大学物理经典系列之简谐振动
大物知识点总结振动

大物知识点总结振动振动是物体周围环境引起的周期性的运动。
它是自然界中普遍存在的物理现象,了解振动现象对于理解物质的性质和物理规律具有重要意义。
振动现象广泛存在于自然界和人类生活中,如大地的地震、声波的传播、机械振动、弹性体的振动等等。
本文将介绍大物知识点中与振动相关的内容,并做相应总结。
一、简谐振动简谐振动是指体系对于某个平衡位置附近作微幅振动,其回复力正比于位移的现象。
它是最基本的振动形式,也是在自然界中广泛存在的振动。
简谐振动的重要特征包括振幅、周期、频率、角频率、相位等。
简谐振动的数学描述是通过简谐振动的运动方程来完成的,对于弹簧振子来说,它的运动方程是x = Acos(ωt + φ),其中x为位移,A为振幅,ω为角频率,t为时间,φ为相位。
利用这个方程,我们可以得到简谐振动的各种运动参数,如速度、加速度、动能、势能以及总机械能。
对于简谐振动系统,我们可以利用牛顿第二定律与胡克定律来进行分析。
牛顿第二定律可以得出振动体的加速度与回复力的关系,而胡克定律则是描述了挠性介质的回复力与位移的关系。
利用这两个定律,我们可以得到简谐振动的运动参数和系统的动力学性质。
二、受迫振动和共振在实际中,许多振动都是在外力的驱动下进行的,这种振动被称为受迫振动。
受迫振动是振动中的另一个重要现象,它包括了临界阻尼和过阻尼等多种振动状态。
受迫振动系统的特点是具有固有振动频率以及外力频率,当外力频率与系统的固有振动频率相近时,就会出现共振现象。
共振是指系统受到外力作用后,振幅或能量急剧增大的现象。
共振现象在实际工程中有着重要应用,如建筑结构的抗震设计、桥梁的结构设计等。
三、波的传播波是另一种重要的振动形式,它在自然界和人类生活中都有着广泛的应用。
波的传播包括机械波、电磁波、物质波等多种形式,它的传播速度和传播方式与特定介质的性质密切相关。
波的传播是通过介质中的微小振动来实现的,振动的传递使得能量和信息得以传播。
在波的传播中,我们可以通过波动方程来描述波的传播规律,如弦上的横波传播可以通过波动方程来描述,光波的传播也可以通过麦克斯韦方程来描述。
大学物理学 6.1简谐振动及其表述

o
t
(4)当 2 1 0 时,振动2落后振动1 。 相位可以用来比较不同物理量变化的步调 x A cos(t ) v vm sin(t )
vm cos(t 2)
a am cos(t ) am cos(t )
v0 A sin 0 sin 0
2
物体的振动方程为:x 0.1cos10t m 2
第六章 机械振动
12
初始条件:t 0时,x0 0,v0 1m s 1
v0 1 2 A x0 0 0.1m 10 v0 1 tan 2 x0 10 0
2 2
注意:
(1)解题中O点 的确定原则:物 体保持平衡的位 置。 (2)解得的初 相要结合初始速 度作正确取舍。
金属丝
(刚体绕定轴转动定律)
x 0
2
y
D 0 JZ
D JZ 令
2
结论: 在扭转角不太大时,扭摆的运动是谐振动.
JZ 周期和角频率为: T 2 D
第六章 机械振动
D JZ
10
大学 物理
6-1 简谐振动
例 . 一轻弹簧的下端挂一重物,上端固定在支架上,弹簧 伸长量l=9.8cm。如果给物体一个向下的瞬时冲击力,使它 具有 1m s 1 的向下的速度,它就上下振动起来。试证明物 体是作简谐振动,并写出其振动方程式。 取物体的平衡位置为原点o,
6-1 简谐振动 振幅A: 即振子偏离平衡位置的最大值。 x A cos t
2 x
周期:物体完成一次全振动所用的时间。 频率:单位时间内完成全振动的次数。 一个周期后,振子振动状态完全相同
大学物理(简谐振动篇)ppt课件

波动方程验证性实验设计思路分享
实验目的通过观察Βιβλιοθήκη 测量波动现象,验证波动方程的正确性。
实验原理
利用波动方程描述波的传播规律,通过实验数据验证理论预测。
波动方程验证性实验设计思路分享
实验设计思路
选择合适的波动源和测量仪器,如振动台、激光 干涉仪等。
01
实验步骤
02
搭建实验装置,包括弹簧、振子、测量仪器等。
调整实验参数,如弹簧劲度系数、振子质量等,以获得不同条
03
件下的振动数据。
弹簧振子实验设计思路分享
使用测量仪器记录振动的位移、速度 、加速度等数据。
对实验数据进行处理和分析,提取简 谐振动的基本特征。
单摆实验数据处理技巧指导
实验目的
通过观察和测量单摆的运动,研究简谐振动的基本规律。
波动传播速度
波动在介质中传播的速度称为波动传播速度。对于简谐振动 形成的机械波而言,波动传播速度与介质的性质有关,如弹 性模量、密度等。同时,波动传播速度还与振动的频率有关 ,频率越高则波动传播速度越快。
02
简谐振动的动力学特征
回复力与加速度关系
回复力定义
指向平衡位置的力,大小与位移成正比,方 向始终指向平衡位置。
1 研究非线性振动现象
通过设计和实施非线性振动实验,探索非线性振动的基 本规律和特性,如混沌现象、分岔行为等。
2 探究复杂系统中的振动传播
研究复杂网络中振动传播的动力学行为,揭示网络结构 对振动传播的影响机制。
3 开发新型振动传感器件
结合微纳加工技术和振动理论,设计并制作具有高灵敏 度、高分辨率的振动传感器件,应用于精密测量和工程 领域。
大学物理振动

4.1 简谐振动
一.简谐振动
一物理量随时间的变 化规律遵从余弦函数 关系,则称该物理量 作简谐振动。
表达式 x(t)=Acos( t+)
特点 (1)等幅振动 (2)周期振动 x(t)=x(t+T )
-A 0 A
X
表达式 x(t)=Acos( t+)
二. 描述简谐振动的特征量 1. 振幅 A: 即最大位移:x=±A 2. 角频率 (圆频率)ω (弧度/秒:rad/s) 3. 周期T 和频率 v ∵ ωT=2π ∴ T=2π/ω (s) (完成一次全振动所需的时间) 而 v = 1/T =ω/2π (Hz)
a
d2x d t2
2 Acos(
t
0)
2 Acos(
t
0
)
x、 v 、a
2A
A v
A
x
0
-A
- A
- 2A v > 0
<0
a<0 减速
<0 加速
<0 >0 减速
a
T t
>0 >0 加速
解题方法
由初始条件求解振幅和初位相:
设 t =0 时,振动位移:x = x0
振动速度:v = v0
x Acos( t ) xo Acos
谐振系统的总机械能:
E Ek Ep
1 m 2 A2 sin 2 ( t ) 1 kA2 cos2 ( t )
2
2
E
1 2
kA2
1 2m2 A2来自1 2mvm 2
x Acos t
X
Ep
Ek
E 1 kA2
2
X
结论:
大学物理简谐运动课件

05
简谐运动的应用领域
物理学领域的应用
振动与波动实验
01
简谐运动是振动的基本形式之一,在物理学实验中常被用来研
究振动和波动现象,如共振、干涉和衍射等。
弦的振动
02
弦的振动是一种常见的简谐运动,在研究弦乐器的发声机制、
弦振动方程等方面有重要应用。
电磁波的发射与接收
03
在无线电通信和雷达技术中,信号的发射和接收都涉及到电磁
详细描述
简谐运动的位移公式为x=A*sin(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相角。该公式用于描述简 谐运动物体在任意时刻的位置变化。
简谐运动的速率公式
总结词
描述简谐运动物体速度大小的公式
详细描述
简谐运动的速率公式为v=A*ω*cos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相角。该公 式用于描述简谐运动物体在任意时刻的速度大小。
简谐运动的加速度公式
总结词
描述简谐运动物体加速度大小的公式
详细描述
简谐运动的加速度公式为a=A*ω^2*sin(ωt+φ),其中A为振幅, ω为角频率,t为时间,φ为初相角。 该公式用于描述简谐运动物体在任意 时刻的加速度大小。
简谐运动的能量定理
总结词
描述简谐运动物体能量变化的定理
详细描述
简谐运动的能量定理指出,一个做简谐运动的物体,其振动能量E与振幅A的平方成正 比,即E=1/2*k*A^2,其中k为弹簧的劲度系数。该定理用于描述简谐运动物体能量的
受迫振动与共振
受迫振动的定义
受迫振动是指振动物体受到周期性外力作用下的振动,其振动频率与外力频率相同或相近 。
共振的原理
大学物理 第9章 简谐振动

9.2 简谐振动的规律 9.3 简谐振动的合成
9.1 简谐振动的定义
9.1.1 弹簧振子的振动
9.1.2 简谐振动的定义
9.1.3 单摆的运动规律
9.1.4 LC振荡回路中电容器 上电量的变化规律
振动是与人类生活和科学技术密切相关的一种 基本运动形式。
广义的振动 一物理量在某一定值附近周期性变化的现象称振动。
下面我们重点对合振动的振幅进行讨论
A A1 A2 2 A1 A2 cos( 2 1 )
2 2
t 2 t 1 2 1
讨论:两种特殊情况
(1) 21=2k (k=0,1,2,…) 两分振动同相
A A1 A 2
o
考虑方向 F mg 简谐振动!
mg
0
F ma mg
t 0
l
又 a
l d
2
dv dt
l
d
2
dt
2
T
F
O
dt
2
g
即
d 2 g 0 2 l dt
d (v l ) dt
mg
g l
2 T 2
2
x
A x A y cos t
2 2
(2)相位差 y x ,轨迹方程为
x Ax y Ay 0
x
2 2
y
2 2
2
xy Ax Ay
cos(
Ax
Ay
y
x ) sin (
2
y
大学物理系列之简谐振动

x A cos ( t﹢ ) 0.104 (m)
A
0.19 ( m ·s -1 )
A
1.03 ( m ·s -2 )
简谐振动的
曲线
0.04
完成下述简谐振动方程
0.04
例一
1
2
A = 0.04 (m) T = 2 (s)
= 2 / T = (rad /s )
0.04
SI
2
t=0 时
x0 Acos 0
2Ep
m 2
0.5104 m2
x 0.707cm
描述谐振动的方法:
1. 函数法: x Acos(t )
2. 曲线法: 3. 旋转矢量法:
x Acos(t )
t=t
: 初相位
t+ t = 0
A
x t+ :相位
o
x
x = A cos ( t﹢ )
A
A
11
t
2
t
物体x 正 越Ac过os原(点t ,以最) 大速率运动.
2
v0 A sin 0
二 单摆的振动
模型
在不能延伸的轻线下端悬一小球m,小 球在重力和拉力作用下,在铅直平面内 作往复运动,这样的振动系统称为单摆。
平衡位置---铅直方向 F 0
悬线与铅直方向之间的角度θ作为小球 位置的变量,称为角位移,规定悬线在 铅直线右方时,角位移为正 。
任意位置 F mg sin
物体离开平衡位置 的最大位移的绝对 值称为振动的振幅。
X
-A
A
平衡位置
2 周期和频率
(1) 周期
x xt 图
A
o
Tt
T
完成一次振动需时间-----振动的周期。 A
大学物理简谐运动-振幅-周期和频率-相位讲义省公开课获奖课件市赛课比赛一等奖课件

第五版
3 弹簧振子旳运动分析
F
m
Noo
x
x
Image F kx ma
得 d2 x 2 x
dt 2
令 2 k
m 即 a 2 x
具有加速度 a 与位移旳大小x成正比,而方
向相反特征旳振动称为简谐运动
第九章 振 动
8
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
解方程
d2 x 2 x
第九章 振 动
2
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
提琴弦线旳振动
弓
琴码
•
5 26 3
•
第九章 振 动
3
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
2 简谐振动
简谐运动 最简朴、最基本旳振动
简谐运动
合成 分解
复杂振动
谐振子 作简谐运动旳物体
第九章 振 动
4
物理学
9-1 简谐运动 振幅 周期和频率 相位
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
一 简谐运动
1 机械振动
a 定义:物体或物体旳某一部分在一定位置
附近来回往复旳运动 b 实例:
平衡位置
心脏旳跳动,
钟摆,乐器, 地震等
c 周期和非周期振动
第九章 振 动
1
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
口琴旳发音机理
? ? 1 2 3 4 5 6 7 76 5 4 32 1
A
xt图
Tt
T 2
第九章 振 动
12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大
A
A
简谐振动定义
弹簧振子在弹性恢复力作用下的振动是简谐振动。
(1)运动学定义:物体位移随时间按余弦函数(或 正弦函数)规律变化的运动称为简谐振动。
x = A cos(ωt + φ) (2)动力学定义:物体仅受下式的合力作用的振动 称为简谐振动。
F=-kx (3)简谐振动的运动微分方程
d2x / dt2+ ω2 x = 0
2
x
0
即简谐振动 的微分方程
m
m 该微分方程的通解
a2x xAcots()简 运谐 动振 学动 方的 程
d2x 2x
dt 2
A, 为求解时的积分常量,由初始条件决定。
k m
是由谐振子本身的性质决定的, 称为振动系统的固有角频率。
简谐振动的振动方程 A
A
简谐振动的速度
A
A
简谐振动的加速度
A
A
最大
最大
(1)按振动规律分: 简谐、非简谐、随机振动。 (2)按产生振动原因分: 自由、受迫、自激、参变振动。 (3)按自由度分: 单自由度系统、多自由度系统振动。 (4)按振动位移分: 角振动、线振动。 (5)按系统参数特征分: 线性、非线性振动。
简谐振动 最简单、最基本的振动.
简谐运动
合成 分解
复杂振动
当t = 0时, x0= 6cm, 且向x正方向运动。
求(1) 初位相。
(2)t =0.5s 时, 物体的位置、速度、加速度。
解:(1)由旋转矢量图看
t 0
1? 2 ?
3
3
1 12
0 2 x(cm)
(2)t =0.5s 时
xAcos(2T t)12cos(22 053)
10.4(cm )
v A s in (t)18.9(s1)
2 周期和频率
(1) 周期
x xt图
A
o
Tt
T
完成一次振动需时间-----振动的周期。A
2
x(t)x(tT) A co t ) s A ( co ( t T s ) [ ]
T2
T 2
对弹簧振子: k
m
(2)频率
T 2π m k
对单摆
T 2 2 l
g
每秒内振动的次数称为频率ν,单位:赫兹(HZ)
例三 弹簧振子
m = 5×10 -3 kg k = 2×10 -4 N·m -1
t = 0 时 x0 = 0 v0 = 0.4 m·s -1
完成下述简谐振动方程
k m
0.2 (rad ·s –1)
x0 v0
2 (m)
已知 x0 = 0 v0
相应的旋转矢量图为 v0
2
0.2
(SI)
讨论 ➢ 相位差:表示两个振动状态相位之差 .
由牛顿第二定律
mat mg
d2
ml
mg
dt2
令 2 g l
d2
dt2
2
0
T 2 2
l g
单摆运动学方程: mcots()
以弹簧振子为例
Fkx xAco st() vAsin(t)
E k1 2m v21 2m 2A 2si2(n t)
Ep1 2k2 x1 2k2 A co 2( st)
总机械能
解 (1) amaxA2
a max 20s1
A
T 2π 0.314s
(2) Ek,ma x1 2m vm 2 a x1 2m 2A22.0103J
(3) E Ek,max2.0103J
(4) Ek Ep 时, Ep 1.0103J
由
Ep
1kx21m2x2
22
x2
2Ep
m 2
0.51 04m2
能量
o T T 3T T 42 4
E 1 kA2 2
Ep
1kA2co2st
2
t Ek
1m2A2sin2t
2
例 如图,有一水平弹簧振子,弹簧的倔强系数 k=24N/m,重物的质量m=6kg,重物静止在平衡位置 上。设以一水平恒力F=10N向左作用于物体(不计摩 檫),使之由平衡位置向左运动了0.05m,此时撤去 力F。当重物运动到左方最远位置时开始计时,求物 体的运动方程。
方法二,用旋转矢量法
由已知条件可画出t=0时振幅矢量,同时可画出,时刻 的振幅矢量图如图所示。由图可知,
(1) 3
(2)
tb
2
ta 0
(3)
ta
3
T
2
T 6
/2 /2/3 5
tb
2/T
T 12
[例] 已知振动曲线求初相位及相位。
如图所示的x—t振动曲线,已知
振幅A、周期T、且t=0 时 x ,A 求:
1)对同一简谐运动,相位差可以给出两运动状
态间变化所需的时间. (t2 ) (t1 )
xA co t1s () xA co 来自t2s ()tt2
t1
x
A
ab
tb
A2
t
x
o
A
v
π
A 0 A ta A
2
t π 3T1T
3
2π 6
2)对于两个同频率的简谐运动,相位差表示它 们间步调上的差异.(解决振动合成问题)
t+ t = 0
A
x
o
: 初相位 t+ :相位
x = A cos ( t﹢ )0
A
A
11
t 物x 体 在A 负c o 向s (位t移 极) 大处, 速度为零. 下个时刻要向 x 轴的正方向运动.
: 初相位
t=t
t+
t=0
A
x t+ :相位
o
x = A cos ( t﹢ ) A
A
A
11
大学物理经典系列之简谐振动
任一物理量在某一定值附近往复变化均称为振动.
如:机械振动、电磁振动、分子振动、原子振动……。
机械振动 物体围绕一固定位置往复运动.
如一切发声体、心脏、海浪起伏、地震以及原子的振动等.
机械振动的特点:
(1)有平衡点。 (2)且具有重复性。即具有周期性振动。
机械振动的分类:
a A 2co s(t)103(cm s2)
简谐振动的
曲线
0.04
完成下述简谐振动方程
0.04
例一
1
2
t=0
A = 0.04 (m) T = 2 (s)
= 2 / T = (rad /s )
0.04
SI
2
A
v0
=/2
A 从 t = 0 作反时针旋转时,
矢端的投影从x=0向X轴的负方运动,
即 v0 ,与 已知 X~ t 曲线一致。
一 弹簧振子的振动
弹簧振子
若弹簧本身的质量和摩 擦力忽略不计,即只有 弹性恢复力作用下的质 点的模型称为弹簧振子
平衡位置
物体所受合力为零,物体所在位置称为平衡位置。
l0 k
m
A o
x
A
自然长度 l0 平衡位置(原点)
x0 F0
A
F
o
m
x
A
x
任意位置
a
Fk xmad2 x
k x 令 2 k dt 2
1 T
角频率 2 2
T
周期和频率仅与振动系统 本身的物理性质有关
3 相位
xAcots()
相位 :
是界定振子在时刻 的运动状态的物理量
运动状态要由位置 和速度 同时描述,而 和 的正负取决于
A
A
x xt图
A
o
Tt
T
X A
2
初相 :是
时,振子的相位。( 取 [ π π或][0 2 π)
所谓
,不是指开始振动,而是指开始观测和计时。
: 初相位
t+ t = 0
t=t
o
A
x t+ :相位
x = A cos ( t﹢ )A
A
A
11
循环往复
A旋x 转 一A 周c ,o s 投(影t点 作一)次全振
动,所需时间为谐振周期。
T
2
t
o
: 初相位
t=0
A
x t+ :相位
A
A
11
矢量 画法小结
t = t 旋转矢量的模 A 振幅
讨论: 竖直方向的弹簧振子的运动是否简谐振动?
例二 试证明,若选取受力平衡点作为位置坐标原点,垂直弹簧
振子与水平弹簧振子的动力学方程和振动方程相同。
选取受力平衡点作为位置坐标原点 小球在为置坐标 处所受弹性力
平衡点
小球 在受力平衡点 受弹性力大小
合外力
动力学方程
微分方程
的解:
振动方程 A
均与水平弹簧振子结果相同
x 1 A 1cot s1 )( x 2 A 2co t s2 )(
(t 2 ) (t 1 ) 21
0同步
x
π反相
x
超前
为其它
落后
x
o
o
t
to
t
[例] 已知振动曲线求初相位及相位。
如图所示的x—t振动曲线,已知
振幅A、周期T、且t=0 时 x ,A 求:
(1)该振动的初相位;
2
(2)a、b两点的相位; (3)从t=0到a、b两态所用的时间是多少?
A
0
且
,则 在第四象限,故取 = / 3
将 A = 0.12 m,T = 2 s , = 2 / T = rad ·s -1 ,