典型相关分析与多维标度法
数学建模各种分析方法

现代统计学1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息.运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。
2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的.主成分分析一般很少单独使用:a,了解数据。
(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。
(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。
因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific fact or)之间也不相关,共同因子和特殊因子之间也不相关.4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。
多元统计分析及R语言建模(第五版)课件第一二章

2 多元数据的数学表达及R使用
数据框(data frame)是一种矩阵形式的数据,但数据框中各列可以是不同类型的数据。 数据框录入限制条件
数 据 框
在数据框中 以变量形式 出现的向量 长度必须一 致,矩阵结 构必须有一 样的行数。
(3);金融(4);工人(5);农民(6);个体 (7);无业(8)。 教育(edu):文盲(1);小学(2);中学(3); 高中(4);中专(5); 大专(6);大学(7);研究生(8)。 投资结果(result):赚钱(1);不赔不赚(2); 赔钱(3)。
2 多元数据的数学表达及R使用
一元数据
2
学习资料
教学教材: 王斌会编著《多元统计分析及R语言建模》
2016.1(第4版)暨南大学出版社
扩充资料: [1]王斌会编著《数据统计分析及R语言编程》
2017.6(第2版) 北京大学出版社,暨南大学出版社
3
多元统计分析及R语言建模
多元统计分析及R语言建模
多元分析基本内容,以及本课程的主要安排。相关的补充
1 多元统计分析概述
R
3
免费的 数据分 析软件
01 功能强大 02 免费,开源
03
前景广阔
1 多元统计分析概述
R
优点
缺点
软
件
自由软件,统计功能强大
初学较为麻烦,需一
优
,可以看作Splus的免费
点
1 多元统计分析概述
#三窗口排列
#Rstudio界面
语句编程窗口 图形显示窗口
典型相关分析与多维标度法

典型相关分析与多维标度法典型相关分析与多维标度法是两种常用的数据分析方法,用于分析两组变量之间的关系,其中典型相关分析主要用于分析两组多元变量之间的关系,而多维标度法则用于将多个变量转换为低维空间中的坐标,以观察它们之间的相似性或差异性。
典型相关分析是一种针对多个自变量和多个因变量之间的关系进行分析的方法。
典型相关分析的主要目标是找到一些线性组合,使得两组变量之间的相关性最大化。
通过这种方法,我们可以了解两组变量之间的相互作用和影响,对于构建预测模型或解释问题起到重要作用。
在典型相关分析中,我们首先将两组变量分别表示为X和Y,其中X 包含p个自变量(X1,X2,…,Xp),Y包含q个因变量(Y1,Y2,…,Yq)。
我们寻找一些线性组合,使得X和Y之间的相关性最大化。
我们可以将X和Y的线性组合表示为Z和W。
多维标度法是一种数据降维的方法,它可以将多个变量转换为低维空间中的坐标,以便于观察它们之间的相似性或差异性。
多维标度法的主要目标是通过将变量映射到低维空间中的坐标来保留变量之间的相对距离关系。
通过这种方法,我们可以更容易地观察和解释多个变量之间的关系。
在多维标度法中,我们首先计算变量之间的距离矩阵,然后通过寻找一些低维坐标来最小化原始距离矩阵与降维后的距离矩阵之间的误差。
我们可以使用不同的方法来计算坐标,如主成分分析法或岭回归法。
典型相关分析与多维标度法之间存在一些区别。
首先,典型相关分析主要用于分析两组多元变量之间的关系,而多维标度法则用于将多个变量转换为低维空间中的坐标。
其次,典型相关分析着重于寻找最大化相关性的线性组合,而多维标度法则着重于保留变量之间的距离关系。
最后,典型相关分析可以用于预测建模和解释问题,而多维标度法则主要用于观察和解释变量之间的相似性或差异性。
在实际应用中,我们可以根据具体的问题选择使用典型相关分析或多维标度法。
如果我们想要探索和解释两组多元变量之间的关系,可以使用典型相关分析。
典型相关分析

典型相关分析简介典型相关分析(canonical correlation analysis, CCA)是一种多变量统计分析方法,用于研究两组观测变量之间的相关性。
该方法可以帮助我们理解两组变量之间的线性关系,并找出两组变量中最相关的部分。
在机器学习、数据挖掘以及统计学中,典型相关分析被广泛应用于特征选择、降维和模式识别等领域。
方法典型相关分析是基于矩阵分解的方法,通过将两组变量转化成低秩的典型变量来寻找相关性。
典型相关分析的基本思想是找出两组变量的线性组合,使得这两个组合能够达到最大的相关性。
具体而言,给定两组变量X和Y,我们可以得到X的线性组合u和Y的线性组合v,使得cor(u,v)达到最大。
其中cor(u,v)表示两个向量u和v的相关系数。
典型相关分析的目标即是求解出使得cor(u,v)最大的u和v。
下面是典型相关分析的数学表示形式:max cor(u,v)subject to u = Xa, v = Yb其中,X和Y分别是两组变量的矩阵,u和v是X和Y的线性组合,a和b是权重向量。
通过求解最优化问题,我们可以得到最相关的线性组合u和v,从而得到最相关的部分。
应用典型相关分析广泛应用于多个领域,下面列举了几个常见的应用场景:特征选择在特征选择中,我们经常面临着从大量的特征中选取最相关的特征集合。
典型相关分析可以帮助我们通过寻找两组变量之间的相关性,筛选出对目标变量有着较强相关性的特征。
通过选择最相关的特征,我们可以提高模型的泛化能力,并降低过拟合的风险。
降维在大数据时代,数据维度高维且复杂。
降维可以帮助我们减少计算负担,并去除冗余信息。
典型相关分析可以通过找出两组变量最相关的部分,将原始多维数据降到低维空间。
这样做可以减少计算复杂度,提高模型的训练速度,并帮助我们更好地理解数据之间的关系。
模式识别典型相关分析在模式识别领域也有着重要的应用。
通过找出两组变量之间的最相关部分,我们可以构建更加精确和可靠的模式识别模型。
第四部分:横截面数据分析

第四部分:横截面数据分析(Cross Data)西安交大管理学院2011‐春2内容•判别分析(Discriminant analysis)•典型相关分析(Canonical correlation analysis )•对应分析(Correspondence analysis)•联合分析(Conjoint analysis/measurement)•多维尺/标度分析(Multi-Dimentional Scaling)对应分析(Correspondence analysis)•也称关联分析、R ‐Q 型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。
可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。
主要应用在市场细分、产品定位、地质研究以及计算机工程等领域中。
原因在于,它是一种视觉化的数据分析方法,它能够将几组看不出任何联系的数据,通过视觉上可以接受的定位图展现出来。
•由法国人Benzenci 于1970年提出的,起初在法国和日本最为流行,然后引入到美国。
由法国人Benzenci 于1970年提出的,起初在法国和日本最为流行,然后引入到美国。
•对应分析法是在R 型和Q 型因子分析的基础上发展起来的一种多元统计分析方法。
在因子分析中,如果研究的对象是样品,则需采用Q 型因子分析;如果研究的对象是变量,则需采用R 型因子分析。
但是,这两种分析方法往往是相互对立的,必须分别对样品和变量进行处理。
因此,因子分析对于分析样品的属性和样品之间的内在联系,就比较困难,因为样品的属性是变值,而样品却是固定的。
于是就产生了对应分析法。
它综合了R 型和Q 型因子分析的优点,并将它们统一起来使得由R 型的分析结果很容易得到Q 型的分析结果,这就克服了Q 型分析计算量大的困难;更重要的是可以把变量和样品的载荷反映在相同的公因子轴上,这样就把变量和样品联系起来便于解释和推断。
第10章多维标度分析

第10章多维标度分析10.1多维标度法的基本思想当维数p>3时,即使给出了p维空间R P中n个样本点的坐标,我们都难以想象这n个点的相互位置关系,因此自然希望在我们熟悉的低维空间R k(k<p,如k=1,2,3)中能以较高的相似度重新展示这n个点的数据结构,并由此对原始样本数据进行统计分析.另外,即使维数p≤3,有时问题也不容易解决.比如地图上任意两个城市之间的直线距离和实际道路距离不一样,若仅给了一组城市相互间的实际道路距离,你能否标出这些城市之间的相对位置呢?又假定只知道哪两个城市最近,哪两个城市次近,等等,你还能确定它们之间的相对位置吗?重新标度的位置与实际位置相似度达到多大?把上面的不同“城市”换作不同的“产品”、“品牌”、“指标”等,也会遇到类似的问题.多维标度法(multidimensional scaling,MDS)就是一类将高维空间中的研究对象(样本或变量)简化到低维空间中进行定位、归类和分析,同时又有效地保留研究对象间原始关系的多元数据分析技术的总称,是一种维数缩减方法.多维标度法于20世纪40年代起源于心理测度学,用于大致测定人们判断的相似性,1958年Torgerson在其博士论文中首先正式提出了这一方法.多维标度法现在已广泛应用于心理学、市场营销、经济管理、交通、生态学及地质学等领域.多维标度法内容丰富、方法较多,其理论分析手段与主成分分析有相通之处,但也有自己的特点.根据研究对象的相关指标是用距离、比例等度量化数据给出还是用顺序、秩等给出,相应的分析方法分为度量分析法和非度量分析法,而古典多维标度法是其中最常用的度量分析法.10.2古典多维标度法下面根据参考文献[2],用一个例子来介绍几个与多维标度法相关的基本概念.【例10.1】(数据文件为eg10.1)表10-1给出了我国部分城市间的距离,由于道路弯弯曲曲,这些距离并不是这些城市间的真正距离.我们希望在地图上重新标出这八个城市,使得它们之间的距离尽量接近表10-1中的距离.表10-1 我国八个城市间的距离单位:千米北京天津济南青岛郑州上海杭州南京北京0天津118 0济南439 363 0青岛668 571 362 0郑州714 729 443 772 0上海1259 1145 886 776 984 0杭州1328 1191 872 828 962 203 0南京1065 936 626 617 710 322 305 0 10.2.1多维标度法的几个基本概念定义10.1一个n×n阶矩阵,如果满足条件(1)(2)则称矩阵D为广义距离阵,dij称为第i点与第j点间的距离.注意:这样定义的距离不是通常意义下的距离,而是通常距离的拓广,比如人们熟悉的距离三角不等式在这里就未必成立.对于距离阵,多维标度法的目的是要寻找较小的正整数k(如k=1,2,3)和相应低维空间R k中的n个点x₁,x₂,…,xn ,记表示xi与xj在R k中的欧氏距离,使得与D在某种意义下尽量接近.将找到的这n个点写成矩阵形式称X为D的一个古典多维标度(CMDS)解.在多维标度分析中,形象地称xi为D的一个拟合构造点,称X为D的拟合构图,称为D的拟合距离阵.特别地,当=D时,称xi为D的构造点,称X为D的构图.又若X为D的构图,令式中,P为正交阵,a为常数向量,则Y=(y₁,y₂,…,yn)也为D的构图,这是因为平移和正交变换不改变两点间的欧氏距离,即若D的构图存在,那么它是不唯一的.定义10.2对于一个n×n的距离阵,如果存在某个正整数k和R k中的n个点x₁,x₂,…,xn,使得(10.1)则称D为欧氏距离阵.下面讨论如何判断一个距离阵D是否为欧氏距离阵;在已知D为欧氏距离阵的条件下,如何确定定义10.2中相应的k和R k中的n个构造点x₁,x₂,…,xn.令(10.2)(10.3)式中,In 为n×n阶单位阵,1n,为分量全为1的n维列向量.借助这些定义,下面给出一个距离阵D为欧氏距离阵的充要条件.定理10.1设D为n×n阶距离阵,B由式(10.3)定义,则D是欧氏距离阵的充要条件为B≥0.证明:(必要性)设D是欧氏距离阵,由定义和式(10.2)可知,存在正整数k 和R k中的n个构造点x₁,x₂,…,xn,使得又由式(10.3)可得(10.5)式中,为元素全为1的nxn阶矩阵.注意式中(10.6)将它们代入式(10.5)中,可得(10.7)由式(10.4)知,再结合式(10.6),可得(10.8)将代入式(10.8),化简可得式中,将式(10.9)表示为矩阵形式,得到这里乘积HX所得的结果是将X中心化,即(10.10)(充分性)反之,若B≥0,记k=rank(B),λ₁,λ₂,…,λk (λ₁≥λ₂≥…≥λk>0)为B的正特征值,x(1),(2),…,x(k)为相应的特征向量,且令注意:这里x₁,x₂,…,xn表示由X的各行转置后得到的k×1列向量.令A=diag(λ₁,λ₂,…,λk),,则,即P的列为标准正交化特征向量,于是(10.11)由此可得说明正好是D的构图,所以D是欧氏距离阵,充分性得证.注意:充分性的证明给出了从欧氏距离阵D出发得到构图X的方法,即D→A→B→X具体步骤为:由D知dij,由得A,再由得B,最后求B的特征值λ₁,λ₂,…,λk和相应的特征向量x(1),(2),…,x(k),n×k阶矩阵X=(x(1),(2),…,x(k))的行向量转置后得到的n个k×1列向量x₁,x₂,…,xn 即为D的n个构成点,而矩阵即为D的构图,据式(10.11),X 也可以由来计算.由定理10.1知,D是欧氏距离阵的充要条件是B≥0.因此若B有负特征值,那么D一定不是欧氏距离阵,此时不存在D的构图,只能求D的拟合构图,记作,以区别真正的构图X.在实际中,即使D为欧氏距离阵,记它的构图为n×k 矩阵X,当k较大时也失去了实用价值,这时宁可不用X,而去寻找低维的拟合构图.也就是说,在D的构图不存在和构图存在但k较大两种情形下都需要寻找D的低维拟合构图.令这两个量相当于主成分分析中的累积贡献率,我们希望k不要取太大,就可以使a₁.k和a₂.k比较大,比如说,大于80%就比较合适.当k取定后,用表示B的对应于特征值λ₁,λ₂,…,λk的正交化特征向量,使得.通常还要求λk >0,若λk<0,要缩小k的值.最后,令则即为D的拟合构图,或者说为D的古典多维标度解,(均为k×1列向量)即为D的n个拟合构造点.有的文献也把称为X的主坐标,把多维标度分析称为主坐标分析.下面用一个具体例子(参见参考文献[2])来说明上述求解步骤.【例10.2】设有距离阵D如下(为简洁起见,对称阵都只写出上三角部分):由于,可求得A,āig ,āgj及āgg如下:再由bij =aij-āig-āgj+āgg可得由于B的7个列b₁,b₂,…,b₇有如下线性关系b₃=b₂-b₁,b₄=-b₁,b₅=-b₂,b₆=b₁-b₂,b₇=0于是B的秩最多为2,注意到B的第一个二阶主子式非退化,故rank(B)=2=k,并且可求得B的7个特征值分别为:λ₁=λ₂=3,λ₃=λ₄=…=λ₇=0且对应于λ₁,λ₂的特征向量分别为:故7个拟合构造点在R²中的坐标分别为:(√3/2,1/2),(√3/2,-1/2),(0,-1),(-√3/2,-1/2),(-√3/2,1/2),(0,1 ),(0,0)因为B≥0,所以原矩阵D是欧氏距离阵,故这7个拟合构造点就是D的构造点.容易验证,这7个构造点在R²中的欧氏距离阵恰为D,即10.2.2已知距离矩阵时CMDS解的计算上面计算CMDS解的过程在R中可使用stats包中的cmdscale()函数来实现,也可以使用MASS包中处理非度量MDS问题的isoMDS()函数来实现,但cmdscale()函数的好处是可以同时计算出B的特征值和特征向量以及两个累积贡献率a₁.k 和a₂.k的值.【例10.3】(数据文件为eg10.3)根据表10-1给出的我国八个城市间的距离矩阵D,利用R软件stats包中的cmdscale()函数求D的CMDS解,给出拟合构图及拟合构造点.解:在R中的程序为:#例10.3打开数据文件eg10.3.xls,选取数据区域C2:K10,然后复制>eg10.3=read.table("clipboard",header=T) #在R中读入数据>D10.3=cmdscale(eg10.3,k=2,eig=T) #k取为2,eig=T给出矩阵B的前两个特征#向量和特征值>D10.3$points[,1] [,2]北京-658.14610 -52.301759天津-522.00992 -133.917153济南-229.30657 32.365307青岛-80.72182 -277.225217郑州-171.98297 474.047645上海610.52727 -102.636996杭州659.93216 5.717159南京391.70794 53.951014$eig[1]1.756015e+06 3.367695e+05 7.888679e+04 3.770390e+041.320482e+04 -4.001777e-11 -1.434722e+04 -3.259473e+04......>sum(abs(D10.3$eig[1:2]))/sum(abs(D10.3$eig)) #计算a1.2[1] 0.9221257>sum((D10.3$eig[1:2])~2)/sum((D10.3$eig)~2) #计算a2.2[1] 0.9971656>x=D10.3$points[,1]>y=D10.3$points[,2]>plot(x,y,xlim=c(-700,800),ylim=c(-300,600)) #绘散点图(见图10-1)#根据两个特征向量的分量大小>text(x,y,labels=s(eg10.3),adj=c(0,-0.5),cex=0.8) #名标出#将拟合点用行#名标出图10-1我国八城市距离阵的拟合构图由R计算结果可见,矩阵B的八个特征值分别为:1756015,336770,78887,37704,13205,0,-14347,-32595最后两个特征值为负,表明距离矩阵D不是欧氏距离阵.a1.2=92.2%,a2.2=99.7%,故k=2就可以了.由前两个特征向量可得八个拟合构造点分别为:(-658.1,-52.3),(-522.0,-133.9),(-229.3,32.4),(-80.7,-277.2) (-172.0,474.0),(610.5,-102.6),(659.9,5.7),(391.7,54.0)容易计算出八个拟合构造点在R²中的欧氏距离阵,如表10-2所示.将它们与表10-1中城市间的原始距离数据进行比对,可以发现大多数距离数据拟合较好,少数数据误差较大.表10-2我国八个城市间的距离阵的拟合构图10.2.3已知相似系数矩阵时CMDS解的计算定义10.3一个n×n阶的矩阵,如果满足条件(1)(2)则称C为相似系数矩阵,cij称为第i点与第j点间的相似系数.在进行多维标度分析时,如果已知的数据不是n个对象之间的广义距离,而是n个对象间的相似系数,则只需将相似系数矩阵C按式(10.12)转换为广义距离阵D,其他计算与上述方法相同.令(10.12)由定义10.3可知,,显见,故D为距离)为欧氏距离阵. 阵,可以证明,当C≥0时,由式(10.12)定义的距离阵D=(dij【例10.4】(数据文件为eg10.4)为了分析下列六门课程之间的结构关系,找到了由劳雷和马克斯维尔得到的相关系数矩阵(见表10-3).其中,相关系数的值越大(小),表示课程越(不)相似.易见相关系数矩阵也为相似系数矩阵,记为C,求C的CMDS解,并给出拟合构图及拟合构造点.表10-3六门课程相关系数矩阵盖尔语英语历史算术代数几何盖尔语 1 0.439 0.41 0.288 0.329 0.248 英语0.439 1 0.351 0.354 0.32 0.32g 历史0.41 0.351 1 0.164 0.19 0.181 算术0.288 0.354 0.164 1 0.595 0.47 代数0.329 0.32 0.19 0.595 1 0.464 几何0.248 0.329 0.181 0.47 0.464 1解:据表10-3知,.于是由变换式(10.12)知(10.13)由式(10.13)易得六门课程的广义距离阵D,如表10-4所示.表10-4由六门课程相关系数矩阵转化所得的距离阵盖尔语英语历史算术代数几何盖尔语0 1.059 1.086 1.193 1.158 1.226英语 1.059 0 1.139 1.137 1.166 1.158 历史 1.086 1.139 0 1.293 1.273 1.280 算术 1.193 1.137 1.293 0 0.900 1.030 代数 1.158 1.166 1.273 0.900 0 1.035 几何 1.226 1.158 1.280 1.030 1.035 0余下工作可以仿照例10.3进行,在R中的程序为:#例10.4打开数据文件eg10.4.xls,选取数据区域A10:G16,然后复制>eg10.4=read.table("clipboard",header=T) #在R中读入数据>D10.4=cmdscale(eg10.4,k=2,eig=T) #k取为2,eig=T给出矩阵B的前两个特#征向量和特征值>D10.4$points[,1] [,2]盖尔语0.4028583 0.26570653英语0.2415986 0.48339407历史0.6210937 -0.50817963算术-0.4575066 0.03803193代数-0.4216733 -0.04017726几何-0.3863706 -0.23877565$eig[1]1.142825e+00 6.225908e-01 6.022539e-01 5.245848e-013.963587e-01 1.998401e-15......>sum(abs(D10.4$eig[1:2]))/sum(abs(D10.4$eig)) #计算a1.2[1] 0.5368268>sum((D10.4$eig[1:2])^2)/sum((D10.4$eig)~2) #计算a2.2[1] 0.6805523>x=D10.4$points[,1]>y=D10.4$points[,2]>plot(x,y,xlim=c(-0.6,0.8),ylim=c(-0.6,0.7)) #根据两个特征向量的分量大小绘制拟合图>text(x,y,labels=s(eg10.4),adj=c(0,-1),cex=0.8) #将拟合点用行名标出由R计算出的B的六个特征值按大小顺序依次为:λ₁=1.1428,λ₂=0.6226,λ₃=0.6023,λ₄=0.5246,λ₅=0.3964λ₆=0.0000因为a1.2=53.68%,a2.2=68.06%,不足80%,可考虑取k=3(这里从略).由前两个特征向量可得8个拟合构造点,分别为:(0.403,0.266),(0.242,0.483),(0.621,-0.508),(-0.458,0.038),(-0.422,-0. 040),(-0.386,-0.239).图10-2大体反映了这六门课程的基本结构,从图中可以直观地看出,算术、代数、几何较为接近,英语和盖尔语较为相近,而历史课程与其他课程的差异较大.图10-2六门课程相似系数矩阵的古典拟合构图10.3非度量多维标度法在实际问题中,涉及更多的可能是不易量化的相似性测度,如两种颜色的相似性,虽然我们可以用较小(大)的数字表示颜色非常(不)相似,但是这里的数字只表示颜色之间的相似或不相似程度,并不表示色彩实际的数值大小,因而这是一种非度量的定序尺度,能够利用的唯一信息就是这种顺序(秩).古典多维标度法基于主成分分析的思想,在低维空间上利用主坐标重新标度距离,这时式中,是距离dij 的拟合值;eij是拟合误差.但有时dij和之间的拟合关系可以表示为:(10.14)式中,f为一个未知的单调递增函数.这时,我们用来构造的唯一信息就是{dij }的秩,将{dij,i<j}从小到大排列为:与(i,j)所对应的dij 在上面的排列中的名次(由小到大)称为(i,j)的秩或dij的秩.我们欲寻找一个拟合构图(或一组拟合构造点),使后者相互之间的距离也有如上的次序,即并记为:这种模型大多出现在相似系数矩阵的场合,因为相似系数强调的是研究对象之间的相似,而不是它们的距离.在处理这种模型的各种方法中,最为流行的是Shepard-Kruskal算法,它的计算步骤如下:(1)已知相似系数矩阵D=(dij)(这里仍用D来记相似系数矩阵),并将其非对角元素从小到大排列为:(2)设是k维拟合构造点,相应的距离阵为,令(10.15)极小是对一切而言的,使上式达到极小的称为对的最小二乘单调回归.如果,在式(10.15)中取,这时是D 的构图.若对X作一正交平移变换yi =Pxi+b,P为正交阵,b为常数向量,则式(10.15)的分子不变.(3)若k固定,且能存在一个,使得则称为k维最佳拟合构图.(4)由于Sk (也称为压力指数,stress)是k的单调下降序列,取k,使Sk适当地小.例如Sk ≤5%最好,5%<Sk≤10%次之,Sk>10%较差.求解可用梯度法进行迭代(参见参考文献[2]).10.4案例分析与R实现案例10.1(数据文件为case10.1)表10-5给出了2010年我国31个省、直辖市、自治区农村居民家庭人均生活消费支出的统计数据.一共选取8个指标:x₁为食品消费;x₂为衣着消费;x₃为居住消费;x₄为家庭设备用品及服务;x₅为交通通信;x₆为文教娱乐用品及服务;x₇为医疗保健;x8为其他商品和服务支出.试用多维标度法对其进行统计分析,并对分析结果的实际意义进行解释.表10-5 2010年我国各地区农村居民家庭人均生活消费支出单位:元地区x₁x₂x₃x₄x₅x₆x₇x8北京2994.66 699.42 1990.21 473.62 1112.44 950.61 840.61 193.21天津2060.83 365.86 888.32 233.02 467.48 462.25 360.47 98.50河北1351.41 250.92 839.66 218.90 464.80 462.25 360.47 78.87山西1372.49 315.78 614.70 173.62 357.74 420.21 328.92 80.40内蒙古1675.04 317.71 751.99 177.91 598.61 374.19 467.97 97.41辽宁1714.15 369.15 745.03 185.23 448.97 500,28 413.83 112.87吉林1523.32 309.75 752.79 171.92 368.64 454.05 462.42 104.47黑龙江1483.95 387.17 793.80 164.63 455.90 560.71 443.16 101.86上海3806.82 554.13 2020.25 528.01 1459.45 997.65 584.51 209.66 江苏2491.51 350.01 1170.88 327.69 785.53 908.10 362.28 146.87浙江3055.59 551.53 2044.32 410.62 1145.99 839.19 709.30 172.34安1632.96 232.20 867.51 231.23 338.99 363.92 264.39 82.10 徽2537.15 310.14 865.50 292.71 638.07 462.17 251.36 141.23 福建江1812.66 174.61 782.72 205.27 331.81 285.23 243.84 75.48 西1804.45 305.56 832.95 324.70 649.21 421.91 383.89 84.51 山东河1371.17 261.52 765.18 254.47 401.44 250.47 287.83 90.14 南湖1763.05 217.61 816.42 262.26 331.35 288.12 295.24 116.73 北湖2087.85 209.85 719.20 243.90 343.82 315.93 293.59 96.23 南2630.05 215.51 986.70 235.01 637.08 326.53 307.43 177.27 广东1675.41 110.46 692.51 192.77 310.30 182.55 228.99 62.30 广西1724.47 117.36 609.77 135.22 312.53 318.04 138.35 90.49 海南1750.01 224.13 548.00 260.71 281.73 239.03 270.31 50.70 重庆1881.18 226.62 625.28 239.48 360.70 218.62 276.06 69.59 四川1319.43 137.49 621.80 135.64 229.66 186.19 178.07 44.21 贵州云1604.50 160.72 638.09 167.66 337.85 206.45 239.94 43.11 南西1325.71 326.65 352.88 181.27 282.43 51.06 71.16 75.77藏1299.22 237.87 837.54 233.37 336.22 397.61 376.20 75.77 陕西1315.25 184.23 551.63 146.93 256.70 238.03 203.13 46.0g 甘肃1442.88 255.19 944.23 193.59 369.60 198.53 307.92 62.55 青海1541.77 302.61 776.44 188.12 444.02 241.08 417.92 101.22 宁夏1394.38 303.66 695.17 137.69 382.14 170.15 314.73 59.94 新疆解:本案例我们采用R软件MASS包中的isoMDS()函数来实现分析计算(当然也可以用前面使用的cmdscale()函数),在R中的操作过程如下:#打开数据文件case10.1.xls,选取A2:I33区域,然后复制>case10.1<-read.table("clipboard",header=T) #将eg10.1.xls数据读入到#Case10.1中>D1=as.matrix(case10.1) #需要将数据转换成矩阵形式>D=dist(D1) #求距离阵>library(MASS) #载入MASS包,这样才能使用isoMDS()函数>fit=isoMDS(D,k=2)>fit$points[,1] [,2]北京-1882.08165 -405.5501799天津-181.18356 83.5568197河北378.06842 -316.9090361山西519.63551 -161.3723531内蒙古140.53475 -118.3236722辽宁239.59269 -57.3466211 吉林311.06135 -196.5769112 黑龙江257.18237 -303.2689490 上海-2574.54791 164.4633867 江苏-864.88942 19.9653109 浙江-1891.26840 -273.7180203 安徽241.99333 -56.7533361 福建-562.74468 426.2460037 江西187.41927 149.4628003 山东-23.94055 -68.0772001 河南480.52386 -165.0996828 湖北186.03261 68.3345125 湖南-11.86522 317.5767900 广东-645.99328 471.6486570 广西377.05811 164.2765177 海南362.23481 229.5403989 重庆360.53994 226.6307228 四川206.07019 261.9414880 贵州708.60794 -0.5224843 云南435.30179 117.9074584 西藏836.32175 163.8641180 陕西475.58204 -309.3702220 甘肃712.09253 -10.0972309 青海372.00020 -192.4072738 宁夏321.09711 -124.8186386 新疆529.56410 -105.2031733 $stress[1] 3.267686>x=fit$points[,1]>y=fit$points[,2]>plot(x,y) #画散点图(见图10-3)>text(x,y,labels=s(case10.1),adj=c(0.5,1.5),cex=0.7) #设置标签位#置大小>abline(h=0,v=0,lty=3) #采用虚线划分四个象限从图10-3可以比较直观地看出在总支出方面,上海、北京、广东、浙江、江苏、天津、福建等沿海地区是我国传统的经济发达地带,又是改革开放的前沿,雄厚的经济实力为农业和农村经济发展奠定了坚实的基础,农村居民的人均消费水平相对较高.北京在享受型消费方面领先于其他省区,说明北京的农民比较重视文化生活,由于他们身处祖国的政治文化中心,因此在文化、教育、医疗等方面有很高的消费和投入.而广东农民更重视物质上的消费,尤其在食物方面,广东人很下工夫,但是他们在文化生活上支出却不高,也不太注重这方面的投入.从总体来看,我国绝大多数地区农村居民家庭的消费水平比较低,消费结构不合理,我国农村居民家庭消费水平在不同地区间存在着明显的差异.图10-3 2010年我国农村居民家庭人均生活消费支出古典拟合构图习题10.1证明当C≥0时,由式(10.12)定义的距离阵D=(d₂)为欧氏距离阵.10.2(数据文件为ex10.2)在R中利用古典多维标度法对表10-6中的六个经济发展指标数据进行分析评价.其中,x₁为农业产值,x₂为林业产值,x₃为牧业产值,x₄为企业人数,x₅为企业总产值,x₆为利润总额.表10-6 2003年广东省各地区农村经济发展状况指标城市x₁x₂x₃x₄x₅x₆广州市97.84 1.28 38.86 141.98 2089.55 121.07深圳市11.20 0.66 12.59 156.52 418.16 50.12珠海市 5.67 0.11 3.60 17.39 360.58 10.58汕头市29.87 0.57 17.26 52.45 673.74 24.07佛山市52.39 0.29 32.14 90.77 1649.81 62.74韶关市47.82 4.47 18.44 27.91 144.51 16.14河源市33.57 3.10 12.84 12.62 51.25 4.73梅州市57.10 2.74 28.02 44.12 226.65 19.75惠州市61.57 4.70 25.20 70.38 568.79 40.39汕尾市29.82 1.70 12.09 30.52 189.00 6.78东莞市20.97 0.14 20.35 134.63 1380.42 74.01中山市16.87 0.21 5.33 91.43 1148.14 52.10江门市57.33 1.79 39.21 85.64 1252.07 32.68阳江市47.72 3.27 21.39 19.52 191.64 11.08湛江市87.20 4.72 34.07 40.60 390.06 20.96茂名市112.00 7.85 81.36 76.47 739.34 40.85肇庆市76.06 16.45 46.77 52.97 569.93 19.40清远市57.35 6.67 28.47 17.95 75.29 6.76潮州市27.05 1.63 14.88 35.22 501.63 20.97揭阳市71.08 2.09 26.43 50.52 891.76 17.79云浮市44.07 4.65 38.97 22.23 188.47 8.7010.3(数据文件为ex10.3)表10-7给出了2011年全国31个省、直辖市、自治区的城镇居民家庭人均消费性支出的8个主要指标数据,根据这些数据,采用多维标度法进行分析评价.表10-7全国31个省、直辖市、自治区城镇居民家庭人均消费性支出数据(2011年)单位:元地区食品x₁衣着x₂居住x₃家庭设备及用交通通信x₅文教娱乐x₆医疗保健x7其他x8品x₄北京6905.512265.881923.711562.553521.23306.821523.32975.37天津6663.311754.981763.441174.622699.532116.011415.39836.82河北3927.261425.991372.25809.85 1526.61203.99955.95 387.40山西3558.041461.91327.78832.74 1487.661419.43851.30 415.44内蒙古4962.42514.091418.61162.872003.541812.071239.36765.13辽宁5254.961854.631385.62929.37 1899.061614.521208.3643.15吉林4252.851769.471468.29839.31 1541.371468.341108.51562.48黑龙江4348.451681.881185.96723.58 1363.621190.871082.96476.89上海8905.952053.812225.681826.223808.413746.381140.821394.86江苏6060.911772.061187.741193.812262.192695.52962.45 647.06浙江7066.222138.991518.061109.423728.232816.121248.9811.51安徽5246.761371.011501.39690.66 1365.011631.28907.58 467.77福建6534.941494.961661.841179.842470.181879.02773.26 667.00江西4675.161272.881114.49914.88 1310.211429.3641.23 389.06山东4827.612008.841510.841013.822203.991538.44938.86 518.27河南4212.761706.941087.08977.52 1573.641373.94919.83 484.76湖北5363.681677.911172.11814.81 1382.21489.67915.72 347.68湖南4943.891499.021292.55940.79 1975.51526.1790.76 434.25广东7471.881404.62005.151370.283630.622647.94948.18 773.17广西5074.491019.341237.91884.85 2000.571502.65779.08 349.48海南5673.65 780.101342.29729.86 1830.81141.81783.34 360.91重庆5847.92056.791205.661079.271718.731474.881050.62540.63四川5571.691483.541226.141020.161757.521369.47735.26 532.52贵州4565.851209.881102.99857.55 1395.281331.43578.33 311.57云南4802.261587.18827.84 570.46 1905.861350.65822.41 381.38西藏5184.181261.29781.12 428.03 1278.0514.44 424.10 527.74陕西5040.471673.241193.81914.26 1502.441857.61100.51500.42甘4182.41470.21139.8660.48 1289.81158.3874.05 413.37肃7 6 5 0 0青海4260.271394.281055.15723.23 1293.45967.90 854.25 406.93宁夏4483.441701.731247.14885.36 1637.611441.18978.12 521.47新疆4537.461715.94888.16 791.43 1377.671122.18912.99 493.56 10.4(数据文件为ex10.4)对表10-8给出的我国12个城市间的航空距离矩阵D,利用R软件中的cmdscale()函数求D的CMDS解,并给出拟合构图X及拟合构造点.表10-8我国12个城市间的航空距离矩阵10.5(数据文件为ex10.5)在R中利用古典多维标度法对表10-9中给出的2006年我国东部和西部地区20省区工资水平数据.请对相关经济发展指标数据进行分析评价.其中x₁为国有单位工资,x₂为城镇集体单位工资,x3为股份合作单位工资,x₄为联营单位工资,x5为有限责任公司工资,x₆为股份有限公司工资,x₇为其他单位工资,x8为港、澳、台商投资单位工资,x9为外商投资单位工资.表10-9我国2006年20个省区工资水平数据单位元地区x₁x₂x₃x₄x₅x₆x₇x8X 9北京41313 17550 14603 20154 30732 54595 28023 52593 64192 河北17057 10255 12947 23894 17580 15835 10362 17282 18014 山西18540 12014 10208 16308 20554 15917 11883 14583 17363 内蒙古19275 12404 11216 12238 17439 18211 12966 14222 19041 辽宁20305 10793 13175 11859 18852 24453 10095 19206 19756 吉林16983 9106 9698 10413 15249 20657 10381 13461 22562 上海40141 22959 20912 30984 31305 43673 42206 26244 42556 江苏28143 15279 16199 17302 20453 25487 15954 18200 23446 浙江41920 22006 19220 32979 19903 26994 21657 19593 20950 江西16227 10000 12118 13939 14710 17365 10388 10982 13731 山东22552 13024 13588 27823 15732 17440 12798 15602 18248 湖北17708 10265 10787 14262 14683 14985 9671 12545 23261 湖南18459 12490 14442 14328 15754 18228 15525 15812 17574 广西18384 12025 11071 13637 16549 17854 13231 12910 22427 重庆21168 13471 14460 16283 15637 21497 13368 17098 25037 四川19884 12624 13522 14962 13251 16606 10693 16909 20749 贵州17248 12590 14796 12306 14227 19361 12482 13436 15359 云南19520 11859 12806 14890 16308 19720 10833 15054 20944 陕西16894 8879 19713 14943 18215 18856 13613 14634 18077 甘肃17836 11411 9832 6439 13998 22076 8407 16877 20139。
高级心理统计学教学大纲

《高级心理统计学》课程教学大纲(32学时)
1. 绪论,多元数据的统计描述(3学时)
1.1 高级心理统计概述
1.2 多元数据应用举例
1.3 多元数据的统计描述
1.4 多元数据可视化
2. 多元随机变量与正态分布(3学时)
2.1 多元随机变量
2.2 多元正态分布
2.3 多元数据的t检验
3. 主成分分析(3学时)
3.1 主成分的数学推导
3.2 主成分应用举例
4. 主成分分析进阶(3学时)
4.1 基于核函数的主成分分析
4.2 独立分量分析
4.3 非负矩阵分解
5. 聚类分析(3学时)
5.1 多元距离度量
5.2 层级聚类法
5.3 k均值聚类法
6. 判别分析(3学时)
6.1 距离判别法
6.2 贝叶斯判别法
6.3 Fisher线性判别
7. 典型相关分析(3学时)
7.1 典型相关分析的数学推导
7.2 典型相关分析应用举例
7.3 典型相关与判别分析
8. 多维标度法与对应分析(3学时)
8.1 多维标度法的数学推导
8.2 多维标度法应用距离
8.3 对应分析
9. 多元方差分析与结构方程(4学时)
9.1 多元变量的相互关系
9.2 多元回归模型
9.3 多元方差分析
9.4 结构方程初步
10. 课程总结与学生作业答辩(4学时)。
多元统计分析模拟考题及答案

、判断题(对)1X (兀公2丄,X p)的协差阵一定是对称的半正定阵(对)2标准化随机向量的协差阵与原变量的相关系数阵相同。
(对)3典型相关分析是识别并量化两组变量间的关系,将两组变量的相关关系的研究转化为一组变量的线性组合与另一组变量的线性组合间的相关关系的研究。
(对)4多维标度法是以空间分布的形式在低维空间中再现研究对象间关系的数据分析方法。
(错)5X (X-X2,,X p) ~ N p( , ),X,S分别是样本均值和样本离S差阵,则X,—分别是,的无偏估计。
n(对)6X (X「X2, ,X p) ~ N p( , ),X作为样本均值的估计,是无偏的、有效的、一致的。
(错)7因子载荷经正交旋转后,各变量的共性方差和各因子的贡献都发生了变化(对)8因子载荷阵A (a j)中的a ij表示第i个变量在第j个公因子上的相对重要性。
(对)9判别分析中,若两个总体的协差阵相等,则Fisher判别与距离判别等价。
(对)10距离判别法要求两总体分布的协差阵相等,Fisher判别法对总体的分布无特定的要求。
二、填空题1、多元统计中常用的统计量有:样本均值向量、样本协差阵、样本离差阵、样本相关系数矩阵.2、设是总体X (X」,X m)的协方差阵,的特征根i(i 1,L ,m)与相应的单位正交化特征向量i (盼无丄,a m),则第一主成分的表达式是y1 Q1X1 812X2 L QmX m 方差为1。
3设是总体X (X1,X2,X3, X4)的协方差阵,的特征根和标准正交特征向量分别为: 1 2.920 U;(0.1485, 0.5735, 0.5577, 0.5814)2 1.024 U2(0.9544, 0.0984,0.2695,0.0824)3 0.049 U3(0.2516,0.7733, 0.5589, 0.1624)0.007U4 ( 0.0612,0.2519,0.5513, 0.7930),则其第二个主成分的表达式是41 1 32 13y 2 0.9544X 1 0.0984X 2 0.2695X 3 0.0824X 4,方差为 1.0244-若X ()~N p ( , ) , ( 1,2, ,n )且相互独立,则样本均值向量 X 服从的分布是N p (,—).n5.设X i : N p ( ,),i1,2,L ,16,X 和A 分别是正态总体的样本均值和样本离差阵,则 T 2 15[4(X)] A 1[4(X)]服从_T 2(15,p)或: F(p,n p)16 p6设X i 10:N a (,),i 1,2丄,10,则 W(X i)(X i)服从 W 3(10,)i 144 37.设随机向量X(X 1 ,X 2,X a ),且协差阵4 9 2 ,则其相关矩阵321612 3R =382 1 1 363 1 1862 18. 设X (X 1 ,X 2): :2(,),,其中(1,2),2,则Cov(X 1 X 2,X 1 X 2)0_9设X,Y 是来自均值向量为,协差阵为 的总体G 的两个样品,则 X ,Y 间的马氏平2 1方距离 d (X,Y) (X Y) (X Y) 10设X,Y 是来自均值向量为 ,协差阵为的总体G 的两个样品,则 X 与总体G 的马氏平方距离d 2(X,G) =(X) 1(X )11设随机向量X (X1,X2,X3)的相关系数矩阵通过因子分析分解为0.934 0 0.1280.934 0.417 0.8350.417 0.894 0.0270 0.894 0.4470.1030.835 0.4471 1 32 132则X i 的共性方差hi 0.9342 =0.872 ,其统计意义是:描述了全部公因子对变量X1的总方差所作的贡献,称为变量X1的共同度,反映了公共因子对变量X1的影响程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分别对 a, b 求偏导并令为零, 得到 { ΣXY b − λ1 ΣXX a = 0 ΣY X a − λ2 ΣY Y b = 0 由此得到 λ1 = λ1 a′ ΣXX a = a′ ΣXY b = λ2
1 因此记 λ = λ1 = λ2 , 将 λb = Σ− Y Y ΣY X a 带入得到
广义特征根问题
A−1 ai , b∗ i = B −1 bi , ai , bi 为 X, Y 的第 i 对典型相关变量的系数.
∗ ∗′ ′ ′ (2) corr(a∗′ i X , b i Y ) = corr (ai X, bi Y ), 即线性变换不改变相
关性. 注: 若在定理中取 A = (diag ΣXX )1/2 , B = (diag ΣY Y )−1/2 , 则 前面关于协方差矩阵的结果都可以应用到相关系数矩阵下.
多维标度法 . . . . . . . . . . . . . . . . . . . 20
Previous Next First Lasห้องสมุดไป่ตู้ Back Forward
1
1.1
典型相关分析
• 典型相关分析 (Canonical correlation analysis, CCA) 研究多 个变量与多个变量之间的相关性 • 工厂对原料的主要质量指标 X = (X1 , . . . , Xp )′ 和产品质量的 主要指标 Y = (Y1 , . . . , Yq )′ 之间的关系很感兴趣 • 婚姻研究中, 小伙子对他所追求姑娘的主要指标 X 和姑娘向往 的主要指标 Y 之间的关系 • 直接使用 Cov (X, Y)(或者相关系数矩阵) 在多元场合无法从整 体上合适解释两者之间相关性 • Hotelling (1935,1936) 最早提出使用它们的线性组合变量 (典 型变量)a′ X 和 b′ Y 之间的相关性来度量 X 和 Y 之间的相关 性. 什么样的 a, b 合适呢? Previous Next First Last Back Forward 1
a,b −1/2 −1/2 1/2 1/2
Previous Next First Last Back Forward
4
′ 此时最大的相关系数为 ρ1 = corr(a′ 1 X, b1 Y).
• 而给定前 k − 1 (k > 1) 个典则方向 (a1 , b1 ), . . . , (ak−1 , bk−1 ) 后, 第k 个典则方向 为 (ak , bk ) = argmax a′ ΣXY a′ ΣXX a=1 b′ ΣY Y b=1 corr (a′ X,a′ i X )=0,i=1,...,k−1 corr (b′ Y,b′ i Y )=0,i=1,...,k−1 b
n 1 ∑ 1 ¯ )(xi − x ¯ )′ = (xi − x AXX n − 1 i=1 n−1 n 1 ∑ 1 ¯ )(yi − y ¯ )′ = (y − y AY Y n − 1 i=1 i n−1 n 1 ∑ 1 ¯ )(yi − y ¯ )′ = (xi − x AXY n − 1 i=1 n−1
s ∑ 1 (p + q + 3)] log (1 − ρ ˆ2 i) 2 i=t+1
χ2 (p−t)(q −t)
一般依次对 t = 0, 1, . . . , s − 1 进行假设检验直至零假设被接 受。相应地,检验也可以对 t = s − 1, s − 2, . . . , 0 直至零假设 被拒绝。 Previous Next First Last Back Forward 11
Regularized CCA • CCA 假定了样本量 n > max{p, q }, 因此当 n ≤ {p, q } 时候就 不能使用 (样本协方差矩阵不可逆) • 另外, 当 X 或者 Y 的分量之间高度相关时候, 样本协方差矩阵 SXX 和/或 SY Y 也倾向于病态 • 因此, 经典的 CCA 的一个标准条件为 n ≥ p + q + 1(Eaton and Perlman 1973) • 一种解决方法就是使用 ΣXX (λ1 ) 和 ΣY Y (λ2 ) 来代替 SXX 和 SY Y : ΣXX (λ1 ) = SXX + λ1 Ip ΣY Y (λ2 ) = SY Y + λ2 Iq
Previous Next First Last Back Forward
9
示第一个地区:
1 y= 0 0 1 0 0 0 1 ··· 0
0 1 0
• 使用 x 和 y 的第一典则相关变量的得分进行可视化, 得到如下 图:
Previous Next First Last Back Forward
• 所有典则方向可以通过广义特征根方程得到. 令 λ2 1 ≥ ··· ≥
′ ′ λ2 s > 0 为 KK 和 K K 的全部非零特征根, 其中 s ≤ min{p, q }.
对应的 KK ′ 的特征向量为 αi , K ′ K 的特征向量为 βi , 则可以 得到 ai = ΣXX αi , bi = ΣY Y βi , i = 1, . . . , s
典型相关分析与多维标度法
张伟平 zwp@ Office: 东区管理科研楼 1006 Phone: 63600565 课件 /~zwp/ 论坛
简介
1.1 典型相关分析 . . . . . . . . . . . . . . . . . . 1.1.1 1.1.2 1.2 1.2.1 1.2.2 1
{
1 2 ΣXY Σ− Y Y ΣY X a − λ ΣXX a = 0 1 2 ΣY X Σ− XX ΣXY b − λ ΣY Y b = 0
Previous Next First Last Back Forward
3
即 a, b 分别为矩阵
1 −1 M1 = Σ− XX ΣXY ΣY Y ΣY X 1 −1 M2 = Σ− Y Y ΣY X ΣXX ΣXY
∥xa∥=1,∥yb∥=1
例: 橄榄油数据 • R 包 classifly 中的数据集 olives 记录了 n = 572 种橄榄油的 p = 9 特征变量值, 其中变量 1 取值 {1, 2, 3}, 表示意大利的三 个地区. 其他变量为 8 种脂肪酸含量测量值. • 我们感兴趣的是三个地区与脂肪酸测量之间的相关性. 因此取 x ∈ R572×8 , by ∈ R572×3 为三个地区的示性变量矩阵, 每行表
的特征根为 λ2 所对应的特征向量. • 若记 K = ΣXX ΣXY ΣY Y , α = ΣXX a, β = ΣY Y b, 则 KK ′ α = λ2 α K ′ Kβ = λ2 β 即 α, β 分别为矩阵 KK ′ 和 K ′ K 的特征根 λ2 所对应的特征 向量. • 因此第一典则方向为 (a1 , b1 ) = arg max a′ ΣXY b s.t. a′ ΣXX a = 1, b′ ΣY Y b = 1
CCA-LDA . . . . . . . . . . . . . . . . 14 PCA-CCA-PLS . . . . . . . . . . . . . 17 度量 MDS . . . . . . . . . . . . . . . . 24 非度量 MDS . . . . . . . . . . . . . . 31
−1/2 −1/2
Previous Next First Last Back Forward
5
⋄ 称 (a1 , b1 ), . . . , (as , bs ) 为典则方向(canonical directions), 而 称
′ Ui = a′ i X, Vi = bi Y
为第 i 对典型相关变量(canonical variates), 其满足 corr(Ui , Vi ) = λi , i = 1, . . . , s corr(Ui , Uj ) = 0, corr(Vi , Vj ) = 0, corr(Ui , Vj ) = 0, i ̸= j ⋄ 从上面可以看出, 第二对典型相关变量应不包含第一对典型相 关变量的信息 (相关系数为零). 以此类推. 第 k 对典型相关变 量应和之前的 k − 1 对典型相关变量不相关.
Previous Next First Last Back Forward
12
• 最优的 λ1 , λ2 使用交叉验证方法来估计: 记 λ = (λ1 , λ2 ), (aλ
(−i)
Previous Next First Last Back Forward
6
定理 1. 设 X ∗ = A′ X + u, Y ∗ = B ′ Y + v, 其中 A : p × p, B : q × q 为可逆方阵, u : p × 1, v : q × 1 为实常数向量, 则
∗ ∗ (1) X ∗ 和 Y ∗ 的典型相关变量为 a∗′ 和 b∗′ iX i Y , 其中 a i =
10
• 此时, 典则相关分析与线性判别分析等价. • 计算出的典则相关系数分别为 ρ ˆ1 = 0.95, ρ ˆ3 = 0.84 和 ρ ˆ3 = 0.00。因此自然地,是否可以检验假设 H0 : ρ3 = 0? • (一般情形) 设 t ≤ s = min{p, q } 为非零典则相关系数的个数, 欲检验假设 H0 : ρt+1 = ρt+2 = · · · = ρs = 0 则可以得到在零假设下 −[n −
ˆ XX , Σ ˆY Y , Σ ˆ XY 代替得到样本典型相关变量(U ˆi , V ˆi ) • 使用估计 Σ 和典则方向 (ˆ ai , ˆ bi ) Previous Next First Last Back Forward 8
• 这等价于使样本相关最大化: 记 x, y 为中心化的 n × p, n × q 样本矩阵, 则 (ˆ a1 , ˆ b1 ) = argmax a′ x′ yb