嵌入式软件可靠性设计
嵌入式开发中的软件架构设计

嵌入式开发中的软件架构设计嵌入式开发是现代科技领域中的重要一环,它涉及到各种智能设备和嵌入式系统的开发与设计。
在嵌入式开发中,软件架构设计起着至关重要的作用。
本文将介绍嵌入式开发中的软件架构设计原则、常见的软件架构模式,以及如何选择适合的软件架构设计方案。
一、嵌入式开发中的软件架构设计原则在进行嵌入式软件架构设计时,需要遵循一些基本原则,以确保软件架构的稳定性、可靠性和可维护性。
以下是几个重要的原则:1. 模块化设计:嵌入式系统通常由多个模块组成,每个模块负责不同的功能。
模块化设计可以使系统的各个模块相互独立,易于调试和维护。
2. 可重用性:合理设计软件模块,以便于在不同的项目中重复使用。
这将提高开发效率,减少代码量,降低项目开发成本。
3. 可扩展性:嵌入式系统的需求可能会随时间不断变化。
因此,软件架构设计应具备良好的可扩展性,以便于根据实际需求进行系统的扩展和升级。
4. 可靠性和安全性:嵌入式系统通常面临着严格的可靠性和安全性要求。
软件架构设计应当考虑到系统的性能和稳定性,并采取相应的措施来确保数据的安全性。
5. 性能优化:嵌入式系统通常拥有有限的资源,包括处理能力、内存和存储空间等。
软件架构设计应当考虑到这些资源限制,并尽可能优化系统的性能。
二、常见的嵌入式软件架构模式针对不同的应用场景和需求,存在多种嵌入式软件架构模式可供选择。
以下是一些常见的模式:1. 单机框架模式:在这种模式下,嵌入式系统作为一个单一的实体存在,所有的功能模块都运行在同一台设备上。
这种模式适用于资源较为充足、功能相对简单的嵌入式系统。
2. 分布式框架模式:在这种模式下,嵌入式系统的各个功能模块分布在不同的设备上,通过网络进行通信和协作。
这种模式适用于功能复杂、需要协同工作的嵌入式系统。
3. 客户端-服务器模式:这种模式下,嵌入式系统被分为客户端和服务器两个部分。
客户端负责与用户进行交互,服务器负责处理数据和逻辑。
这种模式适用于需要与用户进行交互的嵌入式系统。
《嵌入式系统的低功耗与可靠性技术研究》

《嵌入式系统的低功耗与可靠性技术研究》一、引言随着物联网、智能设备以及移动计算技术的快速发展,嵌入式系统作为各种智能设备的核心部分,其低功耗与可靠性问题逐渐成为了重要的研究课题。
在面对能源短缺、环境污染以及设备稳定性要求日益严格的今天,嵌入式系统的低功耗与可靠性技术显得尤为重要。
本文将详细探讨嵌入式系统的低功耗和可靠性技术的研究现状及未来发展趋势。
二、嵌入式系统低功耗技术研究1. 硬件低功耗设计硬件低功耗设计是嵌入式系统低功耗技术的关键。
设计者在硬件设计阶段应考虑采用低功耗芯片、合理的电源管理策略等手段降低系统的整体功耗。
此外,选择合理的元器件及封装方式也能有效降低功耗。
在设计中还可以使用动态电源管理技术,根据系统运行状态调整电源供应,以达到节能目的。
2. 软件优化软件优化是降低嵌入式系统功耗的另一重要手段。
通过优化算法、减少不必要的计算和通信等措施,可以有效降低系统的运行功耗。
此外,合理设计系统任务调度策略,根据任务优先级进行任务分配和调度,也可以实现功耗的降低。
3. 休眠与唤醒机制休眠与唤醒机制是降低嵌入式系统功耗的有效手段。
通过在系统空闲时进入休眠状态,可以有效降低系统的功耗。
当系统需要再次工作时,再从休眠状态唤醒,以恢复工作状态。
这种机制在嵌入式系统中得到了广泛应用。
三、嵌入式系统可靠性技术研究1. 硬件冗余与容错设计硬件冗余与容错设计是提高嵌入式系统可靠性的重要手段。
通过采用冗余硬件和容错技术,可以在系统出现故障时保证系统的正常运行。
例如,采用双机热备、三模冗余等技术,可以提高系统的可靠性和稳定性。
2. 软件容错与恢复技术软件容错与恢复技术是提高嵌入式系统可靠性的另一重要手段。
通过设计容错算法、实现软件故障的自恢复等功能,可以在软件出现故障时及时恢复系统的正常运行。
此外,通过定期更新和修复软件漏洞,也可以提高系统的安全性与稳定性。
3. 系统级可靠性设计系统级可靠性设计是提高嵌入式系统可靠性的综合手段。
嵌入式系统的软件架构设计

嵌入式系统的软件架构设计一、嵌入式系统软件架构设计的原则1.单一职责原则:模块化设计,每个模块负责独立的功能或任务,使得系统具有高内聚性和低耦合性,易于维护和拓展。
2.低功耗原则:嵌入式系统通常运行在资源受限的环境中,所以在设计过程中应考虑功耗的优化,如合理使用睡眠模式、降低组件工作频率等。
3.实时性原则:对于需要实时响应的系统,需要保证任务的实时性和可靠性。
可以使用实时操作系统,合理分配任务优先级,提供正确的调度机制。
4.可靠性原则:嵌入式系统通常运行在无人值守的环境中,对于需要长时间运行的系统,需要考虑到系统的稳定性和错误处理机制,如保证数据一致性、异常处理等。
二、常用的嵌入式系统软件架构模式1.分层结构:将系统划分为若干层,每一层负责特定的功能或任务。
上层可以调用下层的服务,实现系统的复用和模块化设计。
常见的分层结构有应用层、服务层、驱动层等。
2.客户端-服务器模式:将系统拆分为客户端和服务器,客户端负责用户界面和输入输出处理,服务器负责核心业务逻辑和数据处理。
这种模式适用于需要分布式处理和网络通信的系统。
3.事件驱动模式:通过订阅和发布机制,实现模块之间的高效通信和数据传递。
当一个模块触发一个事件时,相关的订阅者可以接收并处理这个事件。
这种模式适用于需要实现松耦合的模块间通信的系统。
4.状态机模式:系统根据不同的状态进行不同的处理,通过定义状态转换规则,可以实现系统的复杂逻辑控制。
这种模式适用于需要根据不同状态处理不同事件的系统,如自动控制系统。
三、嵌入式系统软件架构设计的指导1.准确定义需求:在设计阶段之前,清楚地定义系统的功能需求、性能需求、可靠性需求等,并根据需求确定软件架构的基本模型和模式。
2.模块化设计和接口定义:将系统划分为若干独立的模块,并定义模块之间的接口和通信机制。
模块化设计可以提高系统的复用性、拓展性和维护性。
3.确定关键任务:对于需要实时响应的系统,需要确定关键任务,并按照优先级进行调度。
嵌入式系统的软件设计要点

嵌入式系统的软件设计要点嵌入式系统是一种特殊类型的计算机系统,其硬件和软件被嵌入到其他设备中,用于控制特定的功能。
嵌入式系统往往面临有限的资源、实时性要求和稳定性需求等挑战。
为了确保嵌入式系统的可靠性和高效性,软件设计起着至关重要的作用。
在进行嵌入式系统的软件设计时,我们需要注意以下几个要点:1. 系统需求分析和规划:在进行软件设计前,必须对系统的需求进行详细分析和规划。
弄清楚系统的功能需求、性能要求、实时性要求以及硬件资源的约束等,有助于确保软件设计满足系统所需的要求。
2. 软件架构设计:软件架构设计是嵌入式系统的关键环节。
一个合理的软件架构能够提高整个系统的可维护性、可扩展性和稳定性。
需要选择适合嵌入式系统的架构模式,如分层、客户端-服务器等,并进行模块化设计,把系统分解成若干独立的功能模块,尽可能减少模块间的耦合。
3. 高效的代码编写:在嵌入式系统中,资源是有限的,因此需要编写高效的代码以充分利用系统的资源。
这包括优化算法、减少资源占用、合理地使用内存和处理器,以及减少不必要的操作等。
同时,需要注意代码的可维护性和可读性,以方便后续的维护和升级工作。
4. 实时性要求:嵌入式系统通常需要满足实时性要求,即对事件的处理必须在严格的时间约束下完成。
为了满足实时性要求,需要对系统的任务进行合理的调度和优先级分配,以确保关键任务的及时响应。
此外,还可以使用中断、定时器等机制来处理实时事件。
5. 异常处理和容错设计:在嵌入式系统中,由于环境的复杂性和不可控性,可能会发生各种异常情况,例如硬件故障、通信错误等。
因此,需要在软件设计中考虑异常处理和容错设计。
这包括错误检测和恢复机制、数据校验和纠错码等。
通过这些设计,可以使系统具备较高的容错性和可靠性。
6. 软件测试和验证:软件测试和验证是确保嵌入式系统正常运行的关键步骤。
需要对软件进行全面的测试,包括功能测试、性能测试、安全性测试等。
同时,还需要考虑系统的可靠性验证,通过各种测试工具和技术,检测出潜在的问题并进行修复。
嵌入式软件可靠性设计规范checklist

嵌入式软件可靠性设计规范汇总43.高级报警显示:红色,1.4Hz~ 2.8Hz,信占比率20%~60%开44.中级报警显示:黄色,0.4Hz~0.8Hz,信占比率20%~60%开45.低级报警显示:蓝绿色或者黄色,常开,信占比率100%46.高优先级和中优先级的报警上、下限设置值,一旦超出可能引起较严重后果的非合理报警数值区域时,均需加单独的对话弹出框予以提醒操作者47.默认的报警预置不允许修改,并提供让用户能恢复到出厂默认报警设置的操作途径48.做报警日志记录,为以后的故障分析、维修检查或商业纠纷提供依据与硬件接口的软件49.数据传输接口的硬件性能限制了数据传输速率的提高,在确定波特率前,要确认硬件所能承受的最高传输率,光耦、485、232、CAN、传输线上有防护器件(TVS或压敏电阻)的端口50.硬件端口读进来的数据必须加值域范围的判断51.硬件端口读取数据,必须加可控时间或次数的有限次限制52.A/D的位数比前端放大电路的精度要求略高即可,并通过数学计算验证53.对运动部件的控制,正向运动突然转向反向运动时,必须控制先正向减速到0,然后再反向加速的控制方式54.运动部件停机后、再快速启动的工作控制方式是不允许的。
须停机、开机、delay延时、再启动执行机构,以确保执行机构先释放原来运动状态的惯性,然后再从静态下启动55.运动部件都有过渡过程特性,软件驱动时的上升沿和下降沿的过渡特性会直接影响到硬件的安全和执行效果56.板卡启动时,先initMCU、然后Delay、然后initIO,以确保各芯片的上电电源都已经稳定下来再启动工作57.对采集自有可能受到干扰的模拟端口输入的数字量数据,一定要加上、下限、Δ/Δt、规律性干扰的滤波措施三个方面的容错性机制58.对数字端口传输数据可以连续传输两遍,以防范随机性偶发干扰,实时性要求较高的,可以连续传三遍,2:1判定59.模块之间的数据通信联络,用周期性读取的方式、或请求-应答的方式传送数据,一旦超出周期性时间要求,或未应答,则判定硬件失效,需有软件的配套措施。
嵌入式软件设计

嵌入式软件设计嵌入式软件设计是指为嵌入式系统设计开发软件程序的过程。
嵌入式系统是一种特殊的计算机系统,它旨在执行特定任务,并通常涉及与物理世界的交互。
常见的嵌入式系统包括现代汽车、数字相机、智能手机、路由器、交通信号灯和医疗设备等。
这些设备需要高度优化、可靠且高效的软件,以便能够正确地执行其功能。
在开始嵌入式软件设计之前,首先要确定系统的架构和需求。
架构涉及处理器选择、内存容量、存储器、输入/输出接口和各种系统总线等。
需求涉及系统功能、性能、安全、可靠性和易用性等方面。
这些因素都将影响软件设计和开发的过程。
嵌入式软件通常是使用低级编程语言(如C或汇编语言)编写的。
低级语言允许程序员直接控制硬件的配置和操作。
这样可以最大程度地优化程序的性能和资源使用效率。
然而,低级编程语言也非常容易出错,因此需要进行精心的测试和调试工作。
在嵌入式软件设计的过程中,还需要考虑到多线程、中断处理、存储器管理和通信协议等方面。
多线程可以提高系统的并发性和响应能力,但也容易引入bug和死锁等问题。
中断处理可以确保在紧急情况下及时响应事件,但也可能会影响系统的稳定性。
存储器管理可以确保软件的内存使用高效,并确保不会发生内存泄漏和缓冲区溢出等问题。
通信协议可以确保与其他设备和系统之间的通信正确进行。
除了开发软件之外,还需要对软件进行测试和调试。
测试可以检测软件中的缺陷和错误,并帮助程序员调整代码以更好地满足预期的功能和性能要求。
调试可以帮助程序员快速定位问题并进行纠正。
最后,为了确保飞行安全和质量控制等方面的要求,嵌入式软件应符合国际标准和规范,例如RTCA-DO-178C(飞机软件开发的安全认证标准)和ISO 26262(汽车软件开发的安全认证标准)。
总之,嵌入式软件设计需要开发人员经过深思熟虑和严谨的方法来开发高效、高可靠性的软件程序。
这需要程序员具备一定的专业知识和技能,同时也需要完善的软件开发流程和测试方法。
只有这样,才能保证嵌入式系统的安全性和正常运行,同时也满足客户的需求和期望。
嵌入式软硬件系统的可靠性设计

K e r : e e d dsse ;sf r n a d r ;r l bl yd sg y wo ds mb d e ytm ot ea dh r wae ei i t e in wa a i
1 引 言
随着 嵌入 式 系统 硬件 体 系结构 的 变化 ,嵌 入式 系统 的发 展趋 势 向嵌入 式 系统 高端 .即嵌入 式 软件 系统 转移 .具 体体 现在 嵌 入式操 作 系统 趋 于多 样和
2 硬 件 系 统 可 靠 性 设 计
在 对 嵌 入 式 系 统 中 的 硬 件 .也 就 是 Pw rC o eP
进行 控制
b P I 块 、C C 模 完 成 从 P I 线 到 P I 线 的 转 换 .提 供 总 线 C 总 C 总 的仲裁 ,完成 作为 C C 主设 备 或从设 备 的功 能 。 P I
d )RS 2 4 2模 块
件 一 出故 障 ,就 将使 整个 系统 的功能受 到影 响 : 3 )对 于恶 劣环 境 下 工作 的单 元 或 部件 .其 可 靠性 指标应 定得 低一 些 :
4 )对 于 新 研制 的产 品 以及 采 用新 工 艺 、新 材 料 的产品 ,其可 靠性指 标可 以定低 一些 :
提供 4路 R 4 2接 口 S2
e P 1 MC模 块
提 供外 接 P MC扩展 卡 的接 口
n U B模 块 S
一
5 1易 以维修 的单 元 或部 件 的 可靠 性 指 标 定 高
电 子 产 品 可 靠 性 与 环 境 试 验
V i 8N . c. 0 0 o. o O t 2 1 2 5 .
嵌 入 式 软 硬 件 系统 的可 靠 性 设 计
张 明 ,刘 志 宏 ,方伟 奇
嵌入式系统软硬件可靠性设计讲义

14
5-500R < 0.8v => R>4.2/500=8.4k
15
Vcc
R
VH
Io
Io
200μA
200uA *15K=3V 选 10K 可用。
24V 10Ω±10%
最坏电路情况分析,R 取最不利的数 值 最高的器件环境温度 Ta 最高的电 压 Vmax 降额余量 最大的阻值 误差 R-ΔR
16
1.1 、设计调查表 1.2 、导致问题的常见应力 1.3 、分析方法
3
1.1、设计调查表
1. 环境因素 2. 人的因素 3. 关联设备的因素
4
1.2、常见故障应力
过渡过程应力及超调对输入端器件的影响
5
感性负载、容性负载对驱动电路的影响分析
6
环境条件影响
7
单一故障与系统分析方法
8
1.3、分析方法
工程计算与容差分析
P
95.4%
-2σ
+2σ
U
-σ +σ
68.3%
-3σ
+3σ
99.73 %
9
最坏电路情况分析法
±5%?
±5%?
±10%
10
精度分配方法
1. 得到系统的总精度要求 2. 找出影响总精度的各分模块 3. 推导出系统输出值与各模块测控物理量的工程计算公式 4. 根据工程计算公式,做微分运算,推导出影响总精度的所有要素,然
MT48LC8M16A2 Datasheet.pdf
19
面板复位电路抗干扰电容
1. 面板复位是静电非常敏感电路;处理方式如图
2. 电容典型值 560pF
4. 双向 TVS 管选择结电容较小的 管 子,结电容<1000pF
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
嵌入式软件可靠性设计培训
嵌入式软件既是电子系统的核心,也是硬件系统的有效补充,需要具备防错、判错、纠错、容错的功能,具备了这些功能,就能保证系统可靠性要求在软件分系统设计中的实现。
但是软件可靠性又不同于硬件电路,它不会随时间的推移而降低,并且其可靠性保障全部在设计过程中实现。
因此软件工程的工作也是软件可靠性所要关注的内容。
为此,我协会决定组织召开《嵌入式软件可靠性设计》讲座,本讲座主要从嵌入式软件的系统设计、需求分析、接口、模块、变量控制、软件测试、安全性分析、硬件匹配设计等设计规范进行总结和分析,深层次探讨嵌入式软件的可靠性设计技巧。
现具体事宜通知如下:
【主办单位】中国电子标准协会培训中心
【协办单位】深圳市威硕企业管理咨询有限公司
课程提纲:课程大纲以根据学员要求,上课时会有所调整,具体以报到时的讲义为准。
1.概述和定义
2.计算机系统设计准则:2.1、一般要求;2.2、硬件与软件功能的分配原则;2.3、硬件与软件可靠性指标的分配原则;2.4、安全关键功能的人工确认;2.5、安全性内核;2.6、自动记录系统故障;2.7、禁止回避检测出的不安全状态;2.8、保密性设计;2.9、容错设计
3.硬件设计:3.1、硬件选用;3.2、总线检测;3.3、加电检测;3.4、电源失效的安全措施;3.5、主控计算机失效的安全措施;3.6、反馈回路传感器失效的防护措施3.7、电磁干扰的防护措施;3.8、维修互锁措施
4.软件需求分析
5.软件危险分析
6.安全关键功能设计
7.冗余设计准则:7.1、指令冗余设计;7.2、软件陷阱与软件拦截技术;7.3、软件冗余
8.接口设计准则:8.1、硬件接口要求;8.2、硬件接口的软件设计;8.3、人机界面设计;8.4、报警设计;8.5、软件接口设计
9.软件健壮性设计准则:9.1、电源失效防护;9.2、加电检测;9.3、电磁干扰;
9.4、系统不稳定;9.5、接口故障9.6、干扰信号9.7、错误操作;9.8、监控定时器的设计9.9、异常保护设计
10. 简化设计准则:10.1、单入和单出;10.2、模块的独立性;10.3、模块的扇入扇出;10.4、模块耦合方式;10.5、模块内聚顺方式;10.6、其他特殊考虑
11.余量设计:11.1、资源分配及余量要求11.2、时序安排的余量要求
12. 数据要求:12.1、数据需求;12.2、属性控制;12.3、数值运算范围控制;12.4、合理性检查
13. 防错程序设计准则:13.1、参数化;13.2、公用数据和公共变量;13.3、标志;13.4、文件;13.5、非授权存取的限制13.6、无意指令跳转的处理;13.7、程序检测点的设置13.8、寻址模式的选用;13.9、数据区隔离;13.10、安全关键信息的要求;13.11、信息存储要求;13.12、算法选择要求
14. 编程要求:14.1、语言要求;14.2、汇编语言编程限制14.3、高级语言的编程限制;14.4、圈复杂度指数(McCabe)14.5、软件单元的规模;14.6、命名要
求;14.7、程序格式要求;14.8、程序注释要求与方法;14.8.1、注释的一般要求14.8.2、模块头注释要求; 14.8.3、模块内注释要求; 14.8.4、安全关键内容注释要求;14.9程序设计风格;14.9.1、通用类;14.9.2、结构类;14.9.3、说明类;14.9.4、输人输出类;14.9.5、语言类
15. 多余物的处理:15.1、文档中未记载特征的清除;15.2、程序多余物的清除;15.3、未使用内存的处理;15.4、覆盖的处理
16. 版式 17. 注释18. 命名19. 可读性
20. 变量、结构21.函数、过程
22. 可测性与软件测试:22.1、需求遗漏或不明确22.2、配置保存的生效22.3、缺省配置的影响22.4、报警和清除
22.5、菜单选项测试 22.6、缺省配置测试22.7、系统测试注意事项
23. 程序效率24. 质量保证25. 代码编辑、编译、审查26. 代码测试、维护27. 宏
【培训对象】电子工程师、软件工程师、系统工程师、可靠性工程师、测试工程师、项目经理等
师资介绍:武老师某公司总经理,研究领域:电子产品系统可靠性技术。
曾任航天二院总体设计所主任设计师、高级项目经理,机电制造企业研发总监、事业部总监,北京市级优秀青年工程师,科协委员。
有电子产品、军工、通信等专业方向的设计、测评和技术管理经历,对产品系统设计、可靠性设计、技术管理有较深入研究,曾在学术会议及多家技术刊物发表专业文章。
曾为比亚迪、中电3 0所、29所、松下电工、北京华峰测控、北京航天长峰、普析通用仪器、航天二
院、航天五院、深圳普博、伯特利阀门集团、北控高科、南车四方股份等企业提供专业技术和技术管理辅导、培训和咨询。
曾作为核心团队成员经历一个企业由零到几个亿、研发团队由几个人到近二百人的发展过程,深谙企业发展过程的产品可靠性问题和解决方法。