工程力学第9章 应力状态与强度理论
强度理论

M max ya 80103 N m 135103 m 122.7 MPa 6 4 Iz 8810 m
第9章 强度理论
9-1 强度理论概述
强度条件: max
[ ]
适用于单向应力状态,σmax为拉(压)杆横截面上 的正应力或梁横截面上的最大弯曲正应力。
max [ ]
适用于纯剪切应力状态,τmax为圆轴扭转时横截 面上的最大切应力或梁在横力弯曲时横截面上的 最大弯曲切应力。
[σ]或[τ]是由拉伸(或压缩)试验或纯剪切试验所
且相应的材料多为塑性材料;为避免在校核强度时
需先求主应力值等的麻烦,可直接利用图示应力状
Ⅱ.产生显著塑性变形而丧失工作能力的塑性屈服。
铸铁拉伸时沿试件的横截面断裂
铸铁圆轴扭转时沿与轴线约成 450的螺旋面断裂。 断裂与最大拉应力或最大拉应变有关,是拉应力 或拉应变过大所致。
低碳钢拉伸至屈服时,会出现与轴线约成450 的滑移线。
低碳钢圆轴扭转时沿纵横方向出现滑移线。
屈服或显著塑性变形是切应力过大所致。
2
2 0
3 2 27.7 MP a 2 2
2
由于梁的材料Q235钢为塑性材料,故用第三或第 四强度理论校核a点的强度。
r3 1 3 150.4 MPa 27.7 MPa 178.1 MPa
r4
1 1 2 2 2 3 2 3 1 2 2
工程力学 (杨庆生 崔芸 龙连春 著) 科学出版社 课后答案 第9章

m ( F ) 0 P 1 Q 0.5 0 Q 2 P
mA ( F ) 0 1.5Q 3.5P 5 FB 0 FB 1.3P mB ( F ) 0 1.5P 3.5Q 5FA 0 FA 1.7 P
课
P 2. 4 4 2. 4 9.6(kN m) 2 8 2 P =2.561(kN ) FN cos 2 2 22 2.42
w.
9.6
A
25
-
2.561
+
FN (kN
25
z
co
)
FQ D2
M
M 图( kN .m )
m
P/2
补充 2: 水塔盛满水时连同基础总重量为 G, 在离地面 H 处, 受一水平风力合力为 P 作用, 圆形基础直径为 d,基础埋深为 h,若基础土壤的许用应力[σ]=300kN/m ,试校核基础的承载
梁上各横截面上轴力弯矩均为常2510253应力分析判危险点如右所示图整个横截面上均有n引起的均布的拉应力my引起后拉前压的弯曲应力mz引起上拉下压的弯曲应力点于d100025pa1010101010206060mpa140mpa四点的应力值
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点, 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园() 课后答案网() 淘答案()
ww
w.
max
(4)强度计算选择槽钢的型号:
1)忽略轴力项的正应力,仅由弯曲项选槽钢的型号:
材料力学第9章 强度理论

由于物体在外力作用下所发生的弹性变形既包括 物体的体积改变,也包括物体的形状改变,所以可推 断,弹性体内所积蓄的变形比能也应该分成两部分: 一部分是形状改变比能(畸变能) ,一部分是体积改 变比能 。 在复杂应力状态下,物体形状的改变及所积蓄的 形状改变比能是和三个主应力的差值有关;而物体体 积的改变及所积蓄的体积改变比能是和三个主应力的 代数和有关。
注意:图示应力状态实际上为弯扭组合加载对 应的应力状态,其相当应力如下:
r 3 2 4 2 [ ] 2 2 [ ] r 4 3
可记住,便于组合变形的强度校核。
例1 对于图示各单元体,试分别按第三强度理论及第四强度理论 求相当应力。
120 MPa 140 MPa
r4
1 2 2 2 [(0 120) ( 120 120) ( 120 0) ] 120MPa 2
140 MPa
(2)单元体(b)
σ1 140MPa
σ 2 110MPa
σ3 0
110 MPa
σr 3 σ1 σ 3 140MPa 1 2 2 2 σr 4 [30 110 ( 140) ] 128MPa 2
1u
1u
E
b
E
1 1 1 2 3 E
1u
1u
E
b
E
1 2 3 b
强度条件为: 1 2 3
b
n
[ ]
实验验证: a) 可解释大理石单压时的纵向裂缝; b) 脆性材料在双向拉伸-压缩应力状态下,且压应 力值超过拉应力值时,该理论与实验结果相符合。
σ1 94 .72MPa σ 3 5 .28MPa
工程力学中四种强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用第一理论的应用和局限1、应用材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。
2、局限没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。
工程力学 9弯曲

O
讨论: 惯性矩大于零
z
§A.3 惯性矩的平行移轴公式
组合截面的惯性矩
1.惯性矩的平行移轴公式 yc y 设有面积为A的任意形状的截面。 x xc dA C为其形心,Cxcyc 为形心坐标 yc xc 系。与该形心坐标轴分别平行 C 的任意坐标系为Oxy ,形心C在 y Oxy坐标系下的坐标为(a , b) 任意微面元dA在两坐标系 x 下的坐标关系为: O b
20
③计算静矩Sz(ω)和SzC(ω)
Sz ( ) A y C (0.1 0.02 0.14 0.02 0.103 0.494m 3 )
S zc ( ) Ai y C 0.1 0.02 0.047 - 0.02 0.14 0.033 1.6 10 6 m 3
(f)
纵向线应变在横截面范围内的变化规律
图c为由相距d x的两横截面取出的梁段在梁弯曲后的情
况,两个原来平行的横截面绕中性轴相对转动了角d。梁的 横截面上距中性轴 z为任意距离 y 处的纵向线应变由图c可知 为
B1B B1 B y d AB1 O1O2 dx
(c)
令中性层的曲率半径为(如图c),则根 1 d 据曲率的定义 有 dx y
切应力。
F
FS
M
F
M
C
C
F
A
Ⅰ. 纯弯曲时梁横截面上的正应力
计算公式的推导 (1) 几何方面━━ 藉以找出与横截面上正应力相对应 的纵向线应变在该横截面范围内的变化规律。 表面变形情况 在竖直平面内发生纯弯曲的梁(图a):
(a)
1. 弯曲前画在梁的侧面上相邻横向线mm和nn间的纵 向直线段aa和bb(图b),在梁弯曲后成为弧线(图a),靠近梁
应力状态分析和强度理论

03
弹性极限
材料在弹性范围内所能承受的最大应力状态,当超过这一极限时,材料会发生弹性变形。
01
屈服点
当物体受到一定的外力作用时,其内部应力状态会发生变化,当达到某一特定应力状态时,材料会发生屈服现象。
02
强度极限
材料所能承受的最大应力状态,当超过这一极限时,材料会发生断裂。
应力状态对材料强度的影响
形状改变比能准则
04
弹塑性材料的强度分析
屈服条件
屈服条件是描述材料在受力过程中开始进入屈服(即非弹性变形)的应力状态,是材料强度分析的重要依据。
根据不同的材料特性,存在多种屈服条件,如Mohr-Coulomb、Drucker-Prager等。
屈服条件通常以等式或不等式的形式表示,用于确定材料在复杂应力状态下的响应。
最大剪切应力准则
总结词
该准则以形状改变比能作为失效判据,当形状改变比能超过某一极限值时发生失效。
详细描述
形状改变比能准则基于材料在受力过程中吸收能量的能力。当材料在受力过程中吸收的能量超过某一极限值时,材料会发生屈服和塑性变形,导致失效。该准则适用于韧性材料的失效分析,尤其适用于复杂应力状态的失效判断。
高分子材料的强度分析
01
高分子材料的强度分析是工程应用中不可或缺的一环,主要涉及到对高分子材料在不同应力状态下的力学性能进行评估。
02
高分子材料的强度分析通常采用实验方法来获取材料的应力-应变曲线,并根据曲线确定材料的屈服极限、抗拉强度等力学性能指标。
03
高分子材料的强度分析还需要考虑温度、湿度等环境因素的影响,因为高分子材料对环境因素比较敏感。
02
强度理论
总结词
该理论认为最大拉应力是导致材料破坏的主要因素。
工程力学四大强度理论的基本内容

工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用(1)、第一理论的应用和局限应用:材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。
局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。
(2)、第二理论的应用和局限应用:脆性材料的二向应力状态且压应力很大的情况。
材料力学第9章应力分析强度理论

F
n
0
F 0
dA ( xydAcos ) sin ( x dAcos ) cos ( yxdAsin ) cos ( y dAsin ) sin 0
dA ( xydAcos ) cos ( x dAcos ) sin ( yxdAsin ) sin ( y dAsin ) cos 0
2
2 xy
xy
min
y
yx
23
⒉主方向
应力圆:D点顺时针转2α0到A1点
单元体:x轴顺时针转α0到主平面法线
证明:
xy 2 xy AD tg 2 0 CA x y x y 2
24
㈣利用应力圆求剪应力极值 应力圆上最高点、最低点的纵坐标值,为剪 应力的极大、极小值。 证明:
2
?
min
tg 2 0
2 xy
max
yx
x
x y
xy
解出两各极值点α0,α0=90+α0 最大、最小应力即为主应力
max x y x y 2 2 ( ) xy min 2 2
y
σmax、σmin为三个主应力中的两个。
11
讨论: ⑴若代数值σx≥σy,则α0、α0中,绝对值较小者是
σx与σmax之间夹角,且小于45。 ⑵若代数值 σx≤σy ,则α0 、α0 中,绝对值较小者是 σx 与 σmin之间夹角,且小于45。
min
max
yx
x
xy
12
y
㈢τmax、τmin(与z轴平行的任意斜截面上的)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27
根据广义胡克定律,有
解 (1)m-m 截面的内力为:
(2)m-m 截面上 K 点的应力为:
28
29
30
9.5 强度理论
9.5.1 强度理论的概念 在第7章中介绍了杆件在基本变形情况下的强度计 算,根据杆件横截面上的最大正应力或最大切应力及相 应的试验结果,建立了如下形式的强度条件:
31
32
33
(2)第二强度理论———最大伸长线应变理论
34
(3)第三强度理论———最大切应力理论
35
(4)第四强度理论———最大形状改变比能理论
36
37
(2)校核正应力强度
(3)校核切应力强度
38
(4)按第三强度理论校核 D 点的强度
39
思考题 9.1 某单元体上的应力情况如图9.18所示,已知 σx=σy。试求该点处垂直于纸面的任意斜截面上的正应力、 切应力及主应力,从而可得出什么结论?
6
9.2.1 方位角与应力分量的正负号约定 取平面单元体位于Oxy平面内,如图9.5(a)所示。 已知x面(外法线平行于x轴的面)上的应力σx及τxy,y 面上的应力σy及τyx。根据切应力互等定理,τxy=τyx。现 在为了确定与z轴平行的任意斜截面上的应力,需要首 先对方位角α以及各应力分量的正负号作如下约定:
10
11
9.2.3 平面应力状态下的主应力 与极值切应力由式(9.1)和式(9.2)可知,当σx, σy和τxy已知时,σα和τα将随α的不同而不同,即随斜截面 方位不同,截面上的应力也不同。因而有可能存在某种 方向面,其上之正应力为极值。设α=α0时,σα取极值。 由
12
13
14
15
16
22
23
24
25
式中,E为弹性模量,μ为泊松比,G为切变模量。E,μ 及 G均为与材料有关的弹性常数。对理想弹性体,3个常数之 间存在如下关系
26
例9.5 图9.13(a)所示边长为15mm 的正方体混凝 土块,很紧密地放在绝对刚性的槽内,刚槽的高、宽均 为150mm,混凝土块的顶面上作用有q=20MPa的均布压 力,已知混凝土的泊松比μ=0.2。当不计混凝土与槽间的 摩擦时,试求混凝土块中沿x,y,z三方向的正应力σx, σy及σz。
4
(1)单向应力状态:三个主应力中只有一个主应 力不为零,如图9.4(a)所示。 (2)二向应力状态:三个主应力中有两个主应力 不为零,如图9.4(b)所示。 (3)三向应力状态:三个主应力均不为零,如图 9.4(c)所示。
5
9.2 平面应力状态分析
在平面应力状态下,当单元体两对应力作用面上的 应力确定时,求任一斜截面上的应力,可采用解析法或 图解法。解析法是用一假想截面将单元体从所考虑的斜 截面处截成两部分,考虑其中任意一部分的平衡,即可 由平衡条件求得该截面上的正应力和切应力。这是分析 单元体斜截面上应力的基本方法。下面以一般平面应力 状态为例,说明这一方法的具体应用。
9.5.2 常用的强度理论 1.材料破坏的主要形式 实践表明,尽管各类材料的破坏现象比较复杂,但 就其破坏形式来说,大体可分为两大类:一类为屈服破 坏,另一类为脆性断裂。 塑性破坏(plastic failure)一般是对塑性材料而言的。 脆性断裂(brittle fracture)一般是对脆性材料而言。 2.常用的强度理论 (1)第一强度理论———最大拉应力理论 该理论认为,材料发生脆性断裂的主要因素是该点 的最大拉应力。
7
8
(1)α 角——从 x轴逆时针转至 α 面外法线 n者为 正,反之为负。 (2)正应力———拉应力为正,压应力为负。 (3)切应力———τxy,τα以使绕微元内任意点产生 顺时针方向转动趋势者为正,反之为负。τyx由切应力互 等定理确定其具体指向。
9
9.2.2 平面应力状态下任意斜截面上的应力 为确定平面应力状态下任意斜截面上的应力,将单 元体从任意方向面处截为两部分。考察其中任一部分, 其受力如图9.5(b)所示。该部分沿α面法向及切向的平 衡方程分别为:
第9章 应力状态与强度理论
前面研究杆件的基本变形下的应力时,主要是研究 横截面上的应力,并根据横截面上的应力以及相应的实 验结果,建立了只有正应力或切应力作用时的强度条件。 但对某些杆件来说,仅研究横截面上的应力是不够的, 有些杆件破坏时并非沿着横截面。例如,铸铁圆杆,其 受压破坏时,将沿与轴线成一定角度的斜截面破坏,这 就必然与斜截面上的应力有关,因此,还需要进一步研 究斜截面上的应力。一般情况下杆件横截面上不同点的 应力是不相同的;过同一点不同方向面上的应力也是不 相同的。因此,当提及应力时,必须指明“哪一个面上, 哪一点,沿什么方向”的应力。
1
9.1 应力状态的概念
应力状态(stressstate)又称为一点处的应力状态, 是指过一点所有不同方向面上应力的集合。 应力状态分析(analysisofstress-state)是用平衡的方 法,分析过一点不同方向面上应力情况及其变化规律, 确定这些应力的极大值和极小值以及它们的作用面。
2
3
19
Hale Waihona Puke 0应用式(9.5)和式(9.7),可以得出Ⅰ,Ⅱ,Ⅲ 组方向面内的极值正应力和极值切应力,通过比较可得 三向应力状态下任一点的最大应力分别为:
21
9.4 广义胡克定律
在第7章中已经介绍,杆件轴向拉伸(压缩)时, 在横截面上产生正应力的同时,沿纵向与横向分别产生 纵向线应变ε与横向线应变ε′。对于理想弹性材料,当正 应力不超过材料的比例极限时,正应力σ与纵向线应变ε 之间存在下列关系
17
18
9.3 空间应力状态下的最大应力
组成工程结构物的构件都是三维体,能按材料力学 方法进行受力分析的,只是一般三维结构的特殊情况。 既然这样,在建立强度条件时,必须按三维问题考虑才 符合实际。因此,在研究了三向应力状态的一种特殊情 况——平面应力状态后,还应将它们返回到三向应力状 态,作进一步的分析,才能符合工程实际。另外,在工 程中还存在许多三向应力状态的问题。例如,处于液体 中一定深度的单元体,在液体压力作用下便处于三向应 力状态;火车轮与轨道接触处,也是处于三向应力状态。