工程力学---应力状态分析
土木工程力学应力状态

研究方法: 三、研究方法:取单元体
单元体:ห้องสมุดไป่ตู้单元体:微小的正六面体 原始单元体: 原始单元体:单元体各侧面上应力均已知
四、主平面 主应力 主方向
主平面:单元体中剪应力等于零的平面 主平面: 主应力: 主应力:主平面上的正应力 主方向:主平面的法线方向 主方向:
五、应力状态的分类
单向应力状态:三个主应力中, 单向应力状态:三个主应力中,只有一个 主应力不等于零的情况 二向应力状态: 二向应力状态:三个主应力中有两个主应 力不等于零的情况 三向应力状态: 三向应力状态:三个主应力皆不等于零的 情况
§2 平面应力状态分析—解析法 平面应力状态分析— 一、斜截面上的应力
已知: 已知:单元体 σx,σy,τxy=τyx, α 研究与z轴平行的任一斜截面 上的应力 轴平行的任一斜截面c 上的应力。 研究与 轴平行的任一斜截面 e上的应力。 符号规则: 符号规则: θ 角:从x轴正方向反时针转至斜截面的 轴正方向反时针转至斜截面的 外法线方向为正,反之为负。 外法线方向为正,反之为负。 正应力:拉为正,压为负。 正应力:拉为正,压为负。 剪应力: 剪应力:使微元体或其局部产生顺时针方 向转动趋势者为正,反之为负。 向转动趋势者为正,反之为负。
σ max ≤ [σ ] τ max ≤ [τ ]
实际问题:杆件的危险点处于更复杂的 实际问题: 受力状态
σ
τ
薄壁圆筒承受内压
δ
σt
σx
破坏现象
脆性材料受压 和受扭破坏
钢筋混凝土梁
二、一点的应力状态
在受力构件内,在通过 在受力构件内, 同一点各个不同方位的 截面上, 截面上,应力的大小和 方向是随截面的方位不 同而按照一定的规律变 化 通过构件内某一点的各 个不同方位的截面上的 应力及其相互关系, 应力及其相互关系,称 为点的应力状态
《工程力学》实验应力分析

r 1 2 3 4 2(1 )M
上下表面
M
r 2(1 )
E M
E r 2(1 )
R3 R4
R2 t2
R1
B
R1
R2
A
C
R4
R3
D
21
13.3 测量电桥的接法及其应用
例2 通过应变测量(1)求偏心载荷F;(2) 求e.试确定
布片、接桥方案。截面bh
y
e
y
解:(1)测F
z x
F Fe F 分析:
Me
Me
25
13.4 二向应力状态下主应力方向已知时的应力测定
1
3
B
R1
R2
A
C
R4
R3
D
解: 应力分析
1 3
沿与轴线成450方向为主方向,
故沿主应力方向布片.
采用全桥接法.
r 1 2 3 4 41
1
r
4
26
13.4 二向应力状态下主应力方向已知时的应力测定
1
3
B
R1
R2
A
C
R4
工程力学
第13章 实 验 应 力 分 析
1
第13章 实验应力分析
§13.1 概述 §13.2 电测应力分析的基本原理 §13.3 测量电桥的接法及应用 §13.4 二向应力状态下主应力已知时
的应力测定 §13.5 二向应力状态下主应力未知时
的应力测定
2
13.1 概 述
一. 为什么要进行实验应力分析
例1 已知E, , 测定max, 试确定布片、接桥方案。
M
R1
M
解:第一方案,
R2
工程力学-材料力学之应力应变状态分析

σ1
μσ2
σ3
0
2
1 E
σ2
σ1
σ3
0
z
y
y
z
x
x
12
(Analysis of stress-state and strain-state)
解得
σ1
σ2
(1 1 2
)
σ
3
铜块的主应力为
0.34(1 0.34) 1 - 0.342
二、各向同性材料的体积应变(The volumetric strain for isotropic materials)
构件每单位体积的体积变化, 称为体积应变用θ表示.
各向同性材料在三向应力状态下的体应变
如图所示的单元体,三个边长为 a1 , a2 , a3 变形后的边长分别为
a1(1+,a2(1+2 ,a3(1+3
对于平面应力状态(In plane stress-state)
(假设 z = 0,xz= 0,yz= 0 )
y
1 εx E (σx μσ y )
εy
1 E
(σ y
μσx )
εz
μ E
(σ
y
σx)
z
xy
xy
G
y
yx xy
x
x
y yx xy x
6
(Analysis of stress-state and strain-state)
(Analysis of stress-state and strain-state)
工程力学7第七章应力状态和应变状态分析

x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布
• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y
y
y
y
y
n
y
x
a
x
e
d
x
x
x
bz
x
x
x
e
x
x
y
f
yy
x
x
b
c
y
y
y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
工程力学中的应力和应变分析

工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。
应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。
本文将就工程力学中的应力和应变进行详细分析。
一、应力分析应力是指物体单位面积上的内部分子间相互作用力。
根据作用平面的不同,可以分为法向应力和剪切应力两种。
1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。
根据物体受力状态的不同,可以分为拉应力和压应力两种。
- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。
拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。
- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。
压应力的计算公式与拉应力类似。
2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。
剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。
二、应变分析应变是指物体由于外力的作用而产生的形变程度。
根据变形情况,可以分为线性弹性应变和非线性应变。
1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。
线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。
2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。
非线性应变的计算公式较为复杂,需要根据具体情况进行分析。
三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。
1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。
根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。
2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。
工程力学中的杆件和梁的应力分析

工程力学中的杆件和梁的应力分析工程力学是工程学科的重要分支之一,它研究物体在受力作用下的力学性质。
在工程实践中,杆件和梁是常见的结构构件,其应力分析是工程设计和计算的基础。
本文将从杆件和梁的应力分析角度探讨工程力学中的相关知识。
一、杆件的应力分析杆件是一种细长的结构构件,承受轴向力的作用。
在杆件的静力学中,应力是一个重要参数,用于描述杆件内部受力的强度和稳定性。
杆件的应力可以分为正应力和切应力。
1. 正应力正应力是指垂直于杆件截面的作用力在该截面上的单位面积,通常用σ表示。
正应力的计算可以使用公式:σ = F / A其中,F为作用力的大小,A为截面积。
正应力可以分为拉应力和压应力两种情况。
当作用力沿着杆件的轴向,方向与截面的法线方向一致时,称为拉应力。
拉应力是正值,表示杆件受拉的状态。
当作用力沿着杆件的轴向,方向与截面的法线方向相反时,称为压应力。
压应力是负值,表示杆件受压的状态。
2. 切应力切应力是指杆件截面上作用力的切向力与该截面上的单位面积之比,通常用τ表示。
切应力的计算可以使用公式:τ = F / A其中,F为作用力的大小,A为截面积。
切应力主要存在于杆件的连接部分,例如螺纹连接、焊接连接等。
切应力会引起杆件的剪切变形和破坏,需要在设计过程中加以考虑。
二、梁的应力分析梁是一种用于承受弯曲力的结构构件,具有横截面的特点。
在梁的应力分析中,主要考虑的是弯矩和截面弯曲应力。
1. 弯矩弯矩是指作用在梁上的力对其产生的弯曲效应。
在工程实践中,梁通常是直线形状,因此弯矩在横截面上呈现出分布的特点。
弯矩可以通过力学平衡和弹性力学原理进行计算。
弯矩的大小与力的大小和作用点的位置有关,计算公式为:M = F * d其中,M为弯矩,F为作用力的大小,d为作用点到梁的某一端的距离。
2. 截面弯曲应力截面弯曲应力是指由于弯曲效应,在梁的横截面上产生的应力。
截面弯曲应力的大小与弯矩和横截面的几何形状有关,计算可以使用弯曲应力公式进行。
工程力学24373

方向面的取向(方向角q)有关。因而有可能存在某种方向面,其上
之切应力xy=0,这种方向面称为主平面(principal plane),其
方向角用qp表示。
tan2qp=
-2τ xy x y
主平面上的正应力称为主应力(principal stress)。主平面法线方
向即主应力作用线方向,称为主方向(principal directions).主方
1. 问题的提出 2. 应力的三个重要概念 3. 一点应力状态的描述
第10章 应力状态分析
1. 问题的提出
请看下列实验现象:
低碳钢和铸铁的拉伸实验 低碳钢和铸铁的扭转实验
第10章 应力状态分析
铸铁拉伸实验
低碳钢拉伸实验
韧性材料拉伸时为什么会出现滑移线?
第10章 应力状态分析
低碳钢扭转实验
铸铁扭转实验
与前几章中所采用的平衡方法不同的是,平衡对象既 不是整体杆或某一段杆,也不是微段杆或其一部分,而是 三个方向尺度均为小量的微元局部。解析公式。
此外,本章中还将采用与平衡解析式相比拟的方法, 作为分析和思考问题的一种手段,快速而有效地处理一些 较为复杂的问题,从而避免死背硬记繁琐的解析公式。
第10章 应力状态分析
qqqq q q y x x s i n c o s y s i n c o s x y s i n 2 y x c o s 2
上述结果表明,一点处的应力状态,在不同的坐标系中有不 同的表达形式,即对于同一点,可以用不同取向的微元表示其应 力状态。这相当于将微元连同其坐标轴旋转了一个角度,或者说
x'y'
x'
xy
x'y'
x'
工程力学第13章应力状态分析

FS 2 50kN MFl 25kNm
8 ⑵ 求C 点在横截面上的正应力、切应力
M y 2 5 1 0 3 6 0 0 1 0 3/4
CIz 2 0 0 6 0 0 3 1 0 1 2/1 21 .0 4 M P a
C 3 2 F b h S(14 h y 2 2)2 2 3 0 0 5 0 6 0 0 1 0 3 1 0 6(14 6 0 1 0 5 2 0 2 1 0 1 0 6 6)
63.7sin240o( 76.4)cos240o 2
10.7MPa
x 63.7MPa y 0 x76.4MPa
⑶ 求D 点的主应力和主方向及最大切应力
m m a in x x 2y (x 2y)2x 2
63.7 2
(63.7)2(76.4)2 2
114.6M P a
50.9M
Pa
1 1 1 4 . 6 M P a2 03 5 0 . 9 M P a
D63.7MPa D76.4MPa
⑵ 作出D点的应力状态图
x 63.7MPa y 0 x76.4MPa
120o
x 2 y x 2 yc o s2 xsin 2
6 3 .7 6 3 .7 c o s2 4 0 o ( 7 6 .4 ) sin 2 4 0 o 22
50.3M Pa
x 2ysin2xcos2
同理:平行于主应力σ2和σ3方向的任意斜面 II 和 III 上的正 应力和切应力分别与σ2和σ3无关,可分别由应力圆 II 和 III 表
示。
三向应力状态中空间任 意方向面上的正应力和切 应力对应于应力圆I、II、 III所围阴影区域内某一点 的坐标值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
τα =
ห้องสมุดไป่ตู้
2
sin2α +τ xcos2α
上述关系建立在静力学基础上, 上述关系建立在静力学基础上,故所得结 论既适用于各向同性与线弹性情况, 论既适用于各向同性与线弹性情况,也适 用于各向异性、 用于各向异性、非线弹性与非弹性问题
单辉祖:工程力学 12
应力圆
应力圆原理
σα = σ x +σ y σ x −σ y
17
例 2-2 利用应力圆求截面 m-m 上的应力
解: :
σ m = −115 MPa
τ m = 35 MPa
18
单辉祖:工程力学
例 2-2 利用应力圆求截面 m-m 上的应力
解: 1. 画应力圆 : A点对应截面 x, B点对应截面 y 点对应截面 点对应截面 τ 2. 由应力圆求 σm 与 m 顺时针转60 由A点(截面 x )顺时针转 。至D点(截面 y ) 点 点
解: σ x = −100 MPa τ x = −60 MPa σ y = 50 MPa α = −30o :
σm =
σ x + σ y σ x −σ y
2 +
τm =
单辉祖:工程力学
σ x −σ y
2
2
cos2α −τ xsin2α = −114.5MPa
sin2α +τ xcos2α = 35.0MPa
(τ ydAsinα)sinα + (σ ydAsinα)cosα = 0
σα = σ xcos2α +σ ysin2α − (τ x +τ y )sinα cosα
τα = (σ x −σ y )sinα cosα +τ xcos2α −τ ysin2α
单辉祖:工程力学 11
σα = σ xcos2α +σ ysin2α − (τ x +τ y )sinα cosα
纯剪切与扭转破坏
纯剪切状态的最大应力
σ1
σ3
σ t,max = σC =τ
σc,max = σ D =τ
τmax =−τmin =τ
σ1 = −σ 3 =τ , σ 2 = 0
主平面微体位于 45o 方位
单辉祖:工程力学 25
圆轴扭转破坏分析
滑移与剪断 发生 在 τ m a x 的 作 用 面
断裂发生在 σmax 作用面
σ45o =50+0+50−0cos90o −30sin90o=−5 MPa
σ135o =55MPa
ε45。计算
单辉祖:工程力学
ε45o = 1 (σ45o −µσ145o ) =−3.31×10−4
E
36
例 5-2 对于各向同性材料,试证明: 对于各向同性材料,试证明:
G= E 2(1+ µ)
证: :
根据几何关系求ε45。 εx + ε y εx −ε y γ xy cos2α − sin2α εα = +
2 2 2 γ xy =τ / G ε x =ε y = 0 γ xy τ ε45o = − = − 2G 2
根据广义胡克定律求 ε45。
σC =
单辉祖:工程力学
σ x +σ y
2
σ x −σ y 2 R= +τ x 2
2
13
应力圆的绘制 问题: 问题:已知σx , τx , σy , 画相应应力圆 根据: 根据: σC =
σ x +σ y
2
σ x −σ y 2 R= +τ x 2
2 2 σ x +σ y σ x −σ y cos2α −τ xsin2 σα = α + 2 2
单辉祖:工程力学
同理可证: 同理可证: τ H =τα
15
点、面对应关系
转向相同, 转向相同,转角加倍 互垂截面, 互垂截面,对应同一直径两端
单辉祖:工程力学
16
例 题
例 2-1 计算截面 m-m 上的应力
单辉祖:工程力学
26
例 题
例 4-1 用解析法与图解法,确定主应力的大小与方位 用解析法与图解法,
解:1. 解析法 σ x =−70 MPa :
τ x =50 MPa
σ y =0
σmax σ x +σ y ± = 2 σmin
单辉祖:工程力学
σ x −σ y 2 26 MPa +τ x = 2 −96 MPa τx =−62.5o α0 =arctan − σ −σ max y σ1 = 26 MPa σ2 = 0 σ 3 = −96 MPa
单辉祖:工程力学
33
广义胡克定律(平面应力状态) 广义胡克定律
σ ε′ = x x
E
ε′ = − y
µσ x
E
ε ′′ = y
σx =
σy
E
ε ′′ = − x
µσ y
E
1 ε x = (σ x − µσ y ) E 1 ε y = (σ y − µσ x ) E τ γ xy = x G
E (ε + µε y ) 2 x 1− µ E σy = (ε + µε x ) 2 y 1− µ τ xy =Gγ xy
2 + cos2 −τ xsin2 α α
τα = σα −
σ x −σ y
2 =
2
sin2 +τ xcos2 α α cos2 −τ xsin2 α α
应力圆
σ x +σ y
2
σ x −σ y
2
τα − 0 =
σ x −σ y
2
sin2 +τ xcos2 α α
2
圆心位于σ 轴
2
σ x +σ y 2 σ x −σ y 2 +τ x σα − + (τα − 0) = 2 2
§1 引 言
实例 应力状态概念 平面与空间应力状态
单辉祖:工程力学
3
实 例
微体A 微体
单辉祖:工程力学
4
微体abcd 微体
单辉祖:工程力学
5
微体A 微体
单辉祖:工程力学
6
应力状态概念
应力状态 过构件内一点所作各微截面的应力状况, 过构件内一点所作各微截面的应力状况,称为该点 处的应力状态 研究方法 环绕研究点切取微体,因微体边长趋于零, 环绕研究点切取微体,因微体边长趋于零,微体趋 于所研究的点,故通常通过微体, 于所研究的点,故通常通过微体,研究一点处的应 力与应变状态 研究目的 研究一点处的应力状态以及应力应变间的一般关系, 研究一点处的应力状态以及应力应变间的一般关系, 目的是为构件的应力、变形与强度分析, 目的是为构件的应力、变形与强度分析,提供更广 泛的理论基础
单辉祖:工程力学
适用范围:各向 适用范围: 同性材料, 同性材料,线弹 性范围内
35
例 题
例 5-1 已知 E = 70 GPa, µ = 0.33, 求 ε45。
解: :
应力分析
σ x =50MPa,
σα =
2 2
2 +
σ y =0, τ x =30MPa
2 cos2α −τ xsin2 α
σ x +σ y σ x −σ y
2
满足上述二条件 确为所求应力圆
单辉祖:工程力学 14
图解法求斜截面应力
σ H = OC + CD cos(2α0 + 2α)
σ H = OC + CDcos2α0cos2α − CDsin2α0sin2α σ x +σ y σ x − σ y cos2α −τ xsin2 = σα σH = α +
2
τmax = ±CK= ± τmin
单辉祖:工程力学
σ x −σ y 2
2
2 +τ x
21
极值应力方位 最大正应力方位: • 最大正应力方位:
2 x τ tan2α0 =− σ x −σ y
τx τx tanα0 =− =− σ x −σmin σmax −σ y
• σmax与σmin所在截面正交 极值与 极值所在截 • σ 极值与τ 极值所在截 面, 成 45o 夹角
单辉祖:工程力学
22
主平面与主应力
σ2 σ1 σ3
主平面-切应力为零的截面 主平面- 相邻主平面相互垂直, 相邻主平面相互垂直,构成一 正六面形微体 - 主平面微体 主应力- 主应力-主平面上的正应力 主应力符号与规定- 按代数值) 主应力符号与规定- σ1 ≥σ2 ≥σ3(按代数值)
σz σ
解: 画三向应力圆 :
σ1 =σC =96.1 MPa σ2 =σ D =3.09 MPa σ3 =σ E =−40 MPa σ −σ σmax =σ1 =96.1 MPa τmax = 1 3 =68.1 MPa
2
单辉祖:工程力学 32
§5 广义胡克定律
广义胡克定律(平面应力) 广义胡克定律(平面应力) 广义胡克定律(三向应力) 广义胡克定律(三向应力) 例题
单辉祖:工程力学 23
应力状态分类 单向应力状态: 单向应力状态:仅一个主应力不为零的应力状态 二向应力状态: 二向应力状态:两个主应力不为零的应力状态 三向应力状态:三个主应力均不为零的应力状态 三向应力状态:
二向与三向应力状态,统称复杂应力状态 二向与三向应力状态,统称复杂应力状态
单辉祖:工程力学 24
单辉祖:工程力学
9
应力分析的解析法
问题
表示; 斜截面: 斜截面:// z 轴;方位用 α 表示;应力为 σα , τα 符号规定: 符号规定: 切应力 τ - 以企图使微体沿 旋转者为正 方位角 轴为始边、 方位角 α - 以 x 轴为始边、 者为正 问题: 问题:建立 σα , τα 与 σx , τx , σy , τy 间的关系