工程力学---应力状态分析
工程力学第21讲 应力状态分析:求斜截面应力

工程力学第21讲应力状态分析:求斜截面应力在工程力学中,应力状态分析是研究物体受到外力作用后内部应力分布的一门学科。
在实际工程中,经常需要求解物体内部某一点的应力值。
在本文中,我们将着重介绍如何求解斜截面上的应力值。
斜截面应力状态的分析是典型的三维问题,但在一些实际应用中,我们只需要在某一平面上求解应力分量。
为了方便分析,我们通常假设物体是等截面的,其剖面可以看成一个平面截形,如下图所示。
假设物体受到一个外作用力F,我们需要分析该力作用在斜截面xy上,求解点P处的应力状态(包括法向应力σn和切应力τxy)。
点P的坐标可以表示为(x,y,z)。
截面上的任一元素dA的面积可以表示为dA=dxdy,其对应的法向为b。
为了求解点P处的应力状态,我们可以采用以下的步骤:### 第一步:求解对x分量的力和对y分量的力为了便于分析,我们可以将作用力F分解成两个分量F_x和F_y,如下图所示。
在这里,我们需要注意F_x和F_y的方向。
如图所示,F_x沿x轴正方向,F_y沿y轴正方向,因为较难确定夹角a和b的正负号,所以F_x和F_y以及后面的应力分量都是以箭头的方向表示。
同时我们还需要注意到式中的F_z。
如下图所示,我们可以建立一个平面一对应着力分解后的F_x,F_y和截面。
然后我们可以求解在x和y方向上的应力分量。
对应的应力分量为:$$\sigma_x=\frac{F_x}{A_x}$$$$\sigma_y=\frac{F_y}{A_y}$$其中,Ax和Ay分别是上图中标注的x和y方向上的面积。
由于F_x和F_y都垂直于z 轴,所以在z方向上不存在应力分量。
### 第三步:求解点P处的应力状态现在我们已经求解了对x分量的力和对y分量的力在x和y方向上的应力分量,接下来我们需要求解点P处的应力状态。
如下图所示,我们需要确定切线方向上的应力σ_t和法线方向上的应力σ_n。
《工程力学》实验应力分析

r 1 2 3 4 2(1 )M
上下表面
M
r 2(1 )
E M
E r 2(1 )
R3 R4
R2 t2
R1
B
R1
R2
A
C
R4
R3
D
21
13.3 测量电桥的接法及其应用
例2 通过应变测量(1)求偏心载荷F;(2) 求e.试确定
布片、接桥方案。截面bh
y
e
y
解:(1)测F
z x
F Fe F 分析:
Me
Me
25
13.4 二向应力状态下主应力方向已知时的应力测定
1
3
B
R1
R2
A
C
R4
R3
D
解: 应力分析
1 3
沿与轴线成450方向为主方向,
故沿主应力方向布片.
采用全桥接法.
r 1 2 3 4 41
1
r
4
26
13.4 二向应力状态下主应力方向已知时的应力测定
1
3
B
R1
R2
A
C
R4
工程力学
第13章 实 验 应 力 分 析
1
第13章 实验应力分析
§13.1 概述 §13.2 电测应力分析的基本原理 §13.3 测量电桥的接法及应用 §13.4 二向应力状态下主应力已知时
的应力测定 §13.5 二向应力状态下主应力未知时
的应力测定
2
13.1 概 述
一. 为什么要进行实验应力分析
例1 已知E, , 测定max, 试确定布片、接桥方案。
M
R1
M
解:第一方案,
R2
工程力学7第七章应力状态和应变状态分析

x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布
• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y
y
y
y
y
n
y
x
a
x
e
d
x
x
x
bz
x
x
x
e
x
x
y
f
yy
x
x
b
c
y
y
y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
工程力学-10应力状态分析和强度计算

边的长度变化,所以广义胡克定律为:
y yx
z
x zy yz xz x
zx xy
z
y
x
1 E
[ x
( y
z)
]
y
1 E
[
y
( x
z) ]
14z
1 E
[
z
( x
y) ]
—— 广义胡克定律
在平面应力状态下,胡克定律变为:
x
1 E
( x
y )
y
y
1 E
( y
x )
z
E
( x
●
90 x y 10
90
——平面应力状态分析
过一点总存在三对相互垂直的主平面,对应三 个主应力
主应力排列规定:按代数值由大到 小。
剪应力为零的面为主平面; 主平面上的正应力为主应力; 全部由主平面构成的单元体 为主单元体。
1 2 3
10
50 单位:MPa
1 50; 30 2 10;
主 讲:谭宁 副教授 办公室:教1楼北305
——概 述
(1)、铸铁与低碳钢的拉、压、扭试验现象是怎样产生的?
P 铸铁拉伸
铸铁压缩
M
P
低碳钢
铸铁
P
P
(2)、组合变形杆将怎样破坏?
2
M
过一点有无数的截面
——概 述
应力
哪一个面上? 哪一点?
指明
哪一点? 哪个方向面?
过一点不同方位截面上应力的集合,称为一点的应力状态(State of the Stresses of a Given Point)。
(1)各个面上的应力均匀分布; (2)相互平行的平面上,应力大小和性质完全相同。 (3) 相邻垂直面上的切应力根据切应力互等定理确定.
工程力学中的应力和应变分析

工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。
应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。
本文将就工程力学中的应力和应变进行详细分析。
一、应力分析应力是指物体单位面积上的内部分子间相互作用力。
根据作用平面的不同,可以分为法向应力和剪切应力两种。
1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。
根据物体受力状态的不同,可以分为拉应力和压应力两种。
- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。
拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。
- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。
压应力的计算公式与拉应力类似。
2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。
剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。
二、应变分析应变是指物体由于外力的作用而产生的形变程度。
根据变形情况,可以分为线性弹性应变和非线性应变。
1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。
线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。
2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。
非线性应变的计算公式较为复杂,需要根据具体情况进行分析。
三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。
1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。
根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。
2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。
工程力学第13章应力状态分析

FS 2 50kN MFl 25kNm
8 ⑵ 求C 点在横截面上的正应力、切应力
M y 2 5 1 0 3 6 0 0 1 0 3/4
CIz 2 0 0 6 0 0 3 1 0 1 2/1 21 .0 4 M P a
C 3 2 F b h S(14 h y 2 2)2 2 3 0 0 5 0 6 0 0 1 0 3 1 0 6(14 6 0 1 0 5 2 0 2 1 0 1 0 6 6)
63.7sin240o( 76.4)cos240o 2
10.7MPa
x 63.7MPa y 0 x76.4MPa
⑶ 求D 点的主应力和主方向及最大切应力
m m a in x x 2y (x 2y)2x 2
63.7 2
(63.7)2(76.4)2 2
114.6M P a
50.9M
Pa
1 1 1 4 . 6 M P a2 03 5 0 . 9 M P a
D63.7MPa D76.4MPa
⑵ 作出D点的应力状态图
x 63.7MPa y 0 x76.4MPa
120o
x 2 y x 2 yc o s2 xsin 2
6 3 .7 6 3 .7 c o s2 4 0 o ( 7 6 .4 ) sin 2 4 0 o 22
50.3M Pa
x 2ysin2xcos2
同理:平行于主应力σ2和σ3方向的任意斜面 II 和 III 上的正 应力和切应力分别与σ2和σ3无关,可分别由应力圆 II 和 III 表
示。
三向应力状态中空间任 意方向面上的正应力和切 应力对应于应力圆I、II、 III所围阴影区域内某一点 的坐标值。
工程力学-应力状态

sy
n
例1 已知 sx= –100MPa、sy =50MPa 、tx = – 60MPa,a = –30º
cos[2 ( 30)] ( 60)sin[2 ( 30)]
114.5MPa
τ 30
上海应用技术学院
τ T WP
此时不适用基本变形下的强度条件,应同时考虑s 、t 的影响。 又如:受内压容器筒壁
上海应用技术学院
sy
A 筒壁某点A处应力: sx 、sy,为双向受拉状态。 又如:火车车轮与铁轨接触处表层
4
sx
s s
A
s
A点应力:为三向受压状态。 此外:在通过A点不同斜截面上的应力是不同的,将影响到构 件的破坏形式。
s
OC CFcos2 α DFsin2 α σx σy σx σy cos2 α τ x sin2 α σ α 2 2
上海应用技术学院
证明: H点横坐标: OM 纵坐标: MH CD与s 轴夹角为2a0
OM σx σy 2 σx σy 2 cos2 α τ x sin2 α σ α
ty
e
cos2 α τ x sin2 α
b
sy
切线方向上: Σ F 0 τ
τ α d A (σ x d A cos α )sin α ( τ x d A cos α )cos α (σ y d A sin α )cos α ( τ y d A sin α )sin α 0
∴ τ α σ x sin α cos α σ y sin α cos α τ x cos2 α τ y sin 2 α
上海应用技术学院
工程力学第2节 二向应力状态分析

例12-1 已知构件内某点处的应力单元体如图所示,
试求斜截面上的正应力 和切应力 。
解:按正负号规定则有:
x 60 MPa x 120 MPa y 80 MPa 300
代入公式得:
x
y
2
x
y
2
cos2
x
sin 2
78.9MPa
低碳钢试件扭转破坏是被剪断的,且其抗剪能力
低于其抗拉能力。
铸铁试件扭转破坏是被拉断的,且其抗拉能力低 于其抗剪能力。
例12-3 图示单元体,x=100MPa,x= –20MPa,
y=30MPa。试求:1) = 40º的斜截面上的 和 ; 2)确定A点处的max、max和它们所在的位置。
x
y
2
sin 2
x
cos2
121MPa
二、主应力和极限切应力
1、主应力和主平面
x
y
2
x
y
2
cos2
x
sin 2
x
y
2
sin 2
x
cos2
将公式 对 求一阶导数、并令其为0:
d d
x
2
y
(2 sin
由切应力互等定理有x=y,并利用三角关系:
sin2 1 cos2 、 cos2 1 cos2 及
2
2
ቤተ መጻሕፍቲ ባይዱ
2sin cos sin 2 对以上二式进行整理得到:
x
y
2
x
y
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s sm ma i n xsx 2sysx 2sytx 22966
MPa MPa
a0arctansmtaxxsy62.5
s126MPas2 0 s396MPa
sH sx 2sy sx 2syco a stx 2 sia n s2 a
sa sx 2sy sx 2syco a stx 2 sia n2
同理可证: tH ta
点、面对应关系
转向相同,转角加倍 互垂截面,对应同一直径两端
例题
例 2-1 计算截面 m-m 上的应力
解:sx10M 0 Ptax60MPsay 50MPaa30
§1 引言 §2 平面应力状态应力分析 §3 极值应力与主应力 §4 复杂应力状态的最大应力 §5 广义胡克定律 §6 复合材料应力应变关系简介
§1 引 言
实例 应力状态概念 平面与空间应力状态
实例
微体A
微体abcd
微体A
应力状态概念
应力状态 过构件内一点所作各微截面的应力状况,称为该点 处的应力状态
主应力-主平面上的正应力
主应力符号与规定- s1s2s3(按代数值)
应力状态分类 单向应力状态:仅一个主应力不为零的应力状态 二向应力状态:两个主应力不为零的应力状态 三向应力状态:三个主应力均不为零的应力状态
二向与三向应力状态,统称复杂应力状态
纯剪切与扭转破坏
纯剪切状态的最大应力
s1
s3
斜截面应力公式
s t aas aa F n 0 , a d A (x d A co )s s i(n x d A co )c s os ( ty d A sa i)n c a o (sy d s A sa i)n s a i0 n
t t aas aa F t 0 , a d A (x d A co )c s o (x d A sco )s s in t aas aa (y d A si)n s i(n y d A si)n c o 0s
2. 由应力圆求 sm与tm
由A点(截面 x )顺时针转60。至D点(截面 y )
sm11M 5 Patm35MPa
§3 极值应力与主应力
平面应力状态的极值应力 主平面与主应力 纯剪切与扭转破坏 例题
平面应力状态的极值应力
极值应力数值
ssm mainxOCCAsx 2sy sx 2sy2tx2
问题:已知sx , tx , sy , 画相应应力圆
根据:
sC
sx
sy
2
R sx 2sy2tx2
满足上述二条件 确为所求应力圆
图解法求斜截面应力
sH O C C cD o a 0s 2 a ()2
s aa aa H O C C cD o 0 cs o C 2 s sD 2 i 0 s n in 2 2
由于tx 与 ty 数值相等,并利用三角函数的变换关系,得
sa sx 2sy sx 2syco a s tx 2 sia n2
tasx 2sysia n2 txcoas2
上述关系建立在静力学基础上,故所得结 论既适用于各向同性与线弹性情况,也适
用于各向异性、非线弹性与非弹性问题
应力圆
应力圆原理
sa sx 2sy sx 2syco a stx 2 sia n2
stm , ax sCt scm , axsDt
tma xtm in t
s1 s3 t, s2 0
主平面微体位于 45 方位
圆轴扭转破坏分析
滑移与剪断
发生在tmax
的作用面
断裂发生在
smax 作用面
例题
例 4-1 用解析法与图解法,确定主应力的大小与方位
解:1. 解析法 sx70MPatx50MPas y 0
tasx 2sysin a 2txcoas2
sa sx 2sy sx 2syco a stx 2 sia n2
应力圆
ta0sx 2sysia nt2xcoas2
圆心位于s 轴
sa sx 2sy 2 ta 0 2 sLeabharlann 2sy 2 tx 2sC
sx
sy
2
R sx 2sy2tx2
应力圆的绘制
sm sx 2sysx 2syco a stxs 2ian 2 11M 4.5 Pa
tmsx 2sysia n2txcoas235M .0Pa
例 2-2 利用应力圆求截面 m-m 上的应力
解:
sm11M 5 Patm35MPa
例 2-2 利用应力圆求截面 m-m 上的应力
解: 1. 画应力圆 A点对应截面 x, B点对应截面 y
ttmmainx CK
sx
sy
2
2
tx2
极值应力方位
• 最大正应力方位: tana20sx2tsx y
taan 0sx ts xminsm tx a s xy
• smax与smin所在截面正交
• s 极值与t 极值所在截
面, 成 45夹角
主平面与主应力
s2
s1 s3
主平面-切应力为零的截面 相邻主平面相互垂直,构成一 正六面形微体 - 主平面微体
平面应力状态 的一般形式
微体各侧面均作用有 应力-空间应力状态
空间应力状态一般形式
§2 平面应力状态应力分析
应力分析的解析法 应力圆 例题
应力分析的解析法
问题
斜截面:// z 轴;方位用 a 表示;应力为 sa , ta
符号规定:
切应力 t - 以企图使微体沿 旋转者为正 方位角 a - 以 x 轴为始边、 者为正 问题:建立 sa , ta 与 sx , tx , sy , ty 间的关系
ssasatt aa ax c2 o y s s2 i n (x y )sc in os t ssaat at a a (x y )sc io n x c s2 o y s s2 in
ssasatt aa ax c2 o y s s2 i n (x y )sc in os t ssaat at a a (x y )sc io n x c s2 o y s s2 in
研究方法 环绕研究点切取微体,因微体边长趋于零,微体趋 于所研究的点,故通常通过微体,研究一点处的应 力与应变状态
研究目的 研究一点处的应力状态以及应力应变间的一般关系, 目的是为构件的应力、变形与强度分析,提供更广 泛的理论基础
平面与空间应力状态
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态