大学物理A第九章 简谐振动
大学物理_振动

变化慢 (起调制作用信息)
若 1, 2 均较大,而差值较小,则合振动 的˝振幅˝时而大(为 2A),时而小(为 0)
26
1 2 | 1 2 |
这种两个频率都较大但是相差又很小、同方向 简谐振动合成时,合振动有忽强忽弱的现象, 称为“拍”。 单位时间内振动加强(或减弱)的次数叫拍频。
2 π J 2 π mgb mgb J
思考:若一单摆的振动周期与此相同,单摆的 摆长应是多少? 11
例. 已知:U 形管内液体质量为m,密度为 ,
管的截面积为S 。 开始时,造成管两边液柱面 有一定的高度差,忽略管壁和液体间的摩擦。 试判断液体柱振动的性质。
0 -y
解法1. 分析能量 1 2 y Ep ( gSy ) y ky 2 y S k 2 gS SHM
(1)角(圆)频率 (2)振幅A
k m
2
由系统本身固 有情况决定
x0 2 或 A v0 (3)初相 tan x0 A 、 都可由初始条件和系统本身情况决定。 x “ 与何时开始计时有关!” A
2
v0
2 E0 k
相差与时间差的关系:
0
2 t T
2k π (k 0,1,2)
可得
A na
,
各分振动的初相差为
2k π ( k , 为 不 等 于 nk 的整数) n 可得 A 0 封闭多边形!
例. n4 时 k , (0),1,2,3, (4),5,6,7
k=2
k=1
k=3
24
(2)不同频率
利用付里叶分解,可将任意振动 分解成若干SHM 的叠加。 对周期性振动: T „„周期,
大学物理简谐振动

A2
A
A2 sin 2
2 -1
2
O
1 A1 x2
A1 sin 1
x2 x
x1x1
x2
x
A1 cos1 A2 cos2
合振动振幅:A A12 A22 2A1A2 cos(2 1)
1. 两个分振动的相位相同(同相)
5 (或 3 )
4
4
第六章
机械波
mechanical wave
6.1 机械波的产生、传播和描述 波动: 振动在空间中的传播过程.
机械波: 机械振动在弹性介质中的传播过程. 波动
电磁波: 交变电磁场在空间中的传播过程. 6.1.1 机械波的产生
当弹性介质中的一部分发生振动时,由于介质各个 部分之间的弹性力作用,振动就由近及远地传播出去. (1) 机械波实质上是介质中大量质点参与的集体振动;
20 0.47
(2) 30为何值时, x1+x3 的振幅为最大; 30为何值时, x2+x3的振幅为最小.
x1 0.05cos10t 3 4
x2 0.06cos10t 4
x3 0.07 cos10t 30
30
10
0 时,x1+x3 振幅最大:30
10
3
4
30 20 时,x2+x3 振幅最小:30 20
t 时刻点 P 的振动状态
P点在
t
时刻的位移
y P ,t
yO ,t x
u
A c os [ (t
x) u
0 ]
波函数 (波方程)
y( x, t )
A cos[ (t
大学物理(9.2.2)--单摆复摆简谐运动的能量

大学物理 第九单元 振动
第二讲 单摆和复摆 简谐运动的能量
动能
Ek
1 2
mv 2
1 2
m
2
A2
sin
2
(t
)
( 2
k m
)
1 2
kA2
sin 2 (t
)
Ek
1 2
kA2
sin
2
(t
)
Ek max
1 kA2 2
,
Ek min 0
Ek
1 T
t T t
Ek dt
0
O
l
*C
P
( C 点为质 心)
东北大学 理学院 物理系
大学物理 第九单元 振动
d 2
dt 2
2
0
第二讲 单摆和复摆 简谐运动的能量
m cos(t )
简谐振动
mgl J
T 2π 2π
J mgl
O
l
*C
P
( C 点为质心)
东北大学 理学院 物理系
解( 3 )Esum E k,max 2.0 103 J
( 4 )Ek Ep 时 Ep 1.0 103 J
由 Ep
1 kx2 2
1 2
m 2 x 2
x2
2Ep
m 2
0.5 104 m 2
x 0.707 cm
东北大学 理学院 物理系
大学物理 第九单元 振动
大学物理 第九单元 振动
第 九 单 元 振 动 第二讲 单摆和复摆 简谐运动的能量
大学物理A第九章 简谐振动

第九章 简谐振动一、填空题(每空3分)9-1 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。
(3:1,22A ±)9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。
(0.05m )9-3两个同方向同频率的简谐振动的表达式分别为X 1=6.0×10-2cos(T π2t+4π) (SI) , X 2=4.0×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=2.0×10-2cos(T π2t+4π) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2A处所需要的最短时间为_________。
(12T) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4cos(1πω+=t A x m 、)43cos(32πω+=t A x m ,则合振动的振幅为 。
(2 A)9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2A处所需要的最短时间为_________。
(6T) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。
(0.01m )9-8 质量0.10m kg =的物体,以振幅21.010m -⨯作简谐振动,其最大加速度为24.0m s -⋅,通过平衡位置时的动能为 ;振动周期是 。
(-32.010,10s J π⨯) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。
(3,1:3π)9-10质量为0.1kg 的物体,以振幅21.010m -⨯作谐振动,其最大加速度为14.0m s -⋅,则通过最大位移处的势能为 。
大学物理第九章振动学基础

处2向AX轴负方向运动,而 2
试用旋转矢量法求这两个谐振动的初相差。 以及两个质点第一次通过平衡位置的时刻。
解:设两质点的谐振动方程分别为
x1
A cos (2
T
t
10)
20 A
x2
A cos (2
T
t
20)
10
4
20
0
3
4
A
2
1 10
O
X
质点1第一次经过平衡位置的时刻
t (2 / T )t 4
第九章 振动学基础
第九章 振动学基础
9-0 教学基本要求 9-1 简谐振动的规律 9-2 简谐振动的描述 9-3 简谐振动的合成
教学基本要求
一、理解简谐振动的基本特征, 了解研究谐振子模型的意义. *二、能建立一维简谐振动的微分方程, 能根据给定的初始条 件写出一维简谐振动的运动方程, 并理解其物理意义.
O后,仅因回复力(弹性力) 和惯性而自由往返运动.
F kx ma
F弹
x ox
a
d2x dt 2
F
m
k x m
d2x dt 2
k m
x
0
令 2 k
m
有
d2x dt 2
2
x
0
弹簧振子的振动微分方程(动力学方程)
解微分方程得
(1) 位移时间关系(振动方程)
x A cos(t )
(2)速度时间关系
2. 简谐振动的能量有什么特点?
3. 简谐振动的周期由什么因素决定?如何计算一简谐 振动的周期?
4. 研究谐振子模型的意义何在?
一、简谐振动的定义
1.弹簧振子 一个劲度系数为k的轻质弹簧的一端固定,另一端
大学物理 第9章 简谐振动

9.2 简谐振动的规律 9.3 简谐振动的合成
9.1 简谐振动的定义
9.1.1 弹簧振子的振动
9.1.2 简谐振动的定义
9.1.3 单摆的运动规律
9.1.4 LC振荡回路中电容器 上电量的变化规律
振动是与人类生活和科学技术密切相关的一种 基本运动形式。
广义的振动 一物理量在某一定值附近周期性变化的现象称振动。
下面我们重点对合振动的振幅进行讨论
A A1 A2 2 A1 A2 cos( 2 1 )
2 2
t 2 t 1 2 1
讨论:两种特殊情况
(1) 21=2k (k=0,1,2,…) 两分振动同相
A A1 A 2
o
考虑方向 F mg 简谐振动!
mg
0
F ma mg
t 0
l
又 a
l d
2
dv dt
l
d
2
dt
2
T
F
O
dt
2
g
即
d 2 g 0 2 l dt
d (v l ) dt
mg
g l
2 T 2
2
x
A x A y cos t
2 2
(2)相位差 y x ,轨迹方程为
x Ax y Ay 0
x
2 2
y
2 2
2
xy Ax Ay
cos(
Ax
Ay
y
x ) sin (
2
y
大学物理系列之简谐振动

x A cos ( t﹢ ) 0.104 (m)
A
0.19 ( m ·s -1 )
A
1.03 ( m ·s -2 )
简谐振动的
曲线
0.04
完成下述简谐振动方程
0.04
例一
1
2
A = 0.04 (m) T = 2 (s)
= 2 / T = (rad /s )
0.04
SI
2
t=0 时
x0 Acos 0
2Ep
m 2
0.5104 m2
x 0.707cm
描述谐振动的方法:
1. 函数法: x Acos(t )
2. 曲线法: 3. 旋转矢量法:
x Acos(t )
t=t
: 初相位
t+ t = 0
A
x t+ :相位
o
x
x = A cos ( t﹢ )
A
A
11
t
2
t
物体x 正 越Ac过os原(点t ,以最) 大速率运动.
2
v0 A sin 0
二 单摆的振动
模型
在不能延伸的轻线下端悬一小球m,小 球在重力和拉力作用下,在铅直平面内 作往复运动,这样的振动系统称为单摆。
平衡位置---铅直方向 F 0
悬线与铅直方向之间的角度θ作为小球 位置的变量,称为角位移,规定悬线在 铅直线右方时,角位移为正 。
任意位置 F mg sin
物体离开平衡位置 的最大位移的绝对 值称为振动的振幅。
X
-A
A
平衡位置
2 周期和频率
(1) 周期
x xt 图
A
o
Tt
T
完成一次振动需时间-----振动的周期。 A
大学物理简谐振动知识点及试题带答案

简谐振动一、基本要求1、掌握简谐振动的定义,描述简谐振动的各物理量及其相互关系,会根据定义来判断一各物体的运动是不是简谐振动。
2、掌握简谐振动的旋转矢量表示法。
3、掌握简谐振动的基本特征,能根据一定的初始条件写出简谐振动的运动方程。
4、掌握同方向频率的两个简谐振动的合成,了解相互垂直同频率的简谐振动的合成。
二、主要内容1、简谐振动的表达式(运动方程) cos()x A t ωϕ=+三个特征量:振幅A ,决定与振动的能量;角频率ω,决定于振动系统的固有属性; 初相位ϕ,决定于振动系统初始时刻的状态。
简谐运动可以用旋转矢量来表示。
2、振动的相位:()t ωϕ+两个振动的相差:同相2k ϕπ∆=,反相(21)k ϕπ∆=+3、简谐振动的运动微粉方程:2220d x x dtω+=4、简谐振动的实例弹簧振子:220,2d x k x T dt m π+==单摆小角度振动:220,2d g T dt l θθ+==LC振荡:2210,2d q q T dt LCπ+== 5、简谐振动的能量:222111()222k P dx E E E m kx kA dt =+=+= 6、两个简谐振动的能量(1)同方向同频率的简谐振动的合成合振动是简谐振动,合振动的振幅和初相位由下式决定A =11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+(2)相互垂直的两个同频率的简谐振动的合成合运动的轨迹一般为椭圆,其具体形状决定于两个分振动的相差和振幅。
当2k ϕπ∆=或(21)k π+时,合运动的轨迹为直线,这时质点在做简谐振动。
三、习题与解答1、两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为)cos(1ϕω+=t A x 。
某时刻当第一个质点正在平衡位置向负方向运动时,第二个质点正在最大位移处。
则第二个质点的振动方程为:( B )(A ))2cos(2πϕω++=t A x (B ))2cos(2πϕω-+=t A x(C ))23cos(2πϕω-+=t A x (D ))cos(2πϕω++=t A x 2、一物体做简谐振动,振幅为A ,在起始时刻质点的位移为2A-且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为:( D )3、一质点作简谐振动,振动方程)cos(ϕω+=t A x ,当时间 t =T/4 时,质点的速度为:( C )(A ) ϕωsin A - (B) ϕωsin A (C )ϕωcos A - (D )ϕωcos A4、一质点作谐振动,周期为T ,当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为( A )(A )T /6(B )T /12 (C)T /4 (D )T /85、有两个沿x 轴做简谐运动的质点,其频率、振幅皆相同,当第一个质点自平衡位置向负方向运动时,第二个质点在处(A 为振幅)也向负方向运动,则两者的相位差(12ϕϕ-)为:( C )2Ax -=(A )2π (B )32π (C )6π (D )65π6、质量为10×10-3 kg 的小球与轻弹簧组成的系统,按20.1cos(8)3x t ππ=+(SI)的规律做谐振动,求:(1)振动的周期、振幅、初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)t 2=5 s 与t 1=1 s 两个时刻的位相差. 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==ma F mJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t7、一个沿x 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表出.如果t =0时质点的状态分别是:(1)x 0=-A ;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过x =处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos ϕωϕA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππϕ+==t T A x)232cos(232πππϕ+==t T A x)32cos(33πππϕ+==t T A x)452cos(454πππϕ+==t T A x8、一质量为10×10-3 kg 的物体做谐振动,振幅为24 cm ,周期为4.0 s ,当t =0时位移为+24 cm.求:(1)t =0.5 s 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到x =12 cm 处所需的最短时间; (3)在x =12 cm 处物体的总能量. 解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=ϕA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=ϕ,t t =时 3,0,20πϕ=<+=t v A x 故且 ∴ s 322/3==∆=ππωϕt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E9、有一轻弹簧,下面悬挂质量为1.0 g 的物体时,伸长为4.9 cm.用这个弹簧和一个质量为8.0 g 的小球构成弹簧振子,将小球由平衡位置向下拉开1.0 cm 后,给予向上的初速度v 0=5.0 cm·s -1,求振动周期和振动表达式. 解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又 s 26.12,51082.03===⨯==-ωπωT m k 即 m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωϕ==⨯⨯⨯=-=--即x v ∴ m )455cos(1022π+⨯=-t x10、图为两个谐振动的x -t 曲线,试分别写出其谐振动方程.题10图解:由题10图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题10图(b)∵0=t 时,35,0,2000πϕ=∴>=v A x 01=t 时,35,0,2000πϕ=∴>=v A x又 ππωϕ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+=11、有两个同方向、同频率的简谐振动,其合成振动的振幅为0.20 m ,位相与第一振动的位相差为6π,已知第一振动的振幅为0.173 m ,求第二个振动的振幅以及第一、第二两振动的位相差.解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A ∴ m 1.02=A 设角θ为O AA 1,则θcos 22122212A A A A A -+=即 01.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ 即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π.12、试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1)125cos(3),375cos(3);3x t cm x t cm ππ⎧=+⎪⎪⎨⎪=+⎪⎩(2)125cos(3),345cos(3).3x t cm x t cm ππ⎧=+⎪⎪⎨⎪=+⎪⎩解: (1)∵ ,233712πππϕϕϕ=-=-=∆ ∴合振幅 cm 1021=+=A A A (2)∵ ,334πππϕ=-=∆∴合振幅 0=A13、一质点同时参与两个在同一直线上的简谐振动,振动方程为120.4cos(2),650.3cos(2).6x t m x t m ππ⎧=+⎪⎪⎨⎪=-⎪⎩试分别用旋转矢量法和振动合成法求合振动的振幅和初相,并写出谐振动方程. 解:∵ πππϕ=--=∆)65(6 ∴ m 1.021=-=A A A 合3365cos 3.06cos 4.065sin3.06sin4.0cos cos sin sin tan 22122211=+-⨯=++=ππππϕϕϕϕφA A A A ∴ 6πϕ=其振动方程为m )62cos(1.0π+=t x14、若简谐运动方程为0.10cos(200.25)()x t m ππ=+,求:(1)振幅、频率、角频率、周期和初相;(2)2t s =时的位移、速度和加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 简谐振动填空题(每空3分)质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。
(3:1,2A )9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。
(0.05m )9-3两个同方向同频率的简谐振动的表达式分别为X 1=×10-2cos(T π2t+4π) (SI) , X 2=×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=×10-2cos(T π2t+4π) (SI))9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2A处所需要的最短时间为_________。
(12T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为)4cos(1πω+=t A x m 、)43cos(32πω+=t A x m ,则合振动的振幅为 。
(2 A)9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2A处所需要的最短时间为_________。
(6T) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。
(0.01m )质量0.10m kg =的物体,以振幅21.010m -⨯作简谐振动,其最大加速度为24.0m s-⋅,通过平衡位置时的动能为 ;振动周期是 。
(-32.010,10s J π⨯)9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。
(3π)9-10质量为0.1kg 的物体,以振幅21.010m -⨯作谐振动,其最大加速度为14.0m s -⋅,则通过最大位移处的势能为 。
(3210J -⨯)9-11一质点做谐振动,其振动方程为6cos(4)x t ππ=+(SI ),则其周期为 。
9-12两个同方向同频率的简谐振动的表达式分别为120.4cos(4)()3x t m π=+,20.3cos(4)()3x t m π=-则它们的合振动表达式为 。
(20.1cos(4)()3x t m π=+)9-13一简谐振动周期为 T ,当它沿x 轴负方向运动过程中 ,从2A -处到A - 处 ,这段路程所需的最短时间为 。
(6T )9-14有两个同方向同频率的简谐振动,其表达式分别为)32cos(31ππ+=t x m 、)322cos(42ππ-=t x m ,则合振动的振幅为 。
(1)9-15某质点做简谐振动,周期为 2s ,振幅为 0.06m ,开始计时 (t =0),质点恰好处在A /2 处且向负方向运动,则该质点的振动方程为 。
(⎪⎭⎫⎝⎛+=3cos 06.0ππt x ) 9-16两个谐振动方程为X 1=t(SI),X 2=(t+2π)(SI),则它们的合振幅为________________________.(0.05m)9-17已知质点作简谐运动,其振动曲线如图所示,则其振动初相位为_____________________,振动方程为__________________.。
(,0.1cos 444y t πππ⎛⎫-=- ⎪⎝⎭)9-18质量为 0.4 kg 的质点作谐振动时振动曲线如图所示,其振动方程为 。
( 1.0cos()2x t ππ=+)9-19两个同方向同频率的简谐振动,其合振动的振幅为0.2m ,合振动的位相与第一个简谐振动的位相差为π/6,若第一个简谐振动的振幅为1103-⨯m ,则第二个简谐振动的振幅为m 。
(0.1m )9-20有两个同方向同频率的简谐振动,其表达式分别为)38cos(31π+=t x m 、)328cos(42π-=t x m ,则合振动的振幅为 。
(1m )9-21谐振子从平衡位置运动到最远点所需最少时间为________(用周期表示),从A 到A/2所需最少时m/y s/t 7150-1-0.10.139-x (m)t (s)21间为________ (用周期表示).(4T , 6T ) 9-22两个谐振动方程)m (t cos 03.0x 1ω=,))(2cos(04.02m t x πω+= ,则它们的合振幅为_____________.合振动的初相为____。
(0.05m,o 11.53)34(tg ==ϕ-)9-23一质点做谐振动,其振动方程为:))(43cos(100.62SI t x ππ-⨯=-当x = 时,系统的势能为总能量的一半。
(A x 22±=)二、选择题(每小题3分)9-24 一质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A -,且向x 轴负方向运动,代表此简谐运动的旋转矢量为( D )(A ) (B ) (C ) (D )9-25质点在作简谐振动时,它们的动能和势能随时间t 作周期性变化,质点的振动规律用余弦函数表示,如果ν是质点的振动频率,则其动能的变化频率为( B ) (A )ν; (B )2ν; (C) 4ν; (D) 2ν。
9-26一质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( B )(A ) (B ) (C ) (D )9-27一个质点作振幅为A 、周期为T 的简谐振动,当质点由平衡位置沿x 轴正方向运动到2A 处所需要的最短时间为 ( B )(A)4T ; (B) 12T ; (C) 6T ; (D) 8T 。
9-28 一质点作谐振动,周期为T ,当它由平衡位置向x 负方向运动时,从--2A处到–A 处这段路程需要的时间为( B ) (A)4T (B) 6T (C) 8T (D) 12T个同振动方向、同频率、振幅均为A 的简谐振动合成后振幅仍为A ,则这两个简谐振动的相位差为:( C )(A )60o (B ) 90o (C )120o (D )180o9-30两个同频率同振幅的简谐振动曲线如图所示, 曲线Ⅰ的初相位比曲线Ⅱ的初相位( A )(A) 落后2π; (B) 超前2π;(C) 落后π;(D) 超前4π。
9-31(A)落后2π; (B)超前2π;(C)落后π ;(D)超前4π。
9-32一简谐运动曲线如图所示,则其初相位为( B ) (A )3π (B )3π- (C) 32π (D) 32π-。
振幅为A 的简谐振动系统的势能与动能相等时,质点所处的位置为( C )(A )2A ±; (B )32A ±; (C )22A ±; (D )2A ±。
9-34 一物体作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+=πω41cos t A x ,在4Tt =(T 为周期)时刻,物体的速度为:( A ) (A)ωA 221-; (B) 2221ωA ; (C) ωA 321-; (D) 2321ωA 。
9-35谐振子作振幅为A 的谐振动,当它的动能与势能相等时,其相位和位移分别为:( C ) (A )3π±和32π±、A 21±; (B )6π±和65π±、A 23±; (C )4π±和43π±、A 22±; (D )3π±和32π±、A 2±。
9-36 图中所画的是两个简谐振动的振动曲线,表示,则其合振动的初相位为( D)Ⅱ Ⅰxt (s)Ⅱ)(s t 0x Ⅰ(A)23π;(B)π;(C)2π;(D)0。
9-37 如图为简谐振动的速度—时间关系曲线,其振动初相为 ( A )(A )65π-(B ) 6π- (C ) 6π (D ) 3π9-38两个同频率同振幅的简谐振动曲线如图所示,其合振动的振幅为 ( A )(A ) A (B ) A 3(C ) A 2(D ) 09-39一简谐运动曲线如图所示,则运动周期是( B ) (A )s 62.2 (B)s 40.2(C)s 20.2 (D)s 00.29-40一质点作简谐振动的振动方程为cos(),x A t ωϕ=+当4t T =(T 为周期)时,质点的速度为( C )(A )sin A ωϕ-; (B )sin A ωϕ; (C )cos A ωϕ-; (D )cos A ωϕ。
9-41 两个同频率、同振动方向、振幅均为A 的简谐振动,合成后振幅为2A ,则这两个简谐振动的相位差为( B )(A) 60°; (B) 90°; (C) 120°; (D) 180°。
)(s t A1xA 23--V(m/s))))(s t -3计算题(每题10分)9-42质量为0.10 kg 的物体作振幅为m 100.12-⨯的简谐振动,其最大加速度为4.0m/s 2,求: (1)物体的振动周期;(2)物体通过平衡位置时的动能和总能量; (3)物体在何处其动能与势能相等(4)当物体的位移大小为振幅的一半时,动能和势能各占总能量的多少9-43(本题10分)一质点沿x 轴作简谐振动,振幅为0.12m ,周期为2s ,当0t =时,质点的位置在0.06m 处,且向x 轴正方向运动。
求:(1)质点振动的运动方程;(2)0.5t s =时,质点的位置、速度、加速度;(3)由0.06x m =-处,且向x 负方向运动时算起,再回到平衡位置所需的最短时间。
9-44一个沿X 轴作简谐振动的小球,振幅A=0.04m,速度最大值 V m =0.06m/s.若取速度为正的最大值时t=0.求:(1)振动频率;(2)加速度的最大值;(3)振动表达式.解:1) v m =A ω=ω v m/A == rad/s (2分)24.025.12===ππωνHz (2分)ω2) a m = 2A =×=0.09 m/s 2 (2分)3) t=0 时 v>0, 且小球过平衡位置,由旋转矢量图可得:20πϕ-= (2分) X=(2π) (SI) (2分)9-45质量为0.01kg 的物体沿x 轴作作简谐振动,振幅为10cm 、周期为,当t = 0时,物体位于m 05.00-=x 处,且物体向x 轴负向运动。
求:⑴ 物体的振动方程;⑵ t = 1s 时,物体的位移和所受的力;⑶ 物体从起始位置运动到x =5.0cm 处的最短时间。
【解】)(221-==s T ππω(1分) 初相位32πϕ= (2分) ⑴ 物体的振动方程 m 322cos(10.0)ππ+=t x (2分) ⑵ t = 1s 时,物体的位移m x )3220.1cos(10.0ππ+⨯==m 21066.8-⨯- (1分) φ0AX物体受力223231010(8.6610) 2.1410()4F m x N πω---=-=-⨯⨯⨯-⨯=⨯ (2分)⑶物体从起始位置到达x =5.0cm 处的时间 )(22t s ===ππωπ (2分) 9-46质量为0.01kg 的物体沿x 轴作作简谐振动,振幅为0.08m 、周期为,起始时刻物体在x =0.04m 处,且物体向x 轴负向运动(如图所示)。