后再根据迭加原理计算。共 有以下四种情况:
Ⅱ
(a) O点在荷载面的边缘:
z o o (
其中KzI 、KzII 为相应于面积Ⅰ和Ⅱ的角点附加应力系数。 Ⅳ Ⅲ
x p pt b
d
z
3z3 pt xdxdy
2R5b
R x2 y2 z2
矩形面积基底受三角形分布荷载时角点下的附加 应力
R r2 z2
竖向集中力作用下地基附加应力
z
K
F z2
竖向集中力作用竖向附加应力系数
竖向集中力作用下地基附加应力
在竖向集中力作用 下,地基附加应力 越深越小,越远越 小,Z=0为奇异点, 无法计算附加应力
应力叠加原理(等代荷载法)
由于集中力作用下地基中的附加应力 σz是荷载的一次函数,因此当若干竖 向集中力Fi作用于地表时,应用叠加 原理,地基中z深度任一点M的附加应 力σz应为各集中力单独作用时在该点 所引起的附加应力总和。
b
则:
- 面积Ⅲ(ogde)+ 面积Ⅳ(ogaf) o g
h
z (K z K z K z K zV ) p
必须注意: 在角点法中,查附加应力系数时所用的 l 和 b 均指划 分后的新矩形(如ofbg、ohce等)的长和宽。
角点法计算任意位置附加应力
【例题2-2】如图所示,矩形基底长为4m、宽为2m,基 础埋深为0.5m,基础两侧土的重度为18kN/m3,由上部中 心荷载和基础自重计算的基底均布压力为140kPa。试求基 础中心O点下及A点下、H点下z=1m深度处的竖向附加应 力。 【解】 (1)先求基底净压力(基底附加应力)pn,由已知条件