冀教版数学八年级下册期末测试题
冀教版八年级下册数学期末测试卷及含答案

冀教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列判断错误的是()A.对角线相互垂直且相等的平行四边形是正方形B.对角线相互垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互平分的四边形是平行四边形2、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于 ( )A.90°B.135°C.270°D.315°3、在平面直角坐标系中,点(-3,-4)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4、某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①5、一个多边形的内角和是900°,则它是()边形.A.八B.七C.六D.五6、如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB. αC.90°+ αD.360°﹣α7、如图所示为某战役潜伏敌人防御工亭坐标地图的碎片,一号暗堡的坐标为(4,2),四号暗堡的坐标为(-2,4),由原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大概()A. A处B. B处C. C处D. D处8、多边形的边数增加2,这个多边形的内角和增加()A.90°B.180°C.360°D.540°9、若一个多边形从一个顶点出发共有7条对角线,则这个多边形的边数为()A.8B.9C.10D.1110、若多边形的边数增加1,则其内角和的度数()A.增加180ºB.其内角和为360ºC.其内角和不变D.其外角和减少11、在平面直角坐标系中,点P(-3,b)到x轴的距离为4,则P点坐标为( )A.(-3,4)B.(-3,-4)C.(-3,4)或(-3,-4)D.(3,4)或(3,-4)12、若一个多边形的每个外角都是36°,则这个多边形是()A.九边形B.十边形C.十一边形D.以上都有可能13、下列统计活动中,不宜用问卷调查的方式收集数据的是()A.七年级同学家中电脑的数量。
冀教版数学八年级下册期末测试题及答案(共4套)

冀教版数学八年级下册期末测试题(一)(时间:90分钟分值:120分)一、选择题(每小题3分,共24分)1.某人骑车外出,所行路程s(km)与时间t(h)的函数关系如图21-24所示,现有四种说法:第3h时的速度比第1h的速度快;第3h时的速度比第1h中的速度慢;第3h后已停止前进;第3h后保持匀速前进。
其中正确的说法有()。
A.②③B.①③C.①④D.②④2.开发区某消毒液厂家自2003年以来,在库存为m(m>0)的情况下,日销售量与产量持平,自4月抵抗“非典”以来,消毒液需求量猛增,在生产能力不变的情况下,消毒液一度脱销。
图21-25表示2003年初至脱销期间,时间t与库存量y之间函数关系的图象是______。
3.有一游泳池注满水,现按一定的速度将水排尽,然后进行清洗,再按相同的速度注满清水。
使用一段时间后,又按相同的速度将水排尽。
则游泳池的存水量V(m3)随时间t(h)变化的大致图象可以是()。
4.如图21-27,射线l甲、l乙分别表示分别表示甲、乙两名运动员在自行车比赛中所走路程s与时间t的函数关系,则他们行进的速度关系是()。
A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定5.如图21-28向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h与注水时间t之间的函数关系,大致是图21-29图象中的()。
6.下列图形中的曲线不表示y是x的函数的是()(B)7. 甲乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (时)之间的函数关系的图象,如图所示。
根据图中提供的信息,有下列说法: ① 他们都行驶了18千米。
② 甲车停留了0.5小时。
③ 乙比甲晚出发了0.5小时。
④ 相遇后甲的速度小于乙的速度。
⑤ 甲、乙两人同时到达目的地。
其中符合图象描述的说法有( )(A )2个 (B )3个 (C )4个 (D )5个8.如图,四幅图象分别表示变量之间的关系,请按图象..的顺序,将下面的四种情境与之对应排序.① ② ③ ④.a 运动员推出去的铅球(铅球的高度与时间的关系).b 静止的小车从光滑的斜面滑下(小车的速度与时间的关系).c 一个弹簧由不挂重物到所挂重物的质量逐渐增加(弹簧的长度与所挂重物的质量的关系).d 小明从A 地到B 地后,停留一段时间,然后按原速度原路返回(小明离A 地的距离与时间的关系)正确的顺序是( )(A )abcd (B )adbc (C )acbd (D )acdb二、填空题(每小题3分,共24分)9.函数自变量x 的取值范围是______________________。
冀教版八年级下册数学期末试卷(含答案)

冀教版八年级下册数学期末试卷一、选择题(本大题共10个小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)在平面直角坐标系中,第二象限内的一点P到x轴的距离是3,到y轴的距离是2,则点P的坐标为()A.(3,﹣2)B.(﹣3,2)C.(2,﹣3)D.(﹣2,3)2.(2分)下列调查方式,你认为最合适的是()A.要检测一批节能灯的使用寿命,采用全面调查B.要了解滦河的水质,采用抽样调查C.某高铁站对乘车旅客实施安检,采用抽样调查D.要了解全市初中生的睡眠情况,采用全面调查3.(2分)在▱ABCD中,对角线AC、BD交于点O,若AD=5,AC=10,BD=6,△BOC 的周长为()A.13B.16C.18D.214.(2分)为了解全市6300名八年级学生的期中数学成绩,教研室随机从全部考生中抽取了500名学生的数学成绩进行分析,对于此次调查下列说法:①6300名学生是调查的总体;②500名学生的数学成绩是总体的一个样本;③每个学生的数学成绩是个体;④样本容量是500名学生.其中正确的有()A.1个B.2个C.3个D.4个5.(2分)如图所示,在Rt△ABC中,∠A=30°,BC=3,D、E分别是直角边BC、AC 的中点,则DE的长为()A.1.5B.2C.2.5D.36.(2分)据测试,拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小明洗手后没有把水龙头拧紧,水龙头以测试速度滴水,当小明离开x分钟后,水龙头滴水y毫升水,则y与x之间的函数关系式是()A.y=0.05x B.y=5xC.y=100x D.y=0.05x+1007.(2分)如图,矩形ABCD中,对角线AC、BD交于点O,点P为AD边上一点,过点P 分别作AC、BD的垂线,垂足分别为E、F,若AB=6,BC=8,则PE+PF的值为()A.4.8B.6C.8D.不能确定8.(2分)小明在计算某多边形的内角和时,由于马虎漏掉了一个角,结果得到970°,则原多边形是一个()A.七边形B.八边形C.九边形D.十边形9.(2分)某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是()A.8.4小时B.8.6小时C.8.8小时D.9小时10.(2分)如图,△ABO缩小后变为△A'B'O,其中A、B的对应点分别为A'、B',点A、B、A'、B'均在格点上,若线段AB上有点P(m,n),则点P在A'B'上的对应点P'的坐标为()A.(,n)B.(m,n)C.(m,)D.()二、填空题(本大题共10个小题,每小题3分,共30分,)11.(3分)把点A(3,1)向左平移2个单位,再向下平移3个单位后与点B重合,则点B 的坐标是.12.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.13.(3分)函数y=的自变量x的取值范围是.14.(3分)如图所示,直线l1:y=x+b与直线l2:y=kx+4交于点A,则不等式x+b≥kx+4的解集是.15.(3分)如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AH⊥BC于点H,若AC=6,BD=8,则AH=.16.(3分)已知点A(m﹣1,2m+3)在第二象限,则m的取值范围是.17.(3分)已知一次函数y=kx+2k+3的图象交y轴于正半轴,且函数值y随x的增大而减小,则k所能取到的整数值为.18.(3分)已知,在▱ABCD中,∠A的平分线交BC边于点E,若BC边被点E分为4和5两部分,则▱ABCD的周长为.19.(3分)如图,菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A 恰好落在BD上的点F,那么∠BFC的度数是.20.(3分)如图所示,正方形ABCD和正方形CEFG的边长分别为2和3,则图中阴影部分的面积为.三、解答题:(本大题共6个小题,50分,解答过程应写出文字说明,证明过程或演算步骤)21.(6分)已知:▱ABCD中,对角线AC、BD交于点O,EF过点O交AD于点E,交BC 于点F.(1)求证:AE=CF.(2)若▱ABCD的周长是18cm,且OE=1.5cm,请直接写出四边形CDEF的周长是cm.22.(7分)某校开展“阳光体育活动”,开设了以下体育项目:篮球、羽毛球、乒乓球和跳绳要求每名学生必须且只能选择其中的一项,为了解选择各体育项目的学生人数,随机抽取了部分学生进行调查,并对调查获取的数据进行了整理,绘制出两幅不完整的统计图,请根据统计图回答下列问题:(1)在这次调查中,一共调查了名学生;(2)计算选择跳绳的人数并补全条形统计图;(3)在扇形统计图中,乒乓球项目所对应的扇形圆心角的度数是;(4)请根据此统计数据估算该校1800名学生中有多少人选择了球类项目.23.(8分)某水果店以6元/千克的价格购进油桃若干千克,销售了一部分后,余下的油桃每千克降价2元进行销售,直至全部售完.销售金额y(元)与销量x(千克)之间的函数关系如图所示.请根据图象提供的信息解决下列问题:(1)降价前油桃的销售单价是元/千克.(2)求降价后销售总金额y(元)与总销量x(千克)之间的函数关系式,并写出自变量的取值范围;(3)该水果店销售这些油桃总共盈利多少元?24.(9分)已知:如图,四边形ABCD中,M、N、P、Q分别是AD、BC、BD和AC的中点.(1)求证:四边形MPNQ是平行四边形.(2)若满足AB=CD.试判断MN与PQ的位置关系(不用说明理由).25.(10分)已知:如图所示,在平面直角坐标系中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,4),与y轴交于点M.(1)求直线l1的表达式.(2)求△BOM的面积.(3)点P(n,0)是x轴上一个动点,过点P垂直于x轴的直线分别与直线l1和l2交于C、D两点,当点C位于点D上方时,直接写出n的取值范围.26.(10分)已知:如图1所示,O是△ABC中AC边上一点,过点O的直线MN∥BA,D 是BA延长线上一点,∠BAC和∠DAC的角平分线分别交MN于点E、F.(1)请直接写出线段OA和EF的数量关系.(2)如图2所示,连接CE、CF,若点O是AC中点,试判断四边形AECF的形状并写出详细推理过程.(3)在(2)的条件下,在△ABC中添加什么条件能使四边形AECF是正方形.(直接写出结果即可)参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵第二象限的点P到x轴的距离是3,到y轴的距离是2,∴点P的横坐标是﹣2,纵坐标是3,∴点P的坐标为(﹣2,3).故选:D.2.【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【解答】解:A.要检测一批节能灯的使用寿命,适合采用抽样调查,故本选项不合题意;B.要了解滦河的水质,适合采用抽样调查,故本选项符合题;C.某高铁站对乘车旅客实施安检,适合采用全面调查方式,故本选项不合题意;D.要了解全市初中生的睡眠情况,适合采用抽样调查,故本选项不合题意.故选:B.3.【分析】利用平行四边形的性质对角线互相平分,进而得出BO,CO的长,即可得出△BOC的周长.【解答】解:∵▱ABCD的两条对角线交于点0,AC=10,BD=6,AD=5,∴BO=DO=3,AO=CO=5,BC=AD=5∴△BOC的周长为:BO+CO+BC=3+5+3=13.故选:A.4.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:①6300名学生的数学成绩是调查的总体;故命题错误;②500名学生的数学成绩是总体的一个样本;故命题正确;③每个学生的数学成绩是个体;故命题正确;④样本容量是500.故命题错误;故选:B.5.【分析】根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【解答】解:在Rt△ABC中,∠A=30°,∴AB=2BC=6,∵D,E分别是直角边BC,AC的中点,∴DE=AB=3,故选:D.6.【分析】每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x 分钟可滴100×0.05x毫升,据此即可求解.【解答】解:根据题意可得:y=100×0.05x,即y=5x.故选:B.7.【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S△DOP求得答案.【解答】解:连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC==10,∴S△AOD=S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=OA(PE+PF)=×5×(PE+PF)=12,∴PE+PF==4.8.故选:A.8.【分析】根据n边形的内角和公式,则内角和应是180°的倍数,且每一个内角应大于0°而小于180度,根据这些条件进行分析求解即可.【解答】解:∵970°÷180°=5…70°,则边数是:5+1+2=8,故选:B.9.【分析】通过分析题意和图象可求调进物资的速度,调出物资的速度;从而可计算最后调出物资20吨所花的时间.【解答】解:调进物资的速度是60÷4=15吨/时,当在第4小时时,库存物资应该有60吨,在第8小时时库存20吨,从4小时到8小时,物资既调进也调出,共调进15×4=60吨,实际这4个小时调出的物资是原来的60吨+调进的60吨减去仓库剩余的20吨,所以调出速度是=25(吨/时),所以剩余的20吨完全调出需要20÷25=0.8(小时).故这批物资从开始调进到全部调出需要的时间是8+0.8=8.8(小时).故选:C.10.【分析】根据A,B两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.【解答】解:∵△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上,即A点坐标为:(4,6),B点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为:().故选:D.二、填空题(本大题共10个小题,每小题3分,共30分,)11.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:点P(3,1)向下平移3个单位,向左平移2个单位,得到点P'的坐标是(3﹣2,1﹣3),即(1,﹣2),故答案为:(1,﹣2).12.【分析】根据频率=频数÷总数,以及第五组的频率是0.2,可以求得第五组的频数;再根据各组的频数和等于1,求得第六组的频数,从而求得其频率.【解答】解:根据第五组的频率是0.2,其频数是40×0.2=8;则第六组的频数是40﹣(10+5+7+6+8)=4.故第六组的频率是,即0.1.13.【分析】根据二次根式的被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得:x﹣2>0,解得x>2∴自变量x的取值范围是x>2.故答案为:x>2.14.【分析】写出直线l1在直线l2上方所对应的自变量的范围即可.【解答】解:∵直线l1:y=x+b与直线l2:y=kx+4交于点A(2,2),当x≥2时,直线l1在直线l2的上方,∴不等式x+b≥kx+4的解集是x≥2.故答案为x≥2.15.【分析】由菱形面积=对角线积的一半可求面积,由勾股定理求出BC,然后由菱形的面积即可得出结果.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∴BC=,∵菱形ABCD的面积=,∴AH=,故答案为:.16.【分析】根据第二象限内点的坐标的符号特点列出关于m的不等式组,解之即可得出答案.【解答】解:∵点A(m﹣1,2m+3)在第二象限,∴,解不等式①,得:m<1,解不等式②,得:m>﹣1.5,则不等式组的解集为﹣1.5<m<1,故答案为:﹣1.5<m<1.17.【分析】由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:由题意得:,解得:﹣<k<0.∵k为整数,∴k=﹣1,故答案为﹣1.18.【分析】根据AE平分∠BAD及AD∥BC可得出AB=BE,BC=BE+EC,从而根据AB、AD的长可求出平行四边形的周长.【解答】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=4,EC=5时,平行四边形ABCD的周长为:2(AB+AD)=2×(4+4+5)=26.②当BE=5,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2×(5+5+4)=28.故答案为:26或28.19.【分析】根据菱形的性质可得AB=BC,∠A+∠ABC=180°,BD平分∠ABC,然后再计算出∠FBC=30°,再证明FB=BC,再利用等边对等角可得∠BFC=∠BCF,利用三角形内角和可得答案.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∠A+∠ABC=180°,BD平分∠ABC,∵∠A=120°,∴∠ABC=60°,∴∠FBC=30°,根据折叠可得AB=BF,∴FB=BC,∴∠BFC=∠BCF=(180°﹣30°)÷2=75°,故答案为:75°.20.【分析】用两个正方形面积减去三个空白三角形面积即可求得.【解答】解:由题意知,阴影面积S=22+32﹣×(2+3)×3﹣×(3﹣2)×3﹣×22=×22=2,故答案为:2.三、解答题:(本大题共6个小题,50分,解答过程应写出文字说明,证明过程或演算步骤)21.【分析】(1)利用平行线的性质结合全等三角形的判定与性质得出即可.(2)根据全等三角形的性质和平行四边形的性质解答即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEO=∠CFO,在△AEO和△CFO中,∴△AEO≌△CFO(ASA),∴AE=CF;(2)∵AE=CF,∴CF+ED=AE+ED=AD,∵▱ABCD的周长是18cm,∴AD+DC=9(cm),∴四边形CDEF的周长=DE+CF+DC+EF=AD+DC+EF=9+1.5+1.5=12(cm).故答案为:12.22.【分析】(1)根据选择篮球的人数和所占的百分比,可以计算出本次调查的学生人数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出选项跳绳的人数,然后即可将条形统计图补充完整;(3)根据(1)中的结果和条形统计图中的数据,可以计算出在扇形统计图中,乒乓球项目所对应的扇形圆心角的度数;(4)根据条形统计图中的数据,可以计算出该校1800名学生中有多少人选择了球类项目.【解答】解:(1)在这次调查中,一共调查了16÷32%=50名学生,故答案为:50;(2)选择跳绳的学生有:50﹣16﹣12﹣10=12(人),补全的条形统计图如右图所示;(3)在扇形统计图中,乒乓球项目所对应的扇形圆心角的度数是360°×=72°,故答案为:72°;(4)1800×=1368(人),答:估算该校1800名学生中有1368人选择了球类项目.23.【分析】(1)由函数图象可知:销售50千克所得销售收入为550元,由此可得降价前油桃的销售单价;(2)根据“余下的油桃每千克降价2元进行销售”求出降价后的销售单价,再利用减价后的收入为(730﹣550)元,可求减价后销售的油桃数,再利用待定系数法可求函数关系式;(3)根据盈利=销售收入﹣成本可得.【解答】解:(1)由图象可知,降价前油桃的销售单价是550÷50=11(元/千克),故答案为:11;(2)降价后销售的油桃数是:(730﹣550)÷(11﹣2)=20(千克),∴销售的油桃总数为50+20=70(千克),设降价后销售金额y(元)与销售量x(千克)之间的函数解析式是y=kx+b(k≠0),把(50,550),(70,730)代入得:,解得,∴y=9x+100(50<x≤70);(3)730﹣6×70=310(元).答:该水果店销售这些油桃总共盈利310元.24.【分析】(1)根据三角形中位线定理得到PM=AB,PM∥AB,NQ=AB,NQ∥AB,根据平行四边形的判定定理证明四边形PMQN是平行四边形,根据平行四边形的性质定理证明结论;(2)根据菱形的判定定理和性质定理解答即可.【解答】(1)证明:∵P、M分别是BD,AD的中点,∴PM=AB,PM∥AB,同理NQ=AB,NQ∥AB,∴PM∥NQ,PM=NQ,∴四边形PMQN是平行四边形;(2)PQ⊥MN,理由如下:由(1)知,PM=AB,PN=CD,当AB=CD时,PM=PN,∴平行四边形PMQN是菱形,∴PQ⊥MN.25.【分析】(1)先求出点B坐标,再利用待定系数法即可解决问题.(2)把x=0代入解析式,求出M坐标,利用三角形面积公式解答即可;(3)由图象可知直线l1在直线l2上方即可,由此即可写出n的范围.【解答】解:(1)∵点B(m,4)直线l2:y=2x上,∴4=2m,∴m=2,∴点B(2,4),设直线l1的表达式为y=kx+b,将A(﹣6,0),B(2,4)代入得:,解得,∴直线l1的表达式为y=x+3;(2)将x=0代入y=x+3,得:y=3,∴M(0,3),∴OM=3,∴△BOM的面积=OM•|x B|=×3×2=3;(3)当点C位于点D上方时,即是直线l1在直线l2上方,如图:由图象可知n<2.26.【分析】(1)根据MN∥BA,得∠OEA=∠BAE,由AE平分∠BAC,得∠BAE=∠CAE,从而∠OEA=∠CAE,则有OE=OA,同理可证:OF=OA,即可得出EF=2OA;(2)先通过对角线互相平分得出:四边形AECF是平行四边形,再证AC=EF即可;(3)添加∠BAC=90°,可得∠EAC=45°,从而CE=AE,得出结论.【解答】解:(1)∵MN∥BA,∴∠OEA=∠BAE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠OEA=∠CAE,∴OE=OA,同理可证:OF=OA,∴EF=2OA;故答案为:EF=2OA;(2)四边形AECF是矩形,∵点O是AC中点,∴OC=OA,AC=2OA,由(1)知:OE=OF,∴四边形AECF是平行四边形,∵EF=2OA,∴EF=AC,∴▱AECF是矩形;(3)添加∠BAC=90°,能使四边形AECF是正方形,∵AE平分∠BAC,∠BAC=90°,∴∠EAC=45°,∴CE=AE,∴矩形AECF是正方形,故添加:∠BAC=90°.。
冀教版八年级下册数学期末测试卷及含答案(典型题)

冀教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、内角为108°的正多边形是()A.3B.4C.5D.62、如果多边形的内角和是外角和的k倍,那么这个多边形的边数是().A.kB.2k+1C.2k+2D.2k-23、如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则么的度数为()A.120°B.180°C.240°D.300°4、六边形一共有对角线()A.7条B.8条C.9条D.10条5、根据下列表述,能确定位置的是( )A.光明剧院 2 排B.某市人民路C.北偏东 40°D.东经112°,北纬 36°6、一个多边形恰有三个内角是钝角,那么这个多边形的边数最多为()A.5B.6C.7D.87、下列说法中,正确有()①估计的值在7和8之间;②六边形的内角和是外角和的2倍;③2的相反数是﹣2;④若a>b,则a﹣b>0.它的逆命题是真命题;⑤一个角是126°43',则它的补角是53°17';A.1个B.2个C.3个D.4个8、如图所示,∠1+∠2+∠3+∠4+∠5+∠6=_____()A.180°B.360°C.540°D.不能确定9、如图所示,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点()A.(1,3)B.(-2,0)C.(-1,2)D.(-2,2)10、如图所示,若干个全等的正五边形排成环状,要完成这一圆环共需要正五边形的个数为()A.10B.9C.8D.711、一个多边形的内角和与它的外角和相等,这个多边形的边数是()A.3B.4C.5D.612、一个正多边形的一个内角为150°,则正多边形的边数是()A.10B.11C.12D.1513、若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1B.1:1C.5:2D.5:414、已知△ABC的∠A=80 ,剪去∠A后得到一个四边形,则∠1+∠2的度数为( )A.100B.160C.260D.28015、一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7B.7或9C.8或9D.7或8或9二、填空题(共10题,共计30分)16、已知在一个样本中,40个数据分别在4个组内,第一、二、四组数据的频数分别为5,12,8则第三组的频率为________.17、如图,平面直角坐标系中是原点,的顶点的坐标分别是,点把线段三等分,延长分别交于点,连接,则下列结论:①是的中点;②与相似;③四边形的面积是;④;其中正确的结论是 ________.(填写所有正确结论的序号)18、如图,在平面直角坐标系中,菱形OABC的边OA在x轴的负半轴上,反比例函数y=(x<0)的图象经过对角线OB的中点D和顶点C.若菱形OABC 的面积为6,则k的值等于________.19、如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向转转90°得到点F,则线段AF 的长的最小值________.20、已知菱形ABCD的周长为20cm,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm,面积是________cm2.21、已知一个多边形的每个外角都是24°,此多边形是________边形.22、如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO 是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为________.23、点(-3,5)到x轴上的距离是________.24、直线一定不经过第________象限.25、点到轴的距离是________。
冀教版八年级下册数学期末试题试卷含答案

冀教版八年级下册数学期末试题试卷含答案(本文按照试卷的格式进行排版)冀教版八年级下册数学期末试题试卷含答案一、选择题(共10小题,每小题4分,共40分)1. 下列选项中,不能构成数列的是()A. 1,2,3,4B. 2,4,6,8C. 5,3,1,-1D. -1,-2,-3,-4答案:C2. 下面一个函数图象是抛物线.则abcd的笛卡尔坐标分别是.()(A是一个函数图象上的点)A. x1<x2<x3<x4B. x1>x2>x3>x4C. x1<x2>x3<x4D.x1>x2<x3>x4答案:A3. 如图,根据图形关系写“是”或“不是”。
A. 是B. 不是答案:B4. 一半半成品饼干的袋数是已知的,剩下的都是一盒一盒装的。
盒数是未知数,则现在一共有多少个饼干的算式是()A. 已知数×盒数+1/2×已知数B. 已知数÷盒数+1/2×已知数C. (已知数÷盒数+1/2)×已知数D. (已知数×盒数+1/2)×已知数答案:C5. 根据给定的定义判断下面每个数是否符合。
符合写√,否则写X。
A. √B. XC. XD. √答案:C6. 设a,b,c都是非零数,下面图形可以记号为()A. |a|÷b+cB. a|b|+cC. a÷b+cD. a+b+c答案:D7. 一条机器零件的长度为a cm,则4条机器零件的总长度为()A. 4a cmB. a÷4 cmC. a cmD. a+4 cm答案:A8. 一只大象的一天喝水a升,已知3只大象喝水的天数相同,共喝水45升,则3只大象共喝水的天数是()A. 45-a天B. 45÷a天C. 45a天D. 45+a天答案:B9. 定义两个数a,b的“运”是从数a出发走a步再向右拐走b步,得距离定点的位置,若两数a=25,b=-7.1,则经过从a出发走a步这“运”走b步后的位置是()A. -32.1B. -18.1C. -57.1D. -7.1答案:C10. 在高中英语足球比赛中某同学对上某高中英语足球突破能力不如自身的人。
冀教版八年级下册数学期末测试卷及含答案

冀教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知一个n边形的每个外角都等于,则n的值是A.5B.6C.7D.82、正n边形的每个内角都是135 °,则n的值为().A.7B.8C.9D.103、已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3B.4C.5D.64、若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(-4,3)B.(4,-3)C.(-3,4)D.(3,-4)5、一个多边形的每个内角都等于144°,则这个多边形的边数是 ( )A.8B.9C.10D.116、一个多边形的内角和是外角和的3倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形7、一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形8、一个多边形的每个内角都等于140°,则这个多边形的边数是()A.7B.8C.9D.109、己知一个多边形的内角和是360°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形10、多边形的内角和不可能是()A.360°B.720°C.810°D.2160°11、如图,有一个角是的三角形纸片,剪去这个角后得到一个四边形,则的度数为()A. B. C. D.12、如图,已知△ABC为等边三角形,若沿图中虚线剪去∠B,则∠1+∠2等于()A.120°B.135°C.240°D.315°13、下列说法中,正确的有()个①两点之间直线最短;②若,则a=b;③任何一个有理数都可以用数轴上的一个点来表示;④过n边形的每一个项点有(n﹣2)条对角线.A.1B.2C.3D.414、下列图形中,能镶嵌成平面图案的是( )A.正六边形B.正七边形C.正八边形D.正九边形15、已知一个多边形的内角和是它的外角和的5倍,那么这个多边形的边数是()A.9B.10C.11D.12二、填空题(共10题,共计30分)16、请写出一个图象经过第一、三象限的正比例函数的解析式________ .17、如图,直线y=﹣2x+2与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1, P2, P3,…,Pn﹣1,过每个分点作x轴的垂线分别交直线AB于点T1, T2, T3,…,Tn﹣1,用S1, S2, S3,…,Sn﹣1分别表示Rt△T1OP1, Rt△T2P1P2,…,Rt△Tn﹣1Pn﹣2Pn﹣1的面积,则当n=2015时,S1+S2+S3+…+Sn﹣1= ________.18、为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如图所示的统计图表.组别身高(cm)A x<150B 150≤x<155C 155≤x<160D 160≤x<165E x≥165根据图表中信息,回答下列问题:(1)在样本中,男生身高的中位数落在________ 组(填组别序号),女生身高在B组的人数有________ 人;(2)在样本中,身高在150≤x<155之间的人数共有________ 人,身高人数最多的在________ 组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生约有________ 人.19、如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD 的延长线于点F,则DF=________ cm20、今年夏天,重庆各区持续高温日数达到历史之最,受持续高温和连日无雨的影响,重庆某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其他因素).若总蓄水量不多于900万m3为严重干旱,则该水库发生严重干旱时的天数为________天.21、如图,在平行四边形ABCD中,点E在边DC上,△DEF的面积与△BAF的面积之比为9:16,则DE:EC=________.22、已知点M(m,n)与点N(-2,-3)关于x轴对称,则m+n=________.23、如图,长方形ABCD的边BC=13,E是边BC上的一点,且BE=BA=10.F,G分别是线段AB,CD上的动点,且BF=DG,现以BE,BF为边作长方形BEHF,以DG为边作正方形DGIJ,点H,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1, S2,长方形BEHF和正方形DGIJ的重叠部分是四边形KILH,当四边形KILH的邻边比为3:4时,S1+S2的值为________.24、在平面直角坐标系中,若干个边长为个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,设第秒运动到点为正整数),则点的坐标是________.25、如图,在平行四边形ABCD中,AB=10,BC=15,tan∠A= 点P为AD边上任意一点,连结PB,将PB绕点P逆时针旋转90°得到线段PQ.若点Q恰好落在平行四边形ABCD的边所在的直线上,则PB旋转到PQ所扫过的面积________(结果保留π)三、解答题(共5题,共计25分)26、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.27、一个凸多边形共有20条对角线,它是几边形?是否存在有15条对角线的多边形?如果存在,它是几边形?如果不存在,说明得出结论的过程.28、某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x (元)之间的关系可近似的看作一次函数:.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)29、如图,在YABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.30、已知▱ABCD的周长为36cm,过点A作AE⊥BC,AF⊥CD,垂足分别为E、F.若AE=2cm,AF=4cm.求▱ABCD的各边长.参考答案一、单选题(共15题,共计45分)1、B2、B3、B5、C6、C7、B8、C9、A10、C11、C12、C13、A14、A15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
冀教版八年级下册数学期末测试卷及含答案

冀教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若一个多边形的每一个外角都等于,则这个多边形的边数是()A.7B.8C.9D.102、如果一个多边形的边数增加1倍,它的内角和是2160°,那么原来的多边形的边数是()A.5B.6C.7D.83、如图四边形ABCD中,∠ABC=3∠CBD,∠ADC=3∠CDB,∠C=128°,则∠A 的度数是()A.60°B.76°C.77°D.78°4、设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>bB.a=bC.a<bD.b=a+180°5、在四边形ABCD中,∠A,∠B,∠C,∠D度数之比为1:2:3:3,则∠B的度数为()A.30°B.40°C.80°D.120°6、如果一个多边形的内角和等于900°,这个多边形是()A.四边形B.五边形C.六边形D.七边形7、如图,△ABC中,∠C=80°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.260°C.180°D.140°8、若一个多边形有14条对角线,则这个多边形的边数是()A.10B.7C.14D.69、某同学在计算某n边形的内角和时,不小心少输入一个内角,得到和为2005°.则n等于()A.11B.12C.13D.1410、一个五边形的5个内角中,钝角至少有()A.5个B.4个C.3个D.2个11、下列说法正确的是()A.三角形的三条高线的交点一定在三角形的内部B.多边形外角和为C.在中,,则为钝角三角形D.三条线段长度分别为,,,则这三条线段可以组成一个三角形12、一个多边形的内角和等于,则它是()边形A.7B.8C.9D.1013、一个多边形有14条对角线,那么这个多边形的边数是()A.5B.6C.7D.814、若一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是()A.4B.5C.6D.715、若正多边形的一个内角是120°,则这个正多边形的边数为()A.8B.7C.6D.5二、填空题(共10题,共计30分)16、如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,那么菱形ABCD的面积是________.17、如图,在平面直角坐标系中,正方形ABCD的顶点A、B的坐标分别为(0,2)、(1,0),顶点C在函数y=x2+bx-1的图象上,将正方形ABCD沿x轴正方向平移后得到正方形A′B′C′D′,点D的对应点D′落在抛物线上,则点D与其对应点D′之间的距离为 ________.18、函数y= + 中自变量x的取值范围是________.19、如图,菱形ABCD的边长为4,∠ABC=60°,在菱形ABCD内部有一点P,当PA+PB+PC值最小时,PB的长为________.20、已知菱形的周长是20cm,一条对角线长为8cm,则菱形的另一条对角线长为________21、如图,直线y=x与双曲线y= 交于点A,将直线y=-x向右平移使之经过点A,且与x轴交于点B,则点B的坐标为________.22、如图,在长方形ABCD中,AB<BC,点P为长方形内部一点,过点P分别作PE⊥BC于点E、PF⊥CD于点F,分别以PF、CF为边作正方形PMNF,正方形GHCF,若两个正方形的面积之和为42,长方形PECF的面积为11,BE=DF=2,则长方形ABCD的面积为________.23、夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为________.24、关于x的函数y=(m+1)x﹣(4m﹣3)的图象在第一、二、四象限,那么m的取值范围是________.25、如图,有一菱形纸片,,将该菱形纸片折叠,使点恰好与的中点重合,折痕为,点、分别在边、上,联结,那么的值为________.三、解答题(共5题,共计25分)26、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.27、如图,在四边形ABCD中,AB=CD,M、N、E、F分别为AD、BC、BD、AC的中点,求证:四边形MENF为菱形.28、每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,①写出A、B、C的坐标.②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B 1、C1.29、王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y 轴.只知道游乐园D的坐标为(2,﹣2),你能帮她求出其他各景点的坐标吗?30、平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,若CE=2,DF=1,∠EBF=60°,求平行四边形ABCD的面积.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、B5、C6、D7、B8、B9、D10、D11、B12、C13、C14、C15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
2023-2024学年冀教版八年级数学下册期末复习试题(一)(含答案)

2023-2024学年度下期冀教版数学八年级下册期末复习习题精选(一)(满分120分,限时100分钟)一、选择题(每小题3分,共42分)1.(2023河北保定期末)为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.下列判断:①这种调查方式是抽样调查;②8 000名学生是总体;③每名学生的身高是个体;④60名学生是总体的一个样本;⑤60名学生是样本容量.其中正确的判断有( )A.5个B.4个C.3个D.2个2.(2023广东深圳南山二模)剪纸艺术是中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),则m+n的值为( )A.-1B.0C.1D.-93.(2023陕西西安雁塔模拟)一次函数y=(-2m+1)x的图像经过(-1,y1),(2,y2)两点,且y1>y2,则m的值可以是( )A. B.0 C.1 D.-4.(2023浙江温州三模)某校九(1)班50名学生的视力频数分布直方图如图所示(每一组含前一个边界值,不含后一个边界值),若视力达到 4.8以上(含 4.8)为达标,则该班学生视力的达标率为( )A.8%B.18%C.29%D.36%5.(2023山东临沂兰陵期中)下面的三个问题中都有两个变量:①正方形的周长y与边长x;②汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时);③水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min).其中,变量y与变量x之间的函数关系可以利用如图所示的图像表示的是( )A.①②B.①③C.②③D.①②③6.(2023天津南开期末)已知张强家、体育场、文具店在同一直线上.给出的图像反映的过程是:张强从家跑步去体育场,在体育场锻练了若干分钟后又走到文具店去买笔,然后散步走回家.图中x(min)表示张强离开家的时间,y(km)表示张强离家的距离,则下列说法错误的是( )A.体育场离文具店1 kmB.张强在文具店停留了20 minC.张强从文具店回家的平均速度是 km/minD.当30≤x≤45时,y=7.(2023重庆忠县期末)如图,四边形ABCD是矩形,有一动点P从点B出发,沿B→C→D→A绕矩形的边匀速运动,当点P到达点A时停止运动.在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是( )8.【新独家原创】在菱形ABCD中,AC=6,BD=8,点E为BC上一动点,则的最小值为( )A. B. C. D.9.(2023河南新乡长垣期末)随着暑假临近,某游泳馆推出了甲、乙两种消费卡,设消费次数为x,所需费用为y元,且y与x的函数关系的图像如图所示.根据图中信息判断,下列说法错误的是( )A.甲种消费卡为20元/次=10x+100B.y乙C.点B的坐标为(10,200)D.洋洋爸爸准备了240元钱用于洋洋在该游泳馆消费,选择甲种消费卡划算10.(2023上海虹口期末)在平面直角坐标系中,点A(0,6),点B(-6,0),坐标轴上有一点C,使得△ABC为等腰三角形,则这样的点C一共有( )A.5个B.6个C.7个D.8个11.(2023河南濮阳二模)如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交CB的延长线于点E,过点D作DF∥AE交BC于点F,连接AF.若AB=4,AD=5,则AF的长是( )A.2B.3C.3D.312.(2023福建福州台江模拟)“开开心心”商场2021年1~4月的销售总额如图1,其中A商品的销售额占当月销售总额的百分比如图2.根据图中信息,有以下四个结论,其中推断不合理的是( )A.1~4月该商场的销售总额为290万元B.2月份A商品的销售额为12万元C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是4月D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了13.【新考法】(2023河南郑州金水期末)现有一四边形ABCD,借助此四边形作平行四边形EFGH,两位同学提供了如图所示的方案,对于方案Ⅰ、Ⅱ,下列说法正确的是( )方案Ⅰ方案Ⅱ作边AB,BC,CD,AD的垂直平分线l1,l2,l3,l4,分别交AB,BC,CD,AD于点E,F,G,H,顺次连接这四点得到的四边形EFGH即为所求连接AC,BD,过四边形ABCD各顶点分别作AC,BD 的平行线EF,GH,EH,FG,这四条平行线围成的四边形EFGH即为所求A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行14.【一题多解】(2022贵州黔东南州中考)如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC交CB的延长线于点F,则DF的长为( )A.2+2B.5-C.3-D.+1二、填空题(每小题4分,共12分)15.(2023北京房山期末)如图,菱形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接OE,若OE=,OA=4,则AB= ,菱形ABCD的面积是.16.【河北常考·双填空题】(2023河北石家庄桥西期末)在同一直线上,甲骑自行车,乙步行,分别由A,B两地同时向右匀速出发,当甲追上乙时,两人同时停止.下图是两人之间的距离y(km)与所经过的时间t(h)之间的函数关系图像,观察图像,出发后h甲追上乙.若乙的速度为8 km/h,则经过1.5 h甲行驶的路程为.17.(2023河北沧州献县期末)五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子获胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点.若黑子A的坐标为(7,5),为了不让白方获胜,此时黑方应该下在坐标为的位置.三、解答题(共66分)18.[含评分细则](2023湖北武汉期中)(12分)已知点P(2a-2,a+5),解答下列各题:(1)若点P在x轴上,求出点P的坐标.(2)若点Q的坐标为(4,5),直线PQ∥y轴,求出点P的坐标.(3)若点P在第二象限,且它到x轴的距离与到y轴的距离相等,求a2 023+2 023的值.19.[含评分细则](2023广东深圳期中)(12分)自行车骑行爱好者小轩为备战中国国际自行车公开赛,积极训练.下图是他最近一次在深圳湾体育公园骑车训练时,离家的距离s(km)与所用时间t(h)之间的函数图像.请根据图像回答下列问题:(1)途中小轩共休息了h.(2)小轩第一次休息后,骑行速度恢复到第1小时的速度,请求出目的地离家的距离a是多少.(3)小轩第二次休息后返回家时,速度和到达目的地前的最快车速相同,则全程最快车速是km/h.(4)已知小轩是早上7点离开家的,请通过计算,求出小轩回到家的时间.20.[含评分细则]【新素材】(2023四川绵阳涪城模拟)(14分)青少年“心理健康”问题引起社会的广泛关注,某区为了解学生的心理健康状况,对中学初二学生进行了一次“心理健康”知识测试,随机抽取了部分学生的成绩作为样本,绘制了不完整的频率分布表和频率分布直方图(频率分布表每组含前一个边界值,不含后一个边界值).学生心理健康测试成绩频率分布表分组频数频率50~60 4 0.0860~70 14 0.2870~80 m 0.3280~90 6 0.1290~100 10 0.20合计 1.00请解答下列问题:(1)学生心理健康测试成绩频率分布表中,m= .(2)请补全学生心理健康测试成绩频数分布直方图.(3)若成绩在60分以下(不含60分)心理健康状况为不良,60分~70分(含60分)为一般,70分~90分(含70分)为良好,90分(含90分)以上为优秀,请补全学生心理健康测试成绩扇形统计图.21.[含评分细则](2023江苏无锡梁溪期末)(14分)某学校新建的初中部即将投入使用,为了改善教室空气环境,该校八年级1班班委会计划到朝阳花卉基地购买绿植,已知该基地一盆绿萝与一盆吊兰的费用之和是16元.班委会决定用80元购买绿萝,用120元购买吊兰,所购绿萝数量正好是吊兰数量的两倍.(1)分别求出每盆绿萝和每盆吊兰的价格.(2)该校八年级所有班级准备一起到该基地购买绿萝和吊兰共计120盆,其中绿萝数量不超过吊兰数量的一半,则八年级购买这两种绿植各多少盆时总费用最少?最少费用是多少元?22.[含评分细则](2023四川达州渠县期末)(14分)如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB以每秒2个单位长度的速度运动,在线段QC 上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长.(2)是否存在t值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.答案解析1.D 为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.①这种调查方式是抽样调查,说法正确;②8 000名学生的身高情况是总体,故原说法错误;③每名学生的身高是个体,说法正确;④60名学生身高情况是总体的一个样本,故原说法错误;⑤60是样本容量,故原说法错误.所以正确的判断有2个.故选D.2.A ∵图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),∴m=-4,n=3,∴m+n=-4+3=-1,故选A.3.C ∵-1<2,且y1>y2,∴y随x的增大而减小,∴-2m+1<0,解得m>.故选C.4.D 若视力达到4.8以上(含4.8)为达标,则该班学生视力的达标率为×100%=36%.故选D.5.A 正方形的周长y与边长x的关系式为y=4x,故①符合题意;汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时)的关系式为y=30x,故②符合题意;水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min)的关系式为y=水箱原来的水量-0.8x,故③不符合题意.所以变量y与变量x之间的函数关系可以用题中的图像表示的是①②.故选A.6.D A.体育场到文具店的距离为2.5-1.5=1(km),故A选项正确,不符合题意;B.张强在文具店停留了65-45=20(min),故B选项正确,不符合题意;C.张强从文具店回家的平均速度为 1.5÷(100-65)= km/min,故C选项正确,不符合题意;D.当30≤x≤45时,设y=kx+b(k≠0),则∴当30≤x≤45时,y=-,故D选项错误,符合题意.故选D.7.B 由题意可知,当点P从点B向点C运动时,S=AB·BP,△ABP的面积S与t成正比例函数关系且随时间t的增大而增大;当点P从点C向点D运动时,S=AB·BC,△ABP的面积S不随时间t的变化而变化;当点P从点D向点A运动时,S=AB·AP,△ABP的面积S是t的一次函数且随时间t的增大而减小.所以在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是选项B的图像.故选B.8.B ∵四边形ABCD是菱形,AC=6,BD=8,∴OB=AC=3,AC⊥BD.OB是定值,要想的值最小,则OE取最小值.当OE⊥BC时,OE取最小值,由勾股定理可求得BC==5,∵BC·OE=OB·OC,∴OE=,∴.故选B.9.D 设甲对应的函数解析式为y甲=kx(k≠0),∵点(5,100)在该函数图像上,∴5k=100,解得k=20,即甲对应的函数解析式为y甲=20x,即甲种消费卡为20元/次,故选项A不符合题意;设乙对应的函数解析式为y乙=ax+b(a≠0),∵点(0,100),(20,300)在该函数图像上,∴即乙对应的函数解析式为y乙=10x+100,故选项B不符合题意;令20x=10x+100,解得x=10,20×10=200,故点B的坐标为(10,200),故选项C不符合题意;当y=240时,甲种消费卡可消费240÷20=12(次),乙种消费卡可消费的次数为(240-100)÷10=14,因为12<14,所以洋洋爸爸准备240元钱用于洋洋在该游泳馆消费,选择乙种消费卡划算,故选项D符合题意.故选D.10.C 如图,当BC=AB时,以点B为圆心、AB长为半径画圆,与坐标轴分别交于点C1、C2、C3、A.当AC=AB时,以点A为圆心、AB长为半径画圆,与坐标轴分别交于点C4、C5、C6、B.当AC=BC时,点C应该在AB的垂直平分线上,∵OA=OB,∴点O在AB的垂直平分线上.综上,这样的C点共有7个,分别是点C1、C2、C3、C4、C5、C6、O.故选C.11.A ∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠ABE=90°,∵DF∥AE,AD∥EF,∴四边形ADFE是平行四边形,由作图得AE=AD=5,∴四边形ADFE是菱形,∴FE=AE=5,∵BE==3,∴BF=FE-BE=5-3=2,∴AF=.12.C A.1~4月该商场的销售总额为85+80+60+65=290万元,故A不符合题意;B.2月份A商品的销售额为80×15%=12万元,故B不符合题意;C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是2月,故C符合题意;D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了,故D不符合题意. 故选C.12.C 本题列举两种方案,从中选取可行方案,考查形式比较新颖.方案Ⅰ,如图,连接AC,∵l1,l2,l3,l4分别垂直平分AB,BC,CD,AD,∴E,F,G,H分别是AB,BC,CD,AD的中点,∴EF是△ABC的中位线,GH是△ADC的中位线,∴EF∥AC,EF=AC,GH∥AC,GH=AC,∴EF∥GH,且EF=GH,∴四边形EFGH是平行四边形,∴方案Ⅰ可行.方案Ⅱ,∵EF∥AC,GH∥AC,∴EF∥GH,∵EH∥BD,FG∥BD,∴EH∥FG,∴四边形EFGH是平行四边形,方案Ⅱ可行.故选C.14.D 解法一:如图1,延长DA,BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°-90°=90°.∵△ABC是边长为2的等边三角形,∴AB=AC=2,∠ABC=∠BAC=60°,∴∠CAG=∠BAG-∠BAC=30°,∠G=90°-∠ABC=30°,∴∠CAG=∠G,∴AC=CG=2,∴BG=BC+CG=4,∴AG=,∴DG=AD+AG=2+2.在△DFG中,DF⊥BC,∠G=30°,∴DF=×(2+2.故选D.解法二:如图2,过点E作EG⊥DF于点G,作EH⊥BC交CB的延长线于点H,则∠BHE=∠DGE=90°.∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°.∵四边形ABED是正方形,∴BE=DE=AB=2,∠ABE=∠BED=90°,∴∠EBH=180°-∠ABC-∠ABE=180°-60°-90°=30°,∴EH=×2=1,∴BH=.∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°.∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG.在△BEH和△DEG中,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1.故选D.15.2;16解析∵菱形ABCD的对角线AC与BD相交于点O,∴DO⊥CO,AC=2OA=2OC=8,∵E是BC的中点,∴OE是△CAB的中位线,∴AB=2OE=2,∴OB==2,∴BD=2OB=4,∴菱形ABCD的面积=×8×4=16.16.2;30km解析由图像可知,出发后2 h甲追上乙,A,B两地相距24 km,设甲的速度为x km/h,根据题意得2x=8×2+24,解得x=20,20×1.5=30(km).经过1.5 h甲行驶的路程为30 km.17.(3,7)或(7,3)18.解析(1)∵点P在x轴上,∴a+5=0,∴a=-5,∴2a-2=-12,∴点P的坐标为(-12,0).4分(2)∵点Q的坐标为(4,5),直线PQ∥y轴,∴2a-2=4,∴a=3,∴a+5=8,∴P(4,8).8分(3)∵点P在第二象限,且它到x轴的距离与到y轴的距离相等,∴2a-2=-(a+5),∴a=-1,此时P(-4,4)在第二象限,符合题意,∴a2 023+2 023=(-1)2 023+2 023=2 022,∴a2 023+2 023的值为2 022.12分19.解析(1)途中小轩共休息了2-1.5+4-3=1.5(h).故答案为1.5.3分(2)25+15×(3-2)=40(km).∴a=40.6分(3)全程最快车速是(25-15)÷(1.5-1)=20(km/h).故答案为20.9分(4)4+40÷20=6(h),7+6=13,∴小轩回到家的时间是13点.12分20.解析(1)由表格可得,抽取的学生数为4÷0.08=50,∴m=50×0.32=16.故答案为16.4分(2)补全的学生心理健康测试成绩频数分布直方图如图1所示.8分(3)良好率:(0.32+0.12)×100%=44%,9分优秀率:0.2×100%=20%,10分补全的学生心理健康测试成绩扇形统计图如图2所示.14分21.解析(1)设每盆绿萝x元,则每盆吊兰(16-x)元.根据题意得=2×,解得x=4.4分经检验,x=4是方程的解且符合题意.∴16-x=12.答:每盆绿萝4元,每盆吊兰12元.6分(2)设购买吊兰a盆,总费用为y元.依题意得,购买绿萝(120-a)盆,则y=12a+4(120-a)=8a+480.9分∵绿萝数量不超过吊兰数量的一半,∴120-a≤a,解得a≥80.10分对于y=8a+480,y随a的增大而增大,∴当a=80时,y取得最小值,最小值为8×80+480=1 120,12分此时120-a=40.答:购买吊兰80盆,绿萝40盆时,总费用最少,为1 120元.14分22.解析(1)如图,过A点作AM⊥BC于点M,设AC交PE于点N.∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=BC=5,2分∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,4分∴PN=AP=t,∴CE=NE=PE-PN=5-t,∵CE=CQ-QE=2t-2,∴5-t=2t-2,6分解得t=,∴BQ=BC-CQ=10-2×.7分(2)存在.8分若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,分两种情况:①当点E在点B的右侧时,有解得t=4.②当点E在点B的左侧时,有解得t=12.∴存在t值,使以A,B,E,P为顶点的四边形为平行四边形,此时t的值为4或12.14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冀教版八年级下册期末数学试卷
一、相信你的选择(本题共10个小题,每题2分,共20分,在每个小题给出的四个选项中,只有一个是符合题目要求的,把正确选项的代码填在最后的括号内。
) 1.下列命题中,正确的是( )
A. 一组对边平行,另一组对边相等的四边形是平行四边形
B. 一组对边平行,另一组对边相等的四边形是等腰梯形
C. 对角线相等的四边形是矩形
D. 对角线相等的菱形是正方形
2.若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )
A.第一象限
B. 第二象限
C.第三象限
D.第四象限 3. 如图,在矩形ABCD 中,AB=2BC ,在CD 上取一点E ,使AE=AB ,则∠EBC 等于( )
A. 10°
B. 15°
C. 22.5°
D. 30°
4.如图4,将正方形图案中心O 旋转180°后,得到的图案是( )。
5.若四边形的两条对角线相等,则顺次连结该四边形各边中点所得的四边形是( )。
A .梯形
B .矩形
C .菱形
D .正方形 6.若分式方程
x
x
x a --=+-2132有增根,那么a 的值为( )
A.-1
B.2
C.1
D.0
7.甲、乙两人同时从A 地出发,骑车行30千米到B 地,甲比乙每小时多走3千米,结果比乙先大40分钟,若设乙每小时走x 千米,则所列方程正确的是( )
A. 3233030=--x x
B. 3233030=
+-x x
C. 3230330=-+x x
D.
32
30330=--x x 8.菱形具有而矩形不一定具有的性质是( )
A 、对角线互相垂直
B 、对角线相等
C 、对角线互相平分
D 、对角互补
9.一个多边形,除一个内角外,其余各内角和是1200°,则这个角的度数是( )
A. 60°
B. 80°
C. 100°
D. 120° 10.有50个数据的平方和为800,平均数是3,这50个数据的方差为 ( ) A 、5 B 、6 C 、7 D 、8
二、 准确填空(本大题共8个小题,每小题3分,共24分)
11. 下列①线段、②角、③等边三角形、④平行四边形、⑤矩形、⑥菱形、⑦正方形中,是轴对称图形的是 ,中心对称图形是 。
12. 平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是__________.
13.已知点(-4,y 1),(-2, y 2)都在直线y=-x+5上,则y 1, y 2的大小关系为_________ .
14. 方程x x
x --=
+-2122
1的解为 。
15. 某班进行数学速算,比赛成绩如下:得100分的有8人,90分的有15人,84
分的15人,70分的7人,60分的3人,50分的2人,那么这个班速算比赛的平均成绩为 。
16.如图,梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,且AC平分
∠DAB,∠B=60°,梯形的周长为40cm,则
AC= ,S
梯形ABCD
=
cm2。
17. 矩形纸片ABCD中,AD=4cm,AB=10cm,按如
图3方式折叠,使点B与点D重合,折痕为EF,则DE
= _cm。
18.用正三角形和正四边形做平面镶嵌,在一个顶点处,
可以有个正三角形和个正四边形。
三、解答题(本题共8个小题,共56分。
解答应写出文字说明、证明过程或演算步骤。
)
19. (本小题满分4分)观察图,先填空,然后回答问题:
(1)由上而下第n行,白球有_______个;黑球有_______个.
(2)若第n行白球与黑球的总数记作y, 则请你用含n的代数式表示y,并指出其
中n的取值范围.
20.(本小题满分6分)为了从甲、乙两名学生中选择一人参加电脑知识竞赛,在乙82 86 87 90 79 81 93 90 74 78
(1)填写下表
平
均数中位数众数方差85分以上的
频率
甲84 84 14.4 0.3
乙84
84
34
(2)利用以上信息,请从三个不同的角度对甲、乙两个同学的成绩进行分析。
21.(本小题满分6分)如图,在△ABC中,∠A=110°,∠B=35°,请你应用变换的方法得到一个三角形使它与△ABC全等,且要求得到的三角形与原△ABC组成一个四边形。
(1)要求用两种变换方法解决上述问题;(写出变换名称,画出图形即可)
(2)指出四边形是什么图形?(不要求证明)
说明:如用两种平移变换方法解决此题算一种变换;两种变换是指平移、旋转等不同变换。
22.(本小题满分6分)如图,在Rt△ABC中,∠ACB=90º,
∠BAC=60º,DE垂直平分BC,垂足为D交AB于点E。
又点
F在DE的延长线上,且AF=CE。
求证:四边形ACEF是菱
形。
23.(本小题满分6分)为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.
(1)按此计划,该公司平均每天应生产帐篷顶;
(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人
....的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?
24.(本小题满分9分)已知杉杉服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.
(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围.
(2)当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多少?
25.(本小题满分9分)已知正方形ABCD 和正方形AEFG 有一个公共点A,点G 、E 分别在线段AD 、AB 上.
(1) 如图1, 连结DF 、BF,若将正方形AEFG 绕点A 按顺时针方向旋转,判
断命题:“在旋转的过程中线段DF 与BF 的长始终相等.”是否正确,若正确
请证明,若不正确请举反例说明;
(2) 若将正方形AEFG 绕点A 按顺时针方向旋转, 连结DG ,在旋转的过程中,你能否找到一条线段的长与线段DG 的长始终相等.并以图2为例说明理由.
26、(本小题满分10分)深圳某科技公司在甲地、乙地分别生产了17、15台同一种型号的检测设备,全部运往大运赛场A 、B
两馆,其中运往A 馆18台、运往B 馆14台、运往A 、B 两馆的运费如表1:
(1)设甲地运往A 馆的设备有x 台请填写表2,并求出总运费y (元)与x (台)的函数关系式;
(2
图1
图2
(3)当x为多少时,总运费最少,最小值是多少?。