2012年辽宁省沈阳市中考数学模拟试卷(七)

合集下载

2012年初三年级下学期沈阳市第20中学中考数学仿真模拟及答案(4)

2012年初三年级下学期沈阳市第20中学中考数学仿真模拟及答案(4)

图3图2主视图左视图 俯视图A BOM图12012年中考仿真模拟(四)数 学 试 卷 2012.3注意事项:1、本卷共8页,总分120分,考试时间120分钟。

2、答题前请将密封线左侧的项目填写清楚。

卷Ⅰ(选择题,共30分)一、选择题(本大题共12个小题,1—6小题,每小题2分;7—12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中是正整数的是……………………………………………………………【 】A .1-B .2)2(- C .15- D 2.检测4袋食盐,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,下列检测结果中,最接近标准质量的是……………………………………………【 】A .+2.1B .+0.7C .-0.8D .-3.2 3.如图1,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB , 则sin ∠AOB 的值等于……………………………………【 】A.12B. 2C. 24. 如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是……【 】 A .14cm B .15cm C .16cm D . 16cm 或17cm 5.四名运动员参加了射击预选赛,他们成绩的平均环数x 及其方差s 2如表所示.如果选出一个成绩较好且 状态稳定的人去参赛,那么应选…………【 】A .甲B .乙C .丙D .丁 6.有3人携带装修材料乘坐电梯,这3人的体重共200kg ,每捆材料重20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载材料( )捆.【 】 A .41 B .42 C .43 D .447.一个几何体的三视图如图2,其中主视图、左视图、都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为………………………………………【 】 A .12π B .2π C . 4π D .8π绝密★启用前8.如图3,AD AC 、分别是O ⊙的直径和弦,且30CAD ∠=︒,OB AD ⊥,交AC 于点B ,若OB =2,则BC 的长等于…………………………………………………【 】 A .2. B .3. C.4 D.9.为了参加2012年石家庄我市举办的铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.设自行车路段的长度为x 米,长跑路段的长度y 米,下面所列方程组正确的是…………………………………【 】A. 5000,15.600200x y x y +=⎧⎪⎨+=⎪⎩B. 5,15.600200x y x y+=⎧⎪⎨+=⎪⎩ C. 5000,15.60020060x y x y +=⎧⎪⎨+=⎪⎩ D. 5,15.62x y x y+=⎧⎪⎨+=⎪⎩ 10. 如图4,点P (3a ,a )是反比例函y =kx(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为………………………………………【 】A .y =3B .y =5xC .y =10xD .y =12x11. 如图5,在矩形ABCD 中,AB =6,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时,则DF 的长为……………………………………【 】 A .2 B .3 C .4 D .512.如图6,直线l 是菱形ABCD 和矩形EFGH 的对称轴,C 点在EF 边上,若菱形ABCD 沿直线l 从左向右匀速运动,运动到C 在GH 边上为止,在整个运动的过程中,菱形与矩形重叠部分的面积(S )与运动的路程(x卷Ⅱ(非选择题,共90分)二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.函数y =x 的取值范围是 .14.已知关于x 的方程x 2+bx +a =0的一个根是-a (a ≠0),则a -b 值为 .15.如图7,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为 .16.在边长为1的小正方形组成的44⨯网格中,有如图8所示的A 、B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为 . 17. 如图9,AB 是⊙O 的切线,半径OA =2,OB 交⊙O 于C , ∠B =30°,则劣弧AC 的长是 .(结果保留π)ABCDBAOC图9AB图8A BOC D 图7l 图6 A B C D E F 图5图1018.如下图,观察每一个图中黑色正六边形的排列规律,则第n 个图中黑色正六边形有 个.第1个图 第2个图 第3个图 三、解答题(本大题8个小题,共72分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)先化简,再求值:2(2)2()()()a a b a b a b a b -++-++,其中22a b =-=. 20.(本小题满分8分)如图10,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,建立平面直角坐标系.(1)点A 的坐标为 ,点C 的坐标为 .(2)将△ABC 向左平移7个单位,请画出平移后的△A 1B 1C 1.若M 为△ABC 内的一点,其坐标为(a ,b ),则平移后点M 的对应点M 1的坐标为 .(3)以原点O 为位似中心,将△ABC 缩小,使变换后得到的△A 2B 2C 2与△ABC 对应边的比为1∶2.请在网格内画出△A 2B 2C 2,并写出点A 2的坐标: .21.(本小题满分8分)某太阳能热水器经销商在六周内试销A ,B 两个品牌的太阳能热水器,试销期间两种品牌的销量相同,试销结束后,依据统计数据绘制了以下尚不完整的统计图表.(1)在图11-1中,“第五周”所在扇形的圆心角等于 °; (2)在图11-2中补全A 品牌销量折线图,画出B 品牌销量折线图. (3)请分别写出A ,B 两种品牌太阳能热水器周销售量的中位数.(4)如果该经销商决定从这两种品牌中挑选一种作为该品牌的一级代理商,请结合折线的走势进行简要分析,判断该经销商应选择代理哪种品牌的太阳能热水器?22.(本小题满分8分) 石家庄市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这A 品牌销量扇形统计图 图11-1 A 品牌销量折线统图11-2销售/台 时间/周 第六周 第五周 第四周 第三周 第二周 第一周A BC ED 图12-2FA B C E D 图12-1 一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来. 23.(本小题满分9分)数学课上,老师出示了如下框中的题目.小明与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论 当点E 为AB 的中点时,如图12-1,确定线段AE 与DB 的大小关系.请你直接写出结论:AE _______DB (填“>”,“<”或“=”).(2)特例启发,解答题目解:猜测题目中,AE 与DB 的大小关系是:AE _______DB (填“>”,“<”或“=”), 理由如下.如图12-2,过点E 作EF∥BC ,交AC 于点F .(请你完成以下解答过程) (3)拓展结论,设计新题 在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED =EC .若△ABC 的边长为3,AE =1,求CD 的长(请你直接写出结果). 24.(本小题满分9分)如图13-1是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm 的彩色矩形纸带AMCN 裁剪成一个平行四边形ABCD (如图13-2),然后用这条平行四边形纸带按如图13-3 的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图13-2中,计算裁剪的角度∠BAD ;(2)计算按图13-3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.在等边三角形ABC 中,点E 在AB 上, 点D 在CB 的延长线上,且ED =EC ,如图. 试确定线段AE 与DB 的大小关系,并说明 理由.A BCED图13-1 C N D B M A 图13-2 图13-325.(本小题满分10分)由于受金融危机的影响,石家庄某店经销的甲型号手机今年的售价比去年每部降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每部售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每部进价为1000元,乙型号手机每部进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20部,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一部乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值? 26.(本小题满分12分)如图14,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P 、Q 分别从点A 、B 同时出发,运动速度均为1cm/s ,动点P 沿A →B →C →E 的方向运动,到点E 停止;动点Q 沿B →C →E →D 的方向运动,到点D 停止,设运动时间为x s ,△PAQ 的面积为y cm 2.(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x =2s 时,y =_________cm 2;当x = 9 2s 时,y =_________cm 2;(2)当5≤x ≤14时,求y 与x 之间的函数关系式;(3)当动点P 在线段BC 上运动时,求出使y = 415S 梯形ABCD 的x 的值;(4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.图14CDA B E备用图图12012年中考仿真模拟(四)数学试卷参考答案13.12x ≥-; 14.1-; 15.90°; 16.625; 17.23π; 18.2n . 三、解答题(本大题共8个小题;共72分) 19.原式22222=2222,a ab a b a ab b -+-+++22=4,a b ---------------------------------------5分当2a b ==时,原式22=4(2⨯-20.解:(1)(2,6) (6,4);-------------2分 (2)如图1,--------------------------3分 (7a b -,);-------------------------4分 (3)如图1,两种情况,-----------------6分 (13--,)或(1,3)-----------------------8分 21.解:(1)90°;---------------------1分 (2)折线图如图2所示;----------------4分 (3)A 品牌太阳能热水器周销售量的中位数为:按大小排列后,第3个数与第4个数是8和10, ∴A 的中位数是:(8+10)÷2=9,----------5分 B 品牌太阳能热水器周销售量的中位数为:按大小排列后,第3个数与第4个数是12和8, ∴B 的中位数是:(8+12)÷2=10;---------6分 (4)A 的周销售折线图整体呈上升趋势,而B 的周销售折线图从第三周以后一直呈下降趋势,所以商店应选择代理A 品牌的太阳能热水器.----------8分 22.(1)设甲工程队每天能铺设x 米,则乙工程队每天能铺设(x -20)米. 根据题意得:35025020x x =-.--------------2分 解得:x =70,经检验, x =70是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米. ---------------------4分(2)设分配给甲工程队y 米,则分配给乙工程队(1000-y )米.由题意,得10,70100010.50yy ⎧≤⎪⎪⎨-⎪≤⎪⎩解得500700y ≤≤.--------------------6分∵y 以百米为单位,∴分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米; 方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米.------------8分A 、B 品牌销量折线统计图图223.解:(1)=.----------------------------------------------2分 (2)=.----------------------------------------------------3分证明:如图3,在等边三角形ABC 中,∠ABC =∠ACB =∠A =60°,AB =BC =AC ,∵EF ∥BC ,∴∠AEF =∠AFE =60°=∠A , ∴△AEF 是等边三角形,∴AE =AF =EF , ∴AB -AE =AC -AF ,即BE =CF .∵ED =EC ,∴∠D =ECB . 又∵∠ABC =∠D +∠BED =60°,∠ACB =∠ECB +∠FCE =60°, ∴∠BED =∠FCE ,∴△DBE ≌△EFC ,∴DB =EF ,∴AE =DB .----------------------------------------7分 (3)4或2.-------------------------------------------------9分 24.(1)由图2的包贴方法知:AB 的长等于三棱柱的底边周长,∴AB =30. ∵纸带宽为15,∴AM =15,-------------------------------------2分 ∵平行四边形ABCD 中, AD ∥BC , ∴∠DAB =∠ABM . ∴在Rt △ABM 中,sin ∠DAB =sin ∠ABM =151302AM AB==, ∴∠DAB =30°.-------4分(2)在图12-3中,将三棱柱沿过点A 的侧棱剪开,得到如图4-1的侧面展开图,将图4-1中的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图4-2中的平行四边形AQCP ,此平行四边形即为图12-2中的平行四边形ABCD , 矩形纸带的长即为图4-2中矩形SQTP 的长.------------------------------------------6分 图3-2中,由题意知:AQ = EF = CP =30, 在Rt △AQF 中, QF = CF =cos30AQ=在Rt △CTP 中,CT =cos3015CP =∴所需矩形纸带的长为QF + CF +CT=2⨯=cm .--------------9分25.解:(1由题意得:80000x +500 = 60000x,解得x =1500.经检验x =1500是方程的解.∴今年甲型号手机每部售价为1500元.---------------------------------3分 (2)设购进甲型号手机m 部,由题意得:17600≤1000m +800(20-m )≤18400, 解得8≤m ≤12.∵m 只能取整数,∴m 取8、9、10、11、12,共有5种进货方案.------------6分 (3)方法一:设总获利W 元,则:W =(1500-1000)m +(1400-800-a )(20-m ) =( a -100)m +12000-20a . ∴当a =100时,(2)中所有的方案获利相同.---------------------------10分 方法二:由(2)知,当m =8时,有20-m =12.P C E图4-1A BCE D F图3此时获利y1=(1500-1000)×8+(1400-800-a)×12=4000+(600-a)×12.当m=9时,有20-m=11.此时获利y2=(1500-1000)×9+(1400-800-a)×11=4500+(600-a)×11.由于获利相同,则有y1=y2,即4000+(600-a)×12=4500+(600-a)×11,解得a=100.∴当a=100时,(2)中所有方案获利相同.----------------------------10分26.解:(1)2 , 9 .---------------------------------------------2分(2)如图5-1,当5≤x≤9时,y=S梯形ABCQ-S△ABP-S△PCQ=12(5+x-4)×4-12×5(x-5)-12(9-x)(x-4)=12x2-7x+652.即y=12x2-7x+652.-------------------------------------------4分如图5-2,当9<x≤13时,y=12(x-9+4)(14-x)=-12x2+192x-35.即y=-12x2+192x-35. ----------------------6分如图5-3,当13<x≤14时,y=12×8(14-x)=-4x+56.即y=-4x+56. ------------------------------7分(3)当动点P在线段BC上运动时,∵y=415S梯形ABCD=415×12(4+8)×5=8,∴12x2-7x+652=8 .解得x1=x2=7,∴当x=7时,y=415S梯形ABCD.------------------9分(4)x=209,619,1019.----------------------12分提示:①如图5-4,当P在AB上时,若PQ∥AC,则△BPQ∽△BAC∴BPBQ=BABC,∴5-xx=54,解得x=209.②如图5-5,当P在BC上时,若PQ∥BE,则△CPQ∽△CBE∴CPCQ=CBCE,∴9-xx-4=45,解得x=619.③如图5-6,当P在CE上时,若PQ∥BE,则△EPQ∽△ECD∴EPEQ=ECED,∴14-xx-9=54,解得x=1019.图5-1图5-2(Q)图5-3CDABEPQ CDABEPQCDABEPQ图5-6图5-5图5-4。

2012年辽宁省沈阳市中考数学试卷-答案

2012年辽宁省沈阳市中考数学试卷-答案

325a a.故选=8【考点】单项式乘单项式,幂的乘方与积的乘方【解析】10-<,又20>,∴【提示】根据一次函数判定该函数图象所经过的象限.【考点】一次函数的性质【解析】正方形2)180540=.故答案为2)180,把5=n 代入可求五边形内角和,解不等式①得ABC,△ABC的周长为【解析】△∽△3【提示】根据相似三角形周长的比等于相似比计算即可得解【解析】点,又△AOB的面积为【解析】第,60A,AB∠=根据菱形的对称性与等边三角形的对称性可得,2(2)列表得:画树状图:,又∥AD BC,)四边形=BM DN,∴四边形BMDN是平行四边形.(3)A组人数:50020%100⨯=人,C组人数:50035%175⨯=人,补全统计图如图:)⊥OD AC )=OB OD ,30∴∠OBD ,303060∴∠+=,又⊥OD AC 90=OEA ,180180906030∴∠-∠-∠=--=OEA AOD ,又AB 为O 的直径,90=ACB ,在△Rt ACB 12=BC AB ,12=OD AB ,∴=BC OD . )由OD 为半径,根据垂径定理,即可得ABC ;为O 90,继而可证得度角的直角三角形,垂径定理)①点,∥CD y ,点②(3,)C a a ,矩形3=⨯CF CD a 15=a ,故点坐标为(3,1)C=PA PB 120,AB 60(等腰三角形的“三线合一”的性质),在sin ∠APQ 323sin 6032∴==AP 90(垂直的定义)360360906090120-∠-∠-∠=---=OSP SOP OTP ,120∠=SPT ,又90∠=ASP ,AP =PS PT (全等三角形的对应边相等)1 25.【答案】(1)如图①,A-(2,0)AB∴=2OC AB=又抛物线)=OA OB90,45,又45∠=∠∠+∠BEO AOE AOE45+∠BEF =∠BEF AOE3)当△EOF①当=OE OF45,180180454590-∠-∠=--=OEF OFE,又90∠=AOB,则此时点E于点A重合,不符合题意,此种情况不成立;②如图2,45,在△180180454590-∠-∠=--=OEF EOF,9090180∠=+=EFO,45,又由(45=ABO,EH OB⊥90,AOB EHB,∴∠=∴∥EH AO45,在Rt BEH,45∠==cos452⨯OH OB,2∴=如图④所示,∥FN EH,1)(22=ST11 / 11。

2012辽宁沈阳中考数学

2012辽宁沈阳中考数学

2012年沈阳市中考试题数 学(试题满分150分 考试时间120分钟)第一部分(选择题 共24分)参考公式:抛物线y=ax 2+bx+c 的顶点是(—a b 2,a b ac 4-42),对称轴是直线x=—a b 2. 一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.(2012辽宁沈阳,1,3分)下列各数中比0小的数是 ( )A.-3B.31 C.3 D.3 【答案】A2.(2012辽宁沈阳,2,3分)左下图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是 ( )【答案】D3.(2012辽宁沈阳,3,3分)沈阳地铁2号线的开通,方便了市民的出行。

从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学计数法表示为 ( )A.3.04×105B.3.04×106C. 30.4×105D.0.304×10 7【答案】B4.(2012辽宁沈阳,4,3分)计算(2a)3.a 2的结果是 ( )A.2a 5B.2a 6 c.8a 5 D.8a 6【答案】C5.(2012辽宁沈阳,5,3分)在平面直角坐标系中,P(-1,2)关于x 轴的对称点的坐标为 ( )A. (-1,-2)B.(1,-2)C.(2,-1)D.(-2,1)【答案】A6.(2012辽宁沈阳,6,3分)气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是 ( )A.本市明天将有30%的地区降水B.本市明天将有30%的时间降水C.本市明天有可能降水D.本市明天肯定不降水【答案】C7.(2012辽宁沈阳,7,3分)一次函数y= -x+2的图象经过 ( )A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限【答案】B8.(2012辽宁沈阳,8,3分)如图,正方形ABCD 中,对角线AC,BD 相交于点O,则图中的等腰直角三角形有( )A.4个B.6个C.8个D.10个【答案】C二、填空题(每小题4分,共计32分)9.(2012辽宁沈阳,9,4分)分解因式:m 2-6m+9=___________________.【答案】(m -3)210.(2012辽宁沈阳,10,4分)一组数据1,3,3,5,7的众数是________________________.【答案】311.(2012辽宁沈阳,11,4分)正方形的内角和为_________________度。

2007-2012沈阳中考数学(学生版)

2007-2012沈阳中考数学(学生版)

2007年沈阳市中等学校招生统一考试数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.-13的相反数是( )A .13B .3C .-3D .-132.如图,在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A 的值是( )A .215 B .25 C .212 D .523.沈阳市水质监测部门2006年全年共监测水量达48909.6万吨,水质达标率为100%.用科学记数法表示2006年全年共监测水量约为( )万吨(保留三个有效数字)A .4.89×104B .4.89×105C .4.90×104D .4.90×105 4.下列事件中是必然事件的是( )A .小婷上学一定坐公交车B .买一张电影票,座位号正好是偶数C .小红期末考试数学成绩一定得满分D .将豆油滴入水中,豆油会浮在水面上 5.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点, 若∠FEB =110°,则∠EFD 等于( )A .50°B .60°C .70°D .110° 6.依次连接菱形各边中点所得到的四边形是( ) A .梯形 B .菱形 C .矩形 D .正方形 7.反比例函数y =-4x的图象在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限8.将一张长与宽的比为2∶1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是( )图① 图② 图③ 图④A .B .C .D .第2题图第5题图二、填空题(每小题3分,共24分)9.分解因式:325x x -= .10.已知一组数据1,a ,4,4,9,它的平均数是4,则a 等于 ,这组数据的众数是 .11.如图,AC 、BD 相交于点O ,∠A =∠D ,请你再补充一个条件,使得△AOB ≌ △DOC ,你补充的条件是 .12.如图,小鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的高度CD =1m ,测得旗杆顶端B 的仰角α=60°,则旗杆AB 的高度为 .(计算结果保留根号)13.有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .14.如图,在正方形网格中,以点A 为旋转中心,将△ABC 按逆时针方向旋转90°,画出旋转后的△AB 1C 1.15.将抛物线22(1)3y x =+-向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为 .16.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 .第14题图第16题图第11题图第12题图三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:(π-3)0-|5-3|+(-13)-2-5.18.解不等式组⎩⎪⎨⎪⎧2x -5≤3(x -1)x +72>4x ,并把它的解集在数轴上表示出来.19.如图,已知在□ABCD 中,E 、F 是对角线BD 上的两点,BE =DF ,点G 、H 分别在BA 和DC 的延长线上,且AG =CH ,连接GE 、EH 、HF 、FG .求证:四边形GEHF 是平行四边形.20.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?第19题图四、(每小题10分,共20分)21.2006年沈阳市城市环境空气质量达到了有记录以来的最好水平,优良天气的天数在全国副省级以上城市排名第9,排名在北京、天津、重庆等城市之前.空气质量分为优良天气、轻度污染、中度污染、重度污染四种类型,有关部门将我市2001年——2006年前三类空气质量的天数制成条形统计图,请根据统计图解答下列问题:2001年——2006年沈阳市优良天气、轻度污染、中度污染天数统计图(1)根据图①中的统计图可知,和前一年比,年优良天气的天数增加最多,这一年优良天气的天数比前一年优良天气的天数的增长率约为;(精确到1%)(2)在图②中给出了我市2001年——2006年优良天气天数的扇形统计图中的部分数据,请你补全此统计图,并写出计算过程;(精确到1%)(3)根据这6年沈阳市城市空气质量的变化,谈谈你对我市环保的建议.2001年——2006年沈阳市优良天气天数统计图第21题图①第21题图②22.如图,已知A 、B 、C 、D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD 、AD .(1)求证:DB 平分∠ADC ;(2)若BE =3,ED =6,求AB 的长.五、(本题12分)23.如图所给的A 、B 、C 三个几何体中,按箭头所示的方向为它们的正面,设A 、B 、C 三个几何体的主视图分别是A 1、B 1、C 1;左视图分别是A 2、B 2、C 2;俯视图分别是A 3、B 3、C 3.(1)请你分别写出A 1、A 2、A 3、B 1、B 2、B 3、C 1、C 2、C 3图形的名称;(2)小刚先将这9个视图分别画在大小、形状完全相同的9张卡片上,并将画有A 1、A 2、A 3的三张卡片放在甲口袋中,画有B 1、B 2、B 3的三张卡片放在乙口袋中,画有C 1、C 2、C 3的三张卡片放在丙口袋中,然后由小亮随机从这三个口袋中分别抽取一张卡片.① 通过补全下面的树状图,求出小亮随机抽取的三张卡片上的图形名称都相同的概率; ② 小亮和小刚做游戏,游戏规则规定:在小亮随机抽取的三张卡片中只有两张卡片上的图形名称相同时,小刚获胜;三张卡片上的图形名称完全不同时,小亮获胜.这个游戏对双方公平吗?为什么?解:(1) A B C (2)①树状图:第22题图第23题图24.已知在矩形ABCD 中,AB =4,BC =252,O 为BC 上一点,BO =72,如图所示,以BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点.(1)若点M 的坐标为(1,0),如图①,以OM 为一边作等腰△OMP ,使点P 在矩形ABCD 的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P 的坐标;(3)若将(1)中的点M 的坐标改为(5,0),其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个.(不必求出点P 的坐标)第24题图25.化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售价,试销一段时间后,部门负责人把试销情况列成下表:实际售价x(元/千克)…150 160 168 180 …月销售量y(千克)…500 480 464 440 …①请你在所给的平面直角坐标系中,以实际售价x(元/千克)为横坐标,月销售量y (千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?第25题图26.已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x 轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E 作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.第26题图2008年沈阳市中等学校招生统一考试数学试卷*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( ) A .525.310⨯亩B .62.5310⨯亩C .425310⨯亩D .72.5310⨯亩2.如图所示的几何体的左视图是( )3.下列各点中,在反比例函数2y x=-图象上的是()A .(21),B .233⎛⎫⎪⎝⎭,C .(21)--,D .(12)-, 4.下列事件中必然发生的是( )A .抛两枚均匀的硬币,硬币落地后,都是正面朝上B .掷一枚质地均匀的骰子,朝上一面的点数是3C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取 值范围是( ) A .0x > B .0x <C .2x >D .2x <6.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65 或50D .50 或807.二次函数22(1)3y x =-+的图象的顶点坐标是( )A .(13),B .(13)-,C .(13)-,D .(13)--, 8.如图所示,正方形ABCD 中,点E 是CD 边上一点,连接AE , 交对角线BD 于点F ,连接CF ,则图中全等三角形共有( )正面第2题图A .B .C .D .23 第5题图y xOADCEFB第8题图A .1对B .2对C .3对D .4对二、填空题(每小题3分,共24分)9.已知A ∠与B ∠互余,若70A ∠=,则B ∠的度数为 . 10.分解因式:328m m -= .11.已知ABC △中,60A ∠=,ABC ∠,ACB ∠的平分线交于点O ,则BOC ∠的度数为 .12.如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补 充一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可). 13.不等式26x x -<-的解集为 .14.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE 为 米.15.观察下列图形的构成规律,根据此规律,第8个图形中有个圆.第15题图16.在平面直角坐标系中,点A 的坐标为(11),,点B 的坐标为(111),,点C 到直线AB 的距离为4,且ABC △是直角三角形,则满足条件的点C 有 个.三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.计算:101(1)527232-⎛⎫π-+-+-- ⎪⎝⎭.18.解分式方程:1233xx x=+--.19.先化简,再求值:222()()2y x y x y x y ++---,其中13x =-,3y =.第1个 ……第2个 第3个 第4个ADC BO 第12题图 B C DE A 第14题图20.如图所示,在66⨯的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,如图①中的三角形是格点三角形. (1)请你在图①中画一条直线将格点三角形分割成两部分,将这两部分重新拼成两个不同的格点四边形,并将这两个格点四边形分别画在图②,图③中; (2)直接写出这两个格点四边形的周长.四、(每小题10分,共20分)21.如图所示,AB 是O 的一条弦,OD AB ⊥,垂足为C ,交O 于点D ,点E 在O 上.(1)若52AOD ∠=,求DEB ∠的度数;(2)若3OC =,5OA =,求AB 的长.22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C ,,分别表示小刚的象、虎、鼠三张牌,用1A ,1B ,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.图① 第20题图图②图③ EB DCA O 第21题图 小刚 小明A 1B 1C 1A B C 第22题图23.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2)请你将表格补充完整:平均数(分) 中位数(分) 众数(分)一班 87.6 90 二班87.6100(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩. 六、(本题12分)24.一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (时)之间的关系:行驶时间x (时)0 1 2 2.5 余油量y (升)100806050(1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少升?(3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D 处至少加多少升油,才能使货车到达B 地.(货车在D 处加油过程中的时间和路程忽略不计)A B C D 等级第23题图 1210 8 6420 人数612 2 5 一班竞赛成绩统计图 二班竞赛成绩统计图 16% D 级 36%C 级 44% A 级B 级4%25.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AMN △是等腰三角形.(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.八、(本题14分) 26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y轴的正半轴上,且1AB =,3OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.C E ND A BM图① C A EM B D N图② 第25题图 y xO 第26题图DEC FA B沈阳市2009年中等学校招生统一考试数 学 试 题试题满分150分,考试时间120分钟.注意事项:1.答题前,考生须用0.5mm 黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2.考生须在答题卡上作答,不能在本试题卷上作答,答在本试题卷上无效; 3.考试结束,将本试题卷和答题卡一并交回;4.本试题卷包括八道大题,26道小题,共6页.如缺页、印刷不清,考生须声明,否则后果自负.一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1. 6-的相反数是( )A . 6-B . 61- C .61D . 6 2.如图是某几何体的三视图,则该几何体的名称是( ) A .圆柱 B .圆锥 C .棱柱 D .长方体3.据《沈阳日报》报道,今年前四个月辽宁省进出口贸易总值达164亿美元.164亿美元用科学记数法可以表示为( )A . 16.4×10亿美元B . 1.64×102亿美元C . 16.4×102亿美元D . 1.64×103亿美元 4.下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D 5.反比例函数xy 1=的图象在( ) A . 第一、二象限 B . 第一、三象限 C . 第二、四象限 D . 第三、四象限 6.一个三角形的周长是36 cm ,以这个三角形各边中点为顶点的三角形的周长是( ) A . 8cm B . 12 cm C . 15cm D . 18cm 7.下列说法错误的是( )A .必然发生的事件发生的概率为1B .不可能发生的事件发生的概率为0C .不确定事件发生的概率为0D .随机事件发生的概率介于0和1之间 8.如图,AC 是矩形ABCD 的对角线,E 是边BC 延长线上一点,AE 与CD 相交于点F ,则图中的相似三角形共有( )A .2对B .3对C .4对D .5对第2题图第9题图第15题图 二、填空题(每小题3分,共24分)9. 如图,数轴上A 、B 两点表示的数分别为a 、b ,则a 、b 两数的大小关系是 .10.一元二次方程220x x +=的解是 .11.在一节综合实践课上,五名同学手工作品的数量(单位:件)分别是:3,8,5,3, 4.则这组数据的中位数是 件.12.不等式422x -≤的解集为 .13.小莉与小华约定周日10点整到敬老院看望老人.10点整,时钟上的分针与时针所夹的锐角是 度.14.有一组单项式:2a , 23a -,34a ,45a -,…….请观察它们的构成规律,用你发现的规律写出第10个单项式为 .15.如图,在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(0,3),点C 在坐标平面内.若以A 、B 、C 为顶点构成的三角形是等腰三角形,且底角为30°,则满足条件的点C 有 个.16.如图,为了确保行人通行安全,市政府准备修建一座高AB =6m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角为∠ACB ,且sin ∠ACB =53,则坡面AC 的长度为 m . 三、解答题(第17题6分,第18、19小题各8分,第20小题10分,共32分.)17.计算: |12|)31(81---+-.18.先化简,再求值:1312-÷+x x x x ,其中31+=x .第16题图第21题图 19. 如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,∠C =20°. 求∠CDA 的大小.20.七巧板是我国流传已久的一种智力玩具,小鹏在玩七巧板时用它画成了3副图案并将它们贴在3张完全相同的不透明卡片上,如图.小鹏将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张,放回后洗匀,再随机抽取一张卡片.请你用列表法或画树状图(树形图)法,帮助小鹏求出两张卡片上的图案都是小动物的概率.(卡片名称可用字母表示)四、(每小题10分,共20分)21.已知:如图,在ABCD中,点E 在AD 上,连接BE ,DF //BE 交BC 于点F ,AF 与BE 交于点M ,CE 与DF 交于点N .求证:四边形MFNE 是平行四边形.22.先阅读下列材料,再解答后面的问题.材料:密码学是一门很神秘、很有趣的学问,在密码学中,直接可以看到的信息称为明码,加密后的信息称为密码,任何密码只要找到了明码与密码的对应关系——密钥,就可以破译它.密码学与数学是有关系的.为此,八年一班数学兴趣小组经过研究实验,用所学的一次函数知识制作了一种密钥的编制程序.他们首先设计了一个“字母——明码对照表”:狐狸A 兔子C小屋 B 第20题图 第19题图字母 A B C D E F G H I J K L M明码 1 2 3 4 5 6 7 8 9 10 11 12 13字母N O P Q R S T U V W X Y Z明码14 15 16 17 18 19 20 21 22 23 24 25 26 例如,以y=3x+13为密钥,将“自信”二字进行加密转换后得到下表:汉字自信拼音Z I X I N明码:x 26 9 24 9 14密钥:y=3x+13密码:y 91 40因此,“自”字加密转换后的结果是“9140”.问题:(1)请你求出当密钥为y=3x+13 时,“信”字经加密转换后的结果;(2)为了提高密码的保密程度,需要频繁地更换密钥.若“自信” 二字用新的密钥加密转换后得到下表:汉字自信拼音Z I X I N明码:x 26 9 24 9 14密钥:y=kx+b密码:y 70 36请求出这个新的密钥,并直接写出“信”字用新的密钥加密转换后的结果.五、(本题12分)23.吸烟有害健康.你知道吗,被动吸烟也大大危害着人类的健康.为此,联合国规定每年的5月31日为世界无烟日.为配合今年的“世界无烟日”宣传活动,小明和同学们在学校所在地区展开了以“我支持的戒烟方式”为主题的问卷调查活动,征求市民的意见,并将调查结果分析整理后,制成下列统计图:(1)求小明和同学们一共随机调查了多少人?(2)根据以上信息,请你把统计图补充完整;(3)如果该地区有2万人,那么请你根据以上调查结果,估计该地区大约有多少人支持“强制戒烟”这种戒烟方式?24. 种植能手小李的实验田可种植A 种作物或B 种作物(A 、B 两种作物不能同时种植),原来的种植情况如表.通过参加农业科技培训,小李提高了种植技术.现准备在原有的基础上增种,以提高总产量.但根据科学种植的经验,每增种1棵A 种或B 种作物,都会导致单棵作物平均产量减少0.2千克,而且每种作物的增种数量都不能超过原有数量的80%.设A 种作物增种m 棵,总产量为A y 千克;B 种作物增种n 棵,总产量为B y 千克.(1)A 种作物增种m 棵后,单棵平均产量为 千克;B 种作物增种n 棵后,单棵平均产量为 千克;(2)求A y 与m 之间的函数关系式及B y 与n 之间的函数关系式; (3)求提高种植技术后,小李增种何种作物可获得最大总产量?最大总产量是多少千克? 七、(本题12分)25.将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证: AF +EF =DE ; (2)若将图①中的DBE △绕点B 按顺时针方向旋转角α,且060α<<°°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在⑴中猜想的结论是否仍然成立;(3)若将图①中的DBE △绕点B 按顺时针方向旋转角β,且60180β<<°°,其它条件不变,如图③.你认为⑴中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF 、EF 与DE 之间的关系,并说明理由.种植品种 数量A 种作物B 种作物 原种植量(棵) 50 60 原产量(千克/棵) 30 26 第25题图26.如图,在平面直角坐标系中,点O 为坐标原点.Rt OAB △的斜边OA 在x 轴的正半轴上,点A 的坐标为(2,0),点B 在第一象限内,且OB =3,∠OBA =90°.以边OB 所在直线折叠Rt OAB △,使点A 落在点C 处.(1)求证:OAC △为等边三角形;(2)点D 在x 轴的正半轴上,且点D 的坐标为(4,0).点P 为线段OC 上一动点(点P 不与点O 重合),连接P A 、PD .设PC x =,△P AD 的面积为y ,求y 与x 之间的函数关系式;(3)在(2)的条件下,当12x =时,过点A 作AM PD ⊥于点M ,若k =PDAM 27, 求证:二次函数k x k x y 3)337(22+---=的图象关于y 轴对称.第26题图沈阳市2010年中等学校招生统一考试数 学 试 题试题满分150分,考试时间120分钟注意事项:1. 答题前,考生须用0.5mm 黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2. 考生须在答题卡上作答,不能在本试题卷上做答,答在本试题卷上无效;3. 考试结束,将本试题卷和答题卡一并交回;4. 本试题卷包括八道大题,25道小题,共6页。

2012年辽宁省沈阳市中考数学试卷及答案

2012年辽宁省沈阳市中考数学试卷及答案

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前辽宁省沈阳市2012年中考数学试卷数学 .............................................................................. 1 辽宁省沈阳市2012年中考数学试卷数学答案解析 .. (4)辽宁省沈阳市2012年中考数学试卷数学本试卷满分150分,考试时间120分钟参考公式:抛物线2y a x b x c =++的顶点是24(,)24b ac ba a--,对称轴是直线2bx a=-。

一、选择题(下列各题的备选答案中,只有一个答案是正确的。

每小题3分,共24分) 1.下列各数中比0小的数是( ) A .3- B .13C .3D2.左下图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是( )ABCD 3.沈阳地铁2号线的开通,方便了市民的出行。

从2012年1月9日到2月7日的30天里,累计客运量约达3040 000人次,将3040 000用科学记数法表示为( ) A .53.0410⨯ B .63.0410⨯ C .530.410⨯ D .70.30410⨯ 4.计算32(2)a a 的结果是A .52a B .62a C .58aD .68a5.在平面直角坐标系中,点2()1,P -关于x 轴的对称点的坐标为( ) A .(1,2)-- B .(1,)2- C .(2,)1-D .()2,1-6.气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是( )A .本市明天将有30%的地区降水B .本市明天将有30%的时间降水C .本市明天有可能降水D .本市明天肯定不降水7.一次函数2y x =-+的图象经过( )A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限8.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,则图中的等腰直角三角形有( ) A .4个 B .6个 C .8个 D .10个二、填空题(每小题4分,共32分) 9.分解因式:269m m -+= 。

2012年沈阳中考数学真题卷含答案解析

2012年沈阳中考数学真题卷含答案解析

2012年沈阳市中等学校招生统一考试试卷数学13A(满分:150分 时间:120分钟)参考公式:抛物线y=ax 2+bx+c 的顶点是(-b2a ,4ac -b 24a),对称轴是直线x=-b2a .第Ⅰ卷(选择题,共24分)一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.下列各数中比0小的数是( )A.-3B.13 C.3 D.√32.如图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是( )3.沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3 040 000人次,将3 040 000用科学记数法表示为( ) A.3.04×105 B.3.04×106 C.30.4×105 D.0.304×1074.计算(2a)3·a 2的结果是( ) A.2a 5 B.2a 6 C.8a 5 D.8a 65.在平面直角坐标系中,点P(-1,2)关于x 轴的对称点的坐标为( ) A.(-1,-2) B.(1,-2) C.(2,-1) D.(-2,1)6.气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是( ) A.本市明天将有30%的地区降水 B.本市明天将有30%的时间降水 C.本市明天有可能降水 D .本市明天肯定不降水7.一次函数y=-x+2的图象经过( ) A.一、二、三象限 B .一、二、四象限 C.一、三、四象限 D .二、三、四象限8.如图,正方形ABCD 中,对角线AC,BD 相交于点O,则图中的等腰直角三角形有( )A.4个B.6个C.8个D.10个第Ⅱ卷(非选择题,共126分)二、填空题(每小题4分,共32分)9.分解因式:m 2-6m+9= .10.一组数据1,3,3,5,7的众数是 . 11.五边形的内角和为 度. 12.不等式组{x +1>0,1-2x >0的解集是 .13.已知△ABC ∽△A'B'C',相似比为3∶4,△ABC 的周长为6,则△A'B'C'的周长为 .14.已知点A 为双曲线y=kx 图象上的点,点O 为坐标原点,过点A 作AB ⊥x 轴于点B,连结OA.若△AOB 的面积为5,则k 的值为 .15.有一组多项式:a+b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为 .16.如图,菱形ABCD 的边长为8 cm,∠A=60°,DE ⊥AB 于点E,DF ⊥BC 于点F,则四边形BEDF 的面积为 cm 2.三、解答题(本大题共9小题,共94分)17.(本题8分)计算:(-1)2+|√2-1|+2sin 45°.18.(本题8分)小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图,小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.(1)小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接..写出结果) (2)请你用列表法或画树状图(树形图)法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)19.(本题10分)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连结EF,分别交AB,CD 于点M,N,连结DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.20.(本题10分)为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查.其中调查问卷设置以下选项(被调查者只能选择其中的一项):A.出台相关法律法规;B.控制用水大户数量;C.推广节水技改和节水器具;D.用水量越多,水价越高;E.其他.根据调查结果制作了统计图表的一部分如下:你认为最有效的节水措施的条形统计图(1)此次抽样调查的人数为人;(2)结合上述统计图表可得m=,n=;(3)请根据以上信息直接..补全条形统计图.13B21.(本题10分)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?22.(本题10分)如图,☉O是△ABC的外接圆,AB是☉O的直径,D为☉O上一点,OD⊥AC,垂足为E,连结BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.23.(本题12分)已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D 分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);②若矩形CDEF的面积为60,请直接..写出此时点C的坐标.24.(本题12分)已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4√3,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上;(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连结CD,DE,EF,FC,OP.①当AB⊥OP时,请直接..写出四边形CDEF的周长的值;②若四边形CDEF的周长用t表示,请直接..写出t的取值范围.25.(本题14分)已知,如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=-√2x2+mx+n的图象经过A,C两点.(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的(2√2+1)倍.若存在,请直接..写出点P的坐标;若不存在,请说明理由.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.2012年沈阳市中等学校招生统一考试试卷一、选择题1.A正数大于0,0大于负数.故选A.2.D从几何体的左侧看,第1列为2个方块,第2列为1个方块,故选D.3.B用科学记数法表示较大的数,正确的表示形式为a×10n(1≤|a|<10,n为正整数).所以3040 000=3.04×106,故选B.4.C由幂的运算法则得(2a)3·a2=8a3·a2=8a5,故选C.5.A在平面直角坐标系中,关于x轴对称的两个点横坐标相同,纵坐标互为相反数.所以点P(-1,2)关于x轴的对称点的坐标为(-1,-2),故选A.6.C本市明天降水概率是指降水发生的可能性大小而不是指多少地区或多少时间降水,故选C.7.B因为k=-1<0,b=2>0,所以y=-x+2的图象经过第一、二、四象限.故选B.8.C正方形的两条对角线把正方形分成四个相同的小等腰直角三角形.这四个小等腰直角三角形又可以拼成四个等腰直角三角形,故选C.二、填空题9.答案(m-3)2解析m2-6m+9=(m-3)2.10.答案3解析众数是出现次数最多的数据,所以这组数据的众数为3.11.答案540解析五边形的内角和=(5-2)×180°=540°.12.答案-1<x<12解析解不等式x+1>0得x>-1;解不等式1-2x>0得x<12,所以原不等式组的解集为-1<x<12.13.答案8解析相似三角形的周长比等于相似比.由题意得△ABC的周长△A'B'C'的周长=34,因为△ABC的周长为6,所以△A'B'C'的周长=4×63=8.14.答案10或-10解析设点A坐标为(x,y).因为点A在双曲线y=kx图象上,所以xy=k.当k>0时,点A在第一、三象限,S△AOB=12xy=5,∴k=10;当k<0时,点A在第二、四象限,S△AOB=-12xy=5,∴k=-10.评析本题考查反比例函数的几何意义.解决本题的关键在于对点A所在象限的分类讨论.15.答案a10-b20解析观察多项式的首项:a,a2,a3,a4,…,显然第10个多项式的首项为a10;观察多项式的末项:b2,-b4,b6,-b8,…,第10个多项式的末项为-b20.故第10个多项式为a10-b20.评析本题是规律探索问题.主要关注单项式的系数、次数的变化情况,同时注意符号的改变与否.16.答案16√3解析连结BD.在菱形ABCD中,AD=AB,又∵∠A=60°,∴△ABD为等边三角形,∴S△ADE=S△BDE,同理S△CDF=S△BDF,∴S四边形BEDF=12S菱形ABCD=S△ABD.∵∠A=60°,∴DE=AD·sin60°=4√3cm,∴S四边形BEDF=S△ABD=12×8×4√3=16√3cm2.三、解答题17.解析原式=1+√2-1+2×√22=2√2.18.解析(1)13.(2)列表得第二次第一次A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)或画树状(形)图得由表格(或树状图/树形图)可知,共有9种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学,一个是国外大学的结果有4种:(A,C)、(B,C)、(C,A)、(C,B).∴P(两次抽取的卡片上的图片一个是国内大学、一个是国外大学)=49.19.证明(1)∵四边形ABCD是平行四边形,∴∠DAB=∠BCD,∴∠EAM=∠FCN.又∵AD∥BC,∴∠E=∠F.∵AE=CF,∴△AEM≌△CFN.(2)由(1)得AM=CN,又∵四边形ABCD是平行四边形,∴AB△CD,∴BM△DN,∴四边形BMDN是平行四边形.20.解析(1)500.(2)35%;5%.(3)21.解析设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得150 x+10=120x,解得x=40.经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.22.证明(1)∵OD⊥AC,OD为半径,∴CD⏜=AD ⏜, ∴∠CBD=∠ABD,∴BD 平分∠ABC. (2)∵OB=OD,∴∠OBD=∠ODB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°. 又∵OD ⊥AC 于E,∴∠OEA=90°, ∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°. 又∵AB 为☉O 的直径,∴∠ACB=90°, 则在Rt △ACB 中BC=12AB,∵OD=12AB,∴BC=OD.评析 本题考查垂径定理、圆周角定理、等边对等角等知识的综合运用.解决(2)问的关键在于对“30°角所对直角边等于斜边的一半”的认识.23.解析 (1)设直线l 1的表达式为y=k 1x,它过B(18,6),得18k 1=6,k 1=13,∴y=13x.设直线l 2的表达式为y=k 2x+b,它过A(0,24),B(18,6), 得{b =24,18k 2+b =6,解得{k 2=-1,b =24,y=-x+24. (2)①∵点C 在直线l 1上,且点C 的纵坐标为a, ∴a=13x,x=3a,∴点C 的坐标为(3a,a).∵CD ∥y 轴,∴点D 的横坐标为3a. ∵点D 在直线l 2上,∴y=-3a+24, ∴D(3a,-3a+24). ②C(3,1)或C(15,5).24.解析 (1)过点P 作PQ ⊥AB 于点Q.∵PA=PB,∠APB=120°,AB=4√3, ∴AQ=12AB=12×4√3=2√3, ∠APQ=12∠APB=12×120°=60°. 在Rt △APQ 中,sin ∠APQ=AQAP , ∴AP=AQsin △APQ =2√3sin60°=√3√32=4.(2)证明:过点P 分别作PS ⊥OM 于点S,PT ⊥ON 于点T, ∴∠OSP=∠OTP=90°,在四边形OSPT 中, ∠SPT=360°-∠OSP-∠SOT-∠OTP=360°-90°-60°-90°=120°,∴∠APB=∠SPT=120°,∴∠APS=∠BPT.又∵∠ASP=∠BTP=90°,AP=BP, ∴△APS ≌△BPT,∴PS=PT, ∴点P 在∠MON 的平分线上. (3)①8+4√3.②4+4√3<t ≤8+4√3.评析 本题考查角平分线性质定理、中垂线性质定理、全等三角形的判定和性质、锐角三角函数、三角形中位线定理等知识,综合性强,对学生要求较高.第(3)问的解题关键在于随∠APB 的位置变化寻找特殊图形,确定t 的取值范围. 25.解析 (1)如图①,∵A(-2,0),B(0,2),图①∴OA=OB=2,∴AB 2=OA 2+OB 2=22+22=8,∴AB=2√2,∵OC=AB, ∴OC=2√2,即C(0,2√2).又∵抛物线y=-√2x 2+mx+n 的图象经过A 、C 两点,则可得{-4√2-2m +n =0,n =2√2,解得{m =-√2,n =2√2.∴抛物线的表达式为y=-√2x 2-√2x+2√2. (2)证明:∵OA=OB,∠AOB=90°,∴∠BAO=∠ABO=45°. 又∵∠BEO=∠BAO+∠AOE=45°+∠AOE, ∠BEO=∠OEF+∠BEF=45°+∠BEF,∴∠BEF=∠AOE. (3)当△EOF 为等腰三角形时,分三种情况讨论: ①当OE=OF 时,∠OFE=∠OEF=45°, 在△EOF 中,∠EOF=180°-∠OEF-∠OFE=180°-45°-45°=90°.又∵∠AOB=90°, 则此时点E 与点A 重合,不符合题意,此种情况不成立. ②如图②,当FE=FO 时,∠EOF=∠OEF=45°.图②在△EOF 中, ∠EFO=180°-∠OEF-∠EOF=180°-45°-45°=90°, ∴∠AOF+∠EFO=90°+90°=180°, ∴EF ∥AO,∴∠BEF=∠BAO=45°. 又∵由(2)可知,∠ABO=45°,∴∠BEF=∠ABO,∴BF=EF,∴EF=BF=OF=12OB=12×2=1,∴E(-1,1).③如图③,当EO=EF时,过点E作EH⊥y轴于点H.图③在△AOE和△BEF中,∠EAO=∠FBE,EO=EF,∠AOE=∠BEF,∴△AOE≌△BEF,∴BE=AO=2.∵EH⊥OB,∴∠EHB=90°,∴∠AOB=∠EHB,∴EH∥AO,∴∠BEH=∠BAO=45°.在Rt△BEH中,∵∠BEH=∠ABO=45°,∴EH=BH=BEcos45°=2×√22=√2,∴OH=OB-BH=2-√2,∴E(-√2,2-√2).综上所述,当△EOF为等腰三角形时,所求E点坐标为(-1,1)或(-√2,2-√2).(4)P(0,2√2)或P(-1,2√2).评析本题综合考查二次函数的图象和性质、勾股定理、全等三角形、等腰三角形、锐角三角函数等知识,尤其侧重考查分类讨论的思想.。

2013年辽宁省沈阳市中考数学模拟试卷(二)

2013年辽宁省沈阳市中考数学模拟试卷(二)2013年辽宁省沈阳市中考数学模拟试卷(二)一.选择题(每题3分,共24分) C .. C D .5.(3分)(2008•重庆)如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ADMN 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( ). C D .6.(3分)下列事件:(1)阴天会下雨(2)随机投硬币,正面朝上(3)13名同学中两人的出生月份相同(4)2012年奥运会在巴西的里约热内卢举行7.(3分)(2012•北京)如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠BOD=76°,则∠BOM 等于( )8.(3分)(2011•西宁)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为()二.填空题(共8题,每题4分,共32分)9.(4分)(2012•本溪)已知1纳米=10﹣9米,某种微粒的直径为158纳米,用科学记数法表示该微粒的直径为_________米.10.(4分)(2012•本溪)分解因式:9ax2﹣6ax+a=_________.11.(4分)(2011•太原)如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长是_________.12.(4分)(2011•太原)如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是_________(结果保留π).13.(4分)(2011•呼伦贝尔)用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第n个图形需_________根火柴棒.14.(4分)如图,一次函数y=﹣2x的图象与二次函数y=﹣x2+3x图象的对称轴交于点B.已知点P是二次函数y=﹣x2+3x图象在y轴右侧部分上的一个动点,将直线y=﹣2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为_________.15.(4分)(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为_________.16.(4分)(2011•江津区)将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是_________.三.解答题(共9小题,共94分)17.(8分)(2010•桂林)计算:4cos30°+18.(8分)(2012•本溪)如图,△ABC是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路AB、BC、CA跑步(小路的宽度不计).观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B在点C的北偏西75°方向上,AC间距离为400米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(参考数据:≈1.414,≈1.732)19.(12分)(2012•重庆)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是_________.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.20.(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.求证:AM=DF+ME.21.(10分)(2012•本溪)如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC 切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)过D点作DF∥BC交⊙O于点F,求线段DF的长.22.(10分)(2011•日照)如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由.23.(12分)(2006•潍坊)为保证交通安全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.y(米)是关于汽车行驶速度x(千米/时)的函数,给出以下三个函数:①y=ax+b;②y=(k≠0);③y=ax2+bx,请选择恰当的函数来描述停止距离y(米)与汽车行驶速度x(千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;(2)根据你所选择的函数解析式,若汽车刹车后的停止距离为70米,求汽车行驶速度.24.(12分)(2012•上海)己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD 交于点G.(1)求证:BE=DF;(2)当=时,求证:四边形BEFG是平行四边形.25.(14分)(2011•上饶县模拟)如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标分别是C_________,D_________;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.2013年辽宁省沈阳市中考数学模拟试卷(二)参考答案与试题解析一.选择题(每题3分,共24分)C..C D.5.(3分)(2008•重庆)如图,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M 从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ADMN的面积y(cm2)与两动点运动的时间t(s)的函数图象大致是().C D.(y=(6.(3分)下列事件:(1)阴天会下雨(2)随机投硬币,正面朝上(3)13名同学中两人的出生月份相同(4)2012年奥运会在巴西的里约热内卢举行7.(3分)(2012•北京)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()∠×8.(3分)(2011•西宁)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为()∴二.填空题(共8题,每题4分,共32分)9.(4分)(2012•本溪)已知1纳米=10﹣9米,某种微粒的直径为158纳米,用科学记数法表示该微粒的直径为 1.58×10﹣7米.10.(4分)(2012•本溪)分解因式:9ax2﹣6ax+a=a(3x﹣1)2.11.(4分)(2011•太原)如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长是.CF AE=BD==13AE=故答案为:12.(4分)(2011•太原)如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).,再根据旋转的性质得到,AC=BC=故答案为13.(4分)(2011•呼伦贝尔)用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第n个图形需(6n+6)根火柴棒.14.(4分)如图,一次函数y=﹣2x的图象与二次函数y=﹣x+3x图象的对称轴交于点B.已知点P是二次函数y=﹣x2+3x图象在y轴右侧部分上的一个动点,将直线y=﹣2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为(,),(2,2),(,),(,).=PD=a()(,(,,,),)15.(4分)(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为9:1.16.(4分)(2011•江津区)将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是y=(x ﹣5)2+2或y=x2﹣10x+27.三.解答题(共9小题,共94分)17.(8分)(2010•桂林)计算:4cos30°+18.(8分)(2012•本溪)如图,△ABC是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路AB、BC、CA跑步(小路的宽度不计).观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B在点C的北偏西75°方向上,AC间距离为400米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(参考数据:≈1.414,≈1.732)BC=200米,AD=200﹣400+200+﹣19.(12分)(2012•重庆)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是5.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.位女同学的概率是.20.(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.求证:AM=DF+ME.CE=CDBF=CF=BCCE=21.(10分)(2012•本溪)如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC 切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)过D点作DF∥BC交⊙O于点F,求线段DF的长.;然后根据平行线截线段成比例证得,即,由此可以求得∵∴,即,DG=,DF=22.(10分)(2011•日照)如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由.y=,2=.∴,得:×解方程组∴(不合题意,舍去)23.(12分)(2006•潍坊)为保证交通安全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.y(米)是关于汽车行驶速度x(千米/时)的函数,给出以下三个函数:①y=ax+b;②y=(k≠0);③y=ax2+bx,请选择恰当的函数来描述停止距离y(米)与汽车行驶速度x(千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;(2)根据你所选择的函数解析式,若汽车刹车后的停止距离为70米,求汽车行驶速度.y=(24.(12分)(2012•上海)己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD 交于点G.(1)求证:BE=DF;(2)当=时,求证:四边形BEFG是平行四边形.)利用=得到∴=∴=25.(14分)(2011•上饶县模拟)如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标分别是C(4,2),D(1,2);(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.,然后代入直线,即可得到2)先求出顶点坐标为()先设抛物线解析式为,代入解析式得:2),代入解析式得:=2m,=2))2,则顶点坐标为(,设抛物线解析式为,把点代入得,解析式为,则可设解析式为,,代入解析式得,mm=2,解得);参与本试卷答题和审题的老师有:leikun;lanyan;mengcl;星期八;sjzx;ZJX;gsls;hbxglhl;蓝月梦;ZHAOJJ;lf2-9;自由人;dbz1018;lantin;疯跑的蜗牛;王岑;zcx;gbl210;HJJ;MMCH;sd2011;yangwy(排名不分先后)菁优网2014年3月16日。

2012年辽宁省沈阳市中考数学试卷含答案

2012年沈阳市中考数学试题*试题满分150分 考试时间120分钟参考公式: 抛物线c bx ax y ++=2的顶点是(a b 2-,a b ac 442-),对称轴是直线abx 2-=.一、选择题 (下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.下列各数中比0小的数是A.-3B.311 C.3 D. 3 2.左下图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是3.沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为A .3.04×105B .3.04×106C .30.4×105D .0.304×107 4.计算(2a)3·a 2的结果是A .2a 5B .2a 6C .8a 5D .8a 65.在平面直角坐标系中,点P (-1,2 ) 关于x 轴的对称点的坐标为 A.(-1,-2 ) B.(1,-2 ) C.(2,-1 ) D.(-2,1 )6.气象台预报“本市明天降水概率是30%” ,对此消息下列说法正确的是 A.本市明天将有30%的地区降水 B.本市明天将有30%的时间降水 C.本市明天有可能降水 D.本市明天肯定不降水 7.一次函数y=-x+2的图象经过A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限 8.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,则图中的等腰直角三角形有 A .4个 B .6个 C .8个 D .10个二、填空题(每小题4分,共32分)9.分解因式:m 2-6m +9=____________.10.一组数据1,3,3,5,7的众数是____________. 11.五边形的内角和为____________度.12.不等式组⎩⎨⎧>->+02101x x 的解集是____________.13.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,△ABC 的周长为6,则△A ′B ′C 的周长为____________.14.已知点A 为双曲线y = kx 图象上的点,点O 为坐标原点过点A 作AB ⊥x 轴于点B ,连接OA .若△AOB 的面积为5,则k 的值为____________.15.有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为____________.16.如图,菱形ABCD 的边长为8cm ,∠A =60°,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则四边形BEDF 的面积为____________cm 2.三、解答题(第17、18小题各8分,第19小题10分,共26分 )17.计算:(-1)2+|12|+2sin45°18.小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图.小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.(1) 小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接..写出结果) (2) 请你用列表法或画树状图(树形图) 法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)19.已知,如图,在荀ABCD 中,延长DA 到点E ,延长BC 到点F ,使得AE =CF ,连接EF ,分别交AB ,CD 于点M ,N ,连接DM ,BN .(1)求证:△AEM ≌△CFN ;(2)求证:四边形BMDN 是平行四边形.四、(每小题10分,共20分)20.为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查.其中调查问卷设置以下选项(被调查者只能选择其中的一项):A.出台相关法律法规;B.控制用水大户数量;C.推广节水技改和节水器具;D.用水量越多,水价越高;E.其他.根据调查结果制作了统计图表的一部分如下:(1)此次抽样调查的人数为①人;(2)结合上述统计图表可得m= ②,n= ③;(3)请根据以上信息直接..在答题卡中补全条形统计图.21.甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?五、(本题10分)22.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2) 当∠ODB=30°时,求证:BC=OD.23.已知,如图,在平面直角坐标系内,点A的坐标为(0,24 ),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);②若矩形CDEF的面积为60,请直接..写出此时点C的坐标.七、(本题12分)24.已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与4,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠点O重合),且AB=3APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上;(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.①当AB⊥OP时,请直接..写出四边形CDEF的周长的值;②若四边形CDEF的周长用t表示,请直接..写出t的取值范围.25.已知,如图,在平面直角坐标系中,点A 坐标为(-2,0),点B 坐标为 (0,2 ),点E 为线段AB 上的动点(点E 不与点A ,B 重合),以E 为顶点作∠OET =45°,射线ET 交线段OB 于点F ,C 为y 轴正半轴上一点,且OC =AB ,抛物线y =2-x 2+mx +n 的图象经过A ,C 两点.(1) 求此抛物线的函数表达式; (2) 求证:∠BEF =∠AOE ;(3) 当△EOF 为等腰三角形时,求此时点E 的坐标;(4) 在(3)的条件下,当直线EF 交x 轴于点D ,P 为(1) 中抛物线上一动点,直线PE 交x 轴于点G ,在直线EF 上方的抛物线上是否存在一点P ,使得△EPF 的面积是△EDG 面积的(122+) 倍.若存在,请直接..写出点P 的坐标;若不存在,请说明理由. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.数学试题 参考答案一、选择题(每小题3分,共24分)1.A2.D3.B4.C5.A6.C7.B8.C 二、填空题(每小题4分,共32分)9. (m-3)2 10.3 11. 540 12.-1<x <2113.8 14.10 或 -10 15.a 10-b 20 16. 316 三、解答题 (第17、 18小题各8分, 第19小题10分,共26分) 17.原式=1+ 2-1+2×22=22 18.解: (1)31 (2) 列表得或画树状 (形) 图得由表格 (或树状图/树形图) 可知, 共有9种可能出现的结果, 每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学, 一个是国外大学的结果有4种: (A , C )(B , C )(C , A )(C , B )∴P (两次抽取的卡片上的图片一个是国内大学一个是国外大学) =94. 19.证明:(1) ∵四边形ABCD 是平行四边形∴∠DAB =∠BCD ∴∠EAM =∠FCN 又∵AD ∥BC ∴∠E =∠F ∵AE =CF ∴△AEM ≌△CFN(2) 由(1) 得AM =CN ,又∵四边形ABCD 是平行四边形∴AB CD ∴BM DN ∴四边形BMDN 是平行四边形四、(每小题10分,共20分)20.解: (1) 500 (2) 35%, 5% (3)21.解:设乙每小时加工机器零件x 个, 则甲每小时加工机器零件(x +10) 个, 根据题意得:xx 12010150=+ 解得x =40 经检验, x =40是原方程的解 x +10=40+10=50 答: 甲每小时加工50个零件, 乙每小时加工40个零件. 五、(本题10分) 22.证明: (1) ∵OD ⊥AC OD 为半径∴∴∠CBD =∠ABD ∴BD 平分∠ABC(2) ∵OB =OD ∴∠OBD =∠ODB =30°∴∠AOD =∠OBD +∠ODB =30°+30°=60° 又∵OD ⊥AC 于E ∴∠OEA =90°∴∠A =180°-∠OEA -∠AOD =180°-90°-60°=30° 又∵AB 为⊙O 的直径 ∴∠ACB =90°则在Rt △ACB 中BC =21AB ∵OD=21AB ∴BC =OD23.解:(1)设直线l 1的表达式为y =k 1x ,它过B (18, 6) 得18k 1=6 k 1=31 ∴y =31x设直线l 2的表达式为y =k 2x +b ,它过A (0, 24), B (18, 6)得⎩⎨⎧=+=618242b k b 解得⎩⎨⎧=-=212b ky =-x +24 (2) ①∵点C 在直线l 1上, 且点C 的纵坐标为a ,∴a =31x x =3a ∴点C 的坐标为 (3a , a ) ∵CD ∥y 轴∴点D 的横坐标为3a ∵点D 在直线l 2上 ∴y =-3a +24 ∴D (3a , -3a +24) ②C (3, 1) 或C (15, 5) 七、(本题12分) 24.解: (1) 过点P 作PQ ⊥AB 于点Q ∵P A =PB , ∠APB =120° AB =43∴AQ =21AB =21×43=23 ∠APQ= 21∠APB =21×120°=60°在Rt △APQ 中, sin ∠APQ =AP AQ ∴AP= 233260sin 32sin =︒=∠APQ AQ =sin60°=4(2) 过点P 分别作PS ⊥OM 于点S , PT ⊥ON 于点T ∴∠OSP =∠OTP =90° 在四边形OSPT 中,∠SPT =360°-∠OSP -∠SOT -∠OTP =360°-90°-60°-90°=120° ∴∠APB =∠SPT =120° ∴∠APS =∠BPT 又∵∠ASP =∠BTP =90° AP =BP ∴△APS ≌△BPT ∴PS =PT ∴点P 在∠MON 的平分线上(3) ①8+43 ②4+43<t ≤8+4325.解:(1) 如答图①, ∵A (-2, 0) B (0, 2)∴OA =OB =2 ∴AB 2=OA 2+OB 2=22+22=8∴AB =22∵OC =AB ∴OC =22, 即C (0, 22)又∵抛物线y =-2x 2+mx +n 的图象经过A 、C 两点 则可得⎪⎩⎪⎨⎧==+--220224n n m 解得:⎪⎩⎪⎨⎧=-=222n m ∴抛物线的表达式为y =-2x 2-2x +22 (2) ∵OA =OB ∠AOB =90° ∴∠BAO =∠ABO =45° 又∵∠BEO =∠BAO +∠AOE =45°+∠AOE∠BEO =∠OEF +∠BEF =45°+∠BEF ∴∠BEF =∠AOE (3) 当△EOF 为等腰三角形时,分三种情况讨论 ①当OE =OF 时, ∠OFE =∠OEF =45°在△EOF 中, ∠EOF =180°-∠OEF -∠OFE =180°-45°-45°=90° 又∵∠AOB =90°则此时点E 与点A 重合, 不符合题意, 此种情况不成立. ②如答图②, 当FE =FO 时, ∠EOF =∠OEF =45°在△EOF 中,∠EFO =180°-∠OEF -∠EOF =180°-45°-45°=90°∴∠AOF +∠EFO =90°+90°=180°∴EF ∥AO ∴ ∠BEF =∠BAO =45° 又∵ 由 (2) 可知 ,∠ABO =45°∴∠BEF =∠ABO ∴BF =EF ∴EF =BF =OF =21OB=21×2=1 ∴ E (-1, 1) ③如答图③, 当EO =EF 时, 过点E 作EH ⊥y 轴于点H 在△AOE 和△BEF 中,∠EAO =∠FBE , EO =EF , ∠AOE =∠BEF ∴△AOE ≌△BEF ∴BE =AO =2∵EH ⊥OB ∴∠EHB =90°∴∠AOB =∠EHB ∴EH ∥AO ∴∠BEH =∠BAO =45° 在Rt △BEH 中, ∵∠BEH =∠ABO =45° ∴EH =BH =BE cos45°=2×22=2 ∴OH =OB -BH =2- 22∴ E (-2, 2-2)综上所述, 当△EOF 为等腰三角形时, 所求E 点坐标为E (-1, 1)或E (-2, 2- 22) (4) P (0, 22)或P (-1, 22)。

2012年辽宁省沈阳市中考数学试卷讲解

2012年辽宁省沈阳市中考数学试卷一、选择题(下列备选答案中,只有一个是正确的,共8小题,每小题3分,满分24分)1.(3分)下列各数中比0小的数是()A.﹣3 B.C.3 D.2.(3分)如图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C. D.3.(3分)沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为()A.3.04×105B.3.04×106C.30.4×105D.0.304×1074.(3分)计算(2a)3•a2的结果是()A.2a5B.2a6C.8a5D.8a65.(3分)在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2) C.(2,﹣1)D.(﹣2,1)6.(3分)气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是()A.本市明天将有30%的地区降水B.本市明天将有30%的时间降水C.本市明天有可能降水D.本市明天肯定不降水7.(3分)一次函数y=﹣x+2图象经过()A.一、二、三象限 B.一、二、四象限 C.一、三、四象限 D.二、三、四象限8.(3分)如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个 B.6个 C.8个 D.10个二、填空题(共8小题,每小题4分,满分32分)9.(4分)分解因式:m2﹣6m+9=.10.(4分)一组数据1,3,3,5,7的众数是.11.(4分)五边形的内角和为度.12.(4分)不等式组的解集是.13.(4分)已知△ABC∽△A′B′C′,相似比为3:4,△ABC的周长为6,则△A′B′C′的周长为.14.(4分)已知点A为双曲线y=图象上的点,点O为坐标原点,过点A作AB ⊥x轴于点B,连接OA.若△AOB的面积为5,则k的值为.15.(4分)有一组多项式:a+b2,a2﹣b4,a3+b6,a4﹣b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为.16.(4分)如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC 于点F,则四边形BEDF的面积为cm2.三、解答题(共3小题,17、18各8分,19题10分,共26分)17.(8分)计算:(﹣1)2+|﹣1|+2sin45°.18.(8分)小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图,小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机取一张卡片,放回后洗匀,在随机抽取一张卡片.(1)小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接写出结果)(2)请你用列表法或画树状图(树状图)法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学,一个是国外大学的概率.(卡片名称可用字母表示)19.(10分)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.四、(每小题10分,共20分)20.(10分)为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查,其中问卷设置以下选项(被调查者只能选择其中的一项)A.出台相关法律法规B.控制用水大户数量C.推广节水技改和节水器具D.用水量越多,水价越高.E.其他根据调查结果制作了统计图表的一部分如下:你认为最有效的节水措施的统计表:你认为最有效的节水措施的条形统计图:(1)此次抽样调查的人数为人;(2)结合上述统计图表可得m=;n=.(3)请根据以上信息直接补全条形统计图.21.(10分)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?五、(本题10分)22.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.六、(本题12分)23.(12分)已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示)②若矩形CDEF的面积为60,请直接写出此时点C的坐标.七、(本题12分)24.(12分)已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上.(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.①当AB⊥OP时,请直接写出四边形CDEF的周长的值;②若四边形CDEF的周长用t表示,请直接写出t的取值范围.八、(本题14分)25.(14分)已知,如图,在平面直角坐标系中,点A坐标为(﹣2,0),点B 坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段0B于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=﹣x2+mx+n的图象经过A,C两点.(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF 的面积是△EDG面积的(2+1)倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.2012年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(下列备选答案中,只有一个是正确的,共8小题,每小题3分,满分24分)1.(3分)(2012•沈阳)下列各数中比0小的数是()A.﹣3 B.C.3 D.【解答】解:A、﹣3<0,故本选项正确;B、>0,故本选项错误;C、3>0,故本选项错误;D、>0,故本选项错误;故选A.2.(3分)(2012•沈阳)如图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C. D.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.故选D.3.(3分)(2012•沈阳)沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为()A.3.04×105B.3.04×106C.30.4×105D.0.304×107【解答】解:将3040000用科学记数法表示为3.04×106.故选B.4.(3分)(2012•沈阳)计算(2a)3•a2的结果是()A.2a5B.2a6C.8a5D.8a6【解答】解:(2a)3•a2=8a5.故选C.5.(3分)(2012•沈阳)在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2) C.(2,﹣1)D.(﹣2,1)【解答】解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.6.(3分)(2012•沈阳)气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是()A.本市明天将有30%的地区降水B.本市明天将有30%的时间降水C.本市明天有可能降水D.本市明天肯定不降水【解答】解:本市明天降水概率是30%是指明天降水的可能性问题,且可能性比较小,即本市明天有可能降水.故选C.7.(3分)(2012•沈阳)一次函数y=﹣x+2图象经过()A.一、二、三象限 B.一、二、四象限 C.一、三、四象限 D.二、三、四象限【解答】解:∵﹣1<0,∴一次函数y=﹣x+2的图象一定经过第二、四象限;又∵2>0,∴一次函数y=﹣x+2的图象与y轴交于正半轴,∴一次函数y=﹣x+2的图象经过第一、二、四象限;故选B.8.(3分)(2012•沈阳)如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个 B.6个 C.8个 D.10个【解答】解:∵正方形ABCD中,对角线AC,BD相交于点O,∴AB=BC=CD=AD,AO=OD=OC=OB,∴△ABC,△BCD,△ADC,△ABD,△AOB,△BOC,△COD,△AOD都是等腰三角形,一共8个.故选:C.二、填空题(共8小题,每小题4分,满分32分)9.(4分)(2012•沈阳)分解因式:m2﹣6m+9=(m﹣3)2.【解答】解:m2﹣6m+9=(m﹣3)2,故答案为:(m﹣3)2.10.(4分)(2012•沈阳)一组数据1,3,3,5,7的众数是3.【解答】解:3出现的次数最多,所以众数是3.故填3.11.(4分)(2012•沈阳)五边形的内角和为540度.【解答】解:五边形的内角和为(5﹣2)×180°=540°.故答案为:540.12.(4分)(2012•沈阳)不等式组的解集是﹣1<x<.【解答】解:,∵解不等式①得:x>﹣1,解不等式②得:x<,∴不等式组的解集是﹣1<x<,故答案为:﹣1<x<.13.(4分)(2012•沈阳)已知△ABC∽△A′B′C′,相似比为3:4,△ABC的周长为6,则△A′B′C′的周长为8.【解答】解:∵△ABC∽△A′B′C′,∴△ABC的周长:△A′B′C′的周长=3:4,∵△ABC的周长为6,∴△A′B′C′的周长=6×=8.故答案为:8.14.(4分)(2012•沈阳)已知点A为双曲线y=图象上的点,点O为坐标原点,过点A作AB⊥x轴于点B,连接OA.若△AOB的面积为5,则k的值为10或﹣10.【解答】解:∵点A为双曲线y=图象上的点,∴设点A的坐标为(x,);又∵△AOB的面积为5,∴S=|x|•||=5,即|k|=10,△AOB解得,k=10或k=﹣10;故答案是:10或﹣10.15.(4分)(2012•沈阳)有一组多项式:a+b2,a2﹣b4,a3+b6,a4﹣b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为a10﹣b20.【解答】解:∵第1个多项式为:a1+b2×1,第2个多项式为:a2﹣b2×2,第3个多项式为:a3+b2×3,第4个多项式为:a4﹣b2×4,…∴第n个多项式为:a n+(﹣1)n+1b2n,∴第10个多项式为:a10﹣b20.故答案为:a10﹣b20.16.(4分)(2012•沈阳)如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF的面积为16cm2.【解答】解:如图,连接BD,∵∠A=60°,AB=AD(菱形的边长),∴△ABD是等边三角形,∴DE=AD=×8=4cm,根据菱形的对称性与等边三角形的对称性可得,四边形BEDF的面积等于△ABD 的面积,×8×4=16cm2.故答案为:16.三、解答题(共3小题,17、18各8分,19题10分,共26分)17.(8分)(2012•沈阳)计算:(﹣1)2+|﹣1|+2sin45°.【解答】原式=1+﹣1+2×=2.18.(8分)(2012•沈阳)小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图,小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机取一张卡片,放回后洗匀,在随机抽取一张卡片.(1)小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接写出结果)(2)请你用列表法或画树状图(树状图)法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学,一个是国外大学的概率.(卡片名称可用字母表示)【解答】解:(1);(2)列表得:画树状图:由表格或树状图可知,共有9种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学,一个是国外大学的结果有4种:(A,B),(B,A),(B,C),(C,B),所以,P(两次抽取的卡片上的图片一个是国内大学一个是国外大学)=.19.(10分)(2012•沈阳)已知,如图,在▱ABCD中,延长DA到点E,延长BC 到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.【解答】证明:(1)四边形ABCD是平行四边形,∴∠DAB=∠BCD,∴∠EAM=∠FCN,又∵AD∥BC,∴∠E=∠F.∵在△AEM与△CFN中,,∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形,∴AB CD,又由(1)得AM=CN,∴BM DN,∴四边形BMDN是平行四边形.四、(每小题10分,共20分)20.(10分)(2012•沈阳)为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查,其中问卷设置以下选项(被调查者只能选择其中的一项)A.出台相关法律法规B.控制用水大户数量C.推广节水技改和节水器具D.用水量越多,水价越高.E.其他根据调查结果制作了统计图表的一部分如下:你认为最有效的节水措施的统计表:你认为最有效的节水措施的条形统计图:(1)此次抽样调查的人数为500人;(2)结合上述统计图表可得m=35%;n=5%.(3)请根据以上信息直接补全条形统计图.【解答】解:(1)75÷15%=500人;(2)n=×100%=5%,m=1﹣20%﹣15%﹣25%﹣5%=1﹣65%=35%,(3)A组人数:500×20%=100人,C组人数:500×35%=175人,补全统计图如图:21.(10分)(2012•沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?【解答】解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.五、(本题10分)22.(10分)(2012•沈阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D 为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.【解答】证明:(1)∵OD⊥AC OD为半径,∴=,∴∠CBD=∠ABD,∴BD平分∠ABC;(2)∵OB=OD,∴∠OBD=∠0DB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,又∵OD⊥AC于E,∴∠OEA=90°,∴∠A=180°﹣∠OEA﹣∠AOD=180°﹣90°﹣60°=30°,又∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,BC=AB,∵OD=AB,∴BC=OD.六、(本题12分)23.(12分)(2012•沈阳)已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示)②若矩形CDEF的面积为60,请直接写出此时点C的坐标.【解答】解:(1)设直线l1的表达式为y=k1x,它过(18,6)得18k1=6 k1=∴y=x设直线l2的表达式为y=k2x+b,它过点A(0,24),B(18,6)得解得,∴直线l2的表达式为:y=﹣x+24;(2)①∵点C在直线l1上,且点C的纵坐标为a,∴a=x x=3a,∴点C的坐标为(3a,a),∵CD∥y轴∴点D的横坐标为3a,∵点D在直线l2上,∴y=﹣3a+24∴D(3a,﹣3a+24)②∵C(3a,a),D(3a,﹣3a+24)∴CF=3a,CD=﹣3a+24﹣a=﹣4a+24,∵矩形CDEF的面积为60,=CF•CD=3a×(﹣4a+24)=60,解得a=1或a=5,∴S矩形CDEF当a=1时,3a=3,故C(3,1);当a=5时,3a=15,故C(15,5);综上所述C点坐标为:C(3,1)或(15,5).七、(本题12分)24.(12分)(2012•沈阳)已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4,在∠MON的内部,△AOB 的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上.(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.①当AB⊥OP时,请直接写出四边形CDEF的周长的值;②若四边形CDEF的周长用t表示,请直接写出t的取值范围.【解答】(1)解:过点P作PQ⊥AB于点Q.∵PA=PB,∠APB=120°,AB=4∴AQ=BQ=2,∠APQ=60°(等腰三角形的“三线合一”的性质),在Rt△APQ中,sin∠APQ=∴AP====4;(2)证明:过点P分别作PS⊥OM于点S,PT⊥ON于点T.∴∠OSP=∠OTP=90°(垂直的定义);在四边形OSPT中,∠SPT=360°﹣∠OSP﹣∠SOB﹣∠OTP=360°﹣90°﹣60°﹣90°=120°,∴∠APB=∠SPT=120°,∴∠APS=∠BPT;又∵∠ASP=∠BTP=90°,AP=BP,∴△APS≌△BPT,∴PS=PT(全等三角形的对应边相等)∴点P在∠MON的平分线上;(3)①∵OP平分∠AOB,∠AOB=60°,OP⊥AB,∴AQ=BQ=AB=2,∴OQ==6,同理:PQ==2,∴OP=8,∵点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,∴CD=EF=AB,CF=DE=OP,∴四边形CDEF的周长为:8+4②CD和EF是△ABO和△ABP的中位线,则CD=EF=AB=2,CF和DE分别是△AOP和△BOP的中位线,则CF=DE=OP,当AB⊥OP时,OP为四点边形AOBP外接圆的直径时,OP最大,其值是8,OP 一定大于当点A或B与点O重合时的长度是4.则4+4<t≤8+4.八、(本题14分)25.(14分)(2012•沈阳)已知,如图,在平面直角坐标系中,点A坐标为(﹣2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段0B于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=﹣x2+mx+n的图象经过A,C两点.(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF 的面积是△EDG面积的(2+1)倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)如图①,∵A(﹣2,0)B(0,2)∴OA=OB=2,∴AB2=OA2+OB2=22+22=8∴AB=2,∵OC=AB∴OC=2,即C(0,2)又∵抛物线y=﹣x2+mx+n的图象经过A、C两点则可得,解得.∴抛物线的表达式为y=﹣x2﹣x+2.(2)∵OA=OB,∠AOB=90°,∴∠BAO=∠ABO=45°又∵∠BEO=∠BAO+∠AOE=45°+∠AOE,∠BEO=∠OEF+∠BEF=45°+∠BEF,∴∠BEF=∠AOE.(3)当△EOF为等腰三角形时,分三种情况讨论①当OE=OF时,∠OFE=∠OEF=45°在△EOF中,∠EOF=180°﹣∠OEF﹣∠OFE=180°﹣45°﹣45°=90°又∵∠AOB=90°则此时点E与点A重合,不符合题意,此种情况不成立.②如图2,当FE=FO时,∠EOF=∠OEF=45°在△EOF中,∠EFO=180°﹣∠OEF﹣∠EOF=180°﹣45°﹣45°=90°∴∠AOF+∠EFO=90°+90°=180°∴EF∥AO,∴∠BEF=∠BAO=45°又∵由(2)可知,∠ABO=45°∴∠BEF=∠ABO,∴BF=EF,EF=BF=OB=×2=1∴E(﹣1,1)③如图③,当EO=EF时,过点E作EH⊥y轴于点H在△AOE和△BEF中,∠EAO=∠FBE,EO=EF,∠AOE=∠BEF∴△AOE≌△BEF,∴BE=AO=2∵EH⊥OB,∴∠EHB=90°,∴∠AOB=∠EHB∴EH∥AO,∴∠BEH=∠BAO=45°在Rt△BEH中,∵∠BEH=∠ABO=45°∴EH=BH=BEcos45°=2×=∴OH=OB﹣BH=2﹣∴E(﹣,2﹣)综上所述,当△EOF为等腰三角形时,所求E点坐标为E(﹣1,1)或E(﹣,2﹣).(4)假设存在这样的点P.当直线EF与x轴有交点时,由(3)知,此时E(﹣,2﹣).如图④所示,过点E作EH⊥y轴于点H,则OH=FH=2﹣.由OE=EF,易知点E为Rt△DOF斜边上的中点,即DE=EF,过点F作FN∥x轴,交PG于点N.=S△EDG,易证△EDG≌△EFN,因此S△EFN依题意,可得S△EPF=(2+1)S△EDG=(2+1)S△EFN,∴PE:NE=(2+1):1.过点P作PM⊥x轴于点M,分别交FN、EH于点S、T,则ST=TM=2﹣.∵FN∥EH,∴PT:ST=PE:NE=2+1,∴PT=(2+1)•ST=(2+1)(2﹣)=3﹣2;∴PM=PT+TM=2,即点P的纵坐标为2,∴﹣x2﹣x+2=2,解得x1=0,x2=﹣1,∴P点坐标为(0,2)或(﹣1,2).综上所述,在直线EF上方的抛物线上存在点P,使得△EPF的面积是△EDG面积的(2+1)倍;点P的坐标为(0,2)或(﹣1,2).参与本试卷答题和审题的老师有:zjx111;HJJ;zhangCF;王岑;wdzyzlhx;zcx;dbz1018;lantin;星期八;sjzx;ZJX;未来(排名不分先后)菁优网2017年3月25日。

2024年辽宁省沈阳市铁西区中考数学零模试卷及参考答案

2024年辽宁省沈阳市铁西区中考数学零模试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如果气温升高2°C时气温变化记作+2°C,那么气温下降4°C时气温变化记作()A.+4°C B.﹣4°C C.+6°C D.﹣6°C2.(3分)如图所示几何体的左视图是()A.B.C.D.3.(3分)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.4.(3分)下列运算结果正确的是()A.x4+x4=2x8B.(﹣2x2)3=﹣6x6C.x6÷x3=x3D.x2•x3=x65.(3分)光线在不同介质中的传播速度是不同的,因此光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=120°,则∠3+∠4=()A.165°B.155°C.105°D.90°6.(3分)计算﹣的结果是()A.3B.3a+3b C.1D.7.(3分)若一次函数y=(k+3)x﹣1的函数值y随x的增大而减小,则k值可能是()A.2B.C.D.﹣48.(3分)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=2429.(3分)如图,在等腰△ABC中,∠A=40°,分别以点A、点B为圆心,大于AB为半径画弧,两弧分别交于点M和点N,连接MN,直线MN与AC交于点D,连接BD,则∠DBC的度数是()A.20°B.30°C.40°D.50°10.(3分)如图1,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP长与运动时间t(单位:s)的关系如图2,则AC的长为()A.B.C.17D.5二、填空题(本题共5小题,每小题3分,共15分)11.(3分)若a,b为两个连续整数,且a<<b,则a+b=.12.(3分)如图,点A,B,C为正方形网格中的3个格点,则tan∠ACB=.13.(3分)一个不透明的布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n=.14.(3分)如图,在平面直角坐标系中,矩形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=(k≠0,x<0)的图象上,点A,D在x轴上,点C在y轴上,点B 的坐标为(﹣2,4),则点E的坐标为.15.(3分)如图,在矩形ABCD中,AB=4,AD=4,点E是AD边的中点,连接AC,BE交于点F,∠CAD的平分线AG交CD边于点G,点A关于过点E的某条直线的对称点H恰好在AG上,且点H不与点A重合,连接FH,则FH的长为.三、解答题(本题共8小题,共75分.解答题应写出文字说明、演算步骤或推理过程)16.(10分)计算:(1);(2)(a+2)(a﹣2)+a(1﹣a).17.(8分)某工厂计划下个月生产甲,乙两种产品共900件,甲、乙两种产品的相关信息如下表:产品每件利润(元/件)成品率甲10090%乙8095%(成品率=每月生产产品合格可销售的件数÷每月生产产品总的件数×100%)若该工厂下个月生产甲种产品x件,销售甲、乙两种产品的总利润为y元.(1)求y与x之间的函数关系式(不必写自变量的取值范围);(2)若该工厂下个月计划生产的甲、乙两种产品的总成品率不低于92%,且销售利润最大,求此时的最大利润是多少元?18.(9分)小王计划下周日租一辆电动汽车去海边游玩一天,往返行程为210km.他到某租车公司了解到,该公司有若干辆A,B两种型号电动汽车出租,A,B两种型号每辆车每天费用分别为400元,500元.为了选择合适的型号,小王通过调查,了解到该公司这两种型号电动汽车各有20辆,每辆电动汽车充满电后行驶里程的部分数据,如下面的表格和统计图所示.型号平均里程(km)中位数(km)众数(km)A m215nB227.5227.5(1)表格中,m的值为,n的值为;(2)已知B种型号电动汽车充满电后能行驶里程可分成如图2所示的五种情况,请直接补全B种型号电动汽车充满电后能行驶里程条形统计图;(3)如果你是小王,你会选择用哪种型号的电动汽车?请说明理由.19.(8分)甲、乙两地相距200千米,货车从甲地出发,行驶1小时后在途中的丙地出现故障,技术人员乘轿车以100千米/小时的速度从甲地赶来维修(沟通时间忽略不计).到达丙地修好车后以原速原路返回,同时货车改变速度前往乙地.两车距乙地的路程y(千米)与货车驶时间x(小时)之间的函数关系如图所示,请结合图象回答下列问题.(1)求货车出现故障前的速度;(2)求点C的坐标;(3)货车修好后,货车与轿车相距40千米时,求x的值.20.(8分)某零件的剖面示意图如图所示,AB∥CD∥HE,点F,G在线段HE上,且四边形CDGF是正方形,AH⊥HE,垂足为点H,∠BCD=126°,∠E=68°,AB=BC=CD =10cm,求HE的长.(结果精确到1cm,参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)21.(8分)如图,点C在⊙O的直径AB的延长线上,CD是⊙O的切线,点D是切点,AE ⊥CD于点E,AE交⊙O于点F,且BC=1,AB=3.(1)求CE的长;(2)求AF的长.22.(12分)【基础应用】(1)如图1,在平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(2,0),点D的坐标为(4,0),点B在第一象限,且AC⊥BC,BD⊥x轴,求点B的坐标;【变式应用一】(2)如图2,在平面直角坐标系中,点A在函数y=(x>0)的图象上,点B在第二象限,连接OA,OB,AB,∠AOB=90°,∠BAO=60°,点B恰好在反比例函数y=(x<0)的图象上,则k的值为;【变式应用二】(3)如图3,在平面直角坐标系中,二次函数y=﹣x2+3x+4的图象与x轴交于点A和点B,点B在点A的右侧,点C在y轴的正半轴上,连接BC,在第一象限作矩形BCDE,点D在二次函数y=﹣x2+3x+4的图象的对称轴上,连接CE,若tan∠CED=,求点D 的坐标.23.(12分)【方法归纳】(1)在△ABC中,点D在AB边上,DE∥BC交AC于点E,将△ADE绕点A逆时针旋转α(0°<α<90°),得到△AFG,其中点D的对应点是点F,点E的对应点是点G,连接BF,CG.①如图1,如果AD:AE=6:5,求BF:CG的值;②如图2,如果∠BAC=30°,AB=AC,BF的延长线与线段CG交于点H,求∠BHC的度数;【方法应用】(2)如图3,在四边形ABCD中,AB=4,BC=6,连接AC,BD,AC=AD,且∠CAD =90°.则四边形ABCD的对角线BD的长度最大值为.2024年辽宁省沈阳市铁西区中考数学零模试卷参考答案一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.B;2.D;3.D;4.C;5.C;6.A;7.D;8.A;9.B;10.C 二、填空题(本题共5小题,每小题3分,共15分)11.3;12.2;13.9;14.(﹣4,2);15.三、解答题(本题共8小题,共75分.解答题应写出文字说明、演算步骤或推理过程)16.(1)3;(2)a﹣4.;17.(1)y=14x+68400;(2)最大利润是75960元.;18.216;220;19.(1)货车出现故障前的速度是50千米/小时;(2)C(2.5,150);(3)货车修好后,货车与轿车相距40千米时,x的值为2.75小时.;20.HE的长约为30cm.;21.(1);(2).;22.﹣6;23.4+6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年辽宁省沈阳市中考数学模拟试卷(七)2012年辽宁省沈阳市中考数学模拟试卷(七)一、选择题(本大题共12个小题,1-6小题,每小题2分;7-12小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)C.2.(2分)(2012•北塘区一模)检测4袋食盐,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,3.(2分)(2012•栖霞市二模)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于().C D.5.(2分)(2013•盐城模拟)四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s2如表所示.如果选)6.(2分)有3人携带装修材料乘坐电梯,这3人的体重共200kg,每捆材料重20kg,电梯最大负荷为1050kg,则7.(3分)(2011•随州)一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为()C8.(3分)如图,AD、AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=2,则BC的长等于()C D.9.(3分)为了参加2012年石家庄我市举办的铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.设自行车路段的长度为.10.(3分)(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()y=11.(3分)(2011•阜新)如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()12.(3分)如图,直线l是菱形ABCD和矩形EFGH的对称轴,C点在EF边上,若菱形ABCD沿直线l从左向右匀速运动,运动到C在GH边上为止,在整个运动的过程中,菱形与矩形重叠部分的面积(S)与运动的路程(x)之间的函数关系的图象大致是().CD .二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上) 13.(3分)(2013•大庆)在函数y=中,自变量x 的取值范围是 _________.14.(3分)(2013•太仓市二模)已知关于x 的方程x 2+bx+a=0有一个根是﹣a (a ≠0),则a ﹣b 的值为_________ . 15.(3分)(2012•甘井子区模拟)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为 _________ .16.(3分)在边长为1的小正方形组成的4×4网格中,有如图所示的A 、B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为 _________ .17.(3分)(2011•益阳)如图,AB 是⊙O 的切线,半径OA=2,OB 交⊙O 于C ,∠B=30°,则劣弧的长是_________ .(结果保留π)18.(3分)(2011•济宁)如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有 _________ 个.三、解答题(本大题8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.(8分)先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)+(a+b)2,其中.20.(8分)(2011•南宁)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为_________,点C的坐标为_________.(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为_________.(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1:2.请在网格内画出△A2B2C2,并写出点A2的坐标:_________.21.(8分)某太阳能热水器经销商在六周内试销A,B两个品牌的太阳能热水器,试销期间两种品牌的销量相同,试销结束后,依据统计数据绘制了以下尚不完整的统计图表.(1)在图1中,“第五周”所在扇形的圆心角等于_________°;B品牌销量折线图.(3)请分别写出A,B两种品牌太阳能热水器周销售量的中位数.(4)如果该经销商决定从这两种品牌中挑选一种作为该品牌的一级代理商,请结合折线的走势进行简要分析,判断该经销商应选择代理哪种品牌的太阳能热水器?22.(8分)(2010•济宁)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(完成工程的工期为整数)(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量的方案有几种?请你帮助设计出来(工程队分配工程量为正整百数).23.(9分)(2011•绍兴)数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE_________DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE_________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD 的长(请你直接写出结果).24.(9分)(2010•无锡)如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.25.(10分)(2011•梧州)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?26.(12分)(2011•吉林)如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s时,y=_________cm2;当x=s时,y=_________cm2.(2)当5≤x≤14 时,求y与x之间的函数关系式.(3)当动点P在线段BC上运动时,求出S梯形ABCD时x的值.(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.2012年辽宁省沈阳市中考数学模拟试卷(七)参考答案与试题解析一、选择题(本大题共12个小题,1-6小题,每小题2分;7-12小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)C.(﹣=2.(2分)(2012•北塘区一模)检测4袋食盐,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,3.(2分)(2012•栖霞市二模)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于().C D.=5.(2分)(2013•盐城模拟)四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s2如表所示.如果选)6.(2分)有3人携带装修材料乘坐电梯,这3人的体重共200kg,每捆材料重20kg,电梯最大负荷为1050kg,则7.(3分)(2011•随州)一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为()C8.(3分)如图,AD、AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=2,则BC的长等于()C D.=2AD=2OA=4×9.(3分)为了参加2012年石家庄我市举办的铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.设自行车路段的长度为..10.(3分)(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()y=圆面积,OP==aπy=,.11.(3分)(2011•阜新)如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()∴,即,解得12.(3分)如图,直线l 是菱形ABCD 和矩形EFGH 的对称轴,C 点在EF 边上,若菱形ABCD 沿直线l 从左向右匀速运动,运动到C 在GH 边上为止,在整个运动的过程中,菱形与矩形重叠部分的面积(S )与运动的路程(x )之间的函数关系的图象大致是( ).C D .x ×(x 二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.(3分)(2013•大庆)在函数y=中,自变量x 的取值范围是 x ≥﹣ .﹣14.(3分)(2013•太仓市二模)已知关于x的方程x 2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为﹣1.15.(3分)(2012•甘井子区模拟)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为90°.16.(3分)在边长为1的小正方形组成的4×4网格中,有如图所示的A、B两点,在格点上任意放置点C,恰好能使△ABC的面积为1的概率为.概率为:.17.(3分)(2011•益阳)如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧的长是.(结果保留π)劣弧的长是:=故答案为:18.(3分)(2011•济宁)如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有100个.三、解答题(本大题8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.(8分)先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)+(a+b)2,其中.20.(8分)(2011•南宁)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为(2,8),点C的坐标为(6,6).(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为(a﹣7,b).(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1:2.请在网格内画出△A2B2C2,并写出点A2的坐标:(1,4)或(﹣1,﹣4).21.(8分)某太阳能热水器经销商在六周内试销A,B两个品牌的太阳能热水器,试销期间两种品牌的销量相同,试销结束后,依据统计数据绘制了以下尚不完整的统计图表.(1)在图1中,“第五周”所在扇形的圆心角等于90°;B品牌销量折线图.(3)请分别写出A,B两种品牌太阳能热水器周销售量的中位数.(4)如果该经销商决定从这两种品牌中挑选一种作为该品牌的一级代理商,请结合折线的走势进行简要分析,判断该经销商应选择代理哪种品牌的太阳能热水器?=22.(8分)(2010•济宁)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(完成工程的工期为整数)(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量的方案有几种?请你帮助设计出来(工程队分配工程量为正整百数).23.(9分)(2011•绍兴)数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE=DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD 的长(请你直接写出结果).BN=CN=BC=,CD ∴,∴,﹣,24.(9分)(2010•无锡)如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.===40+40=5525.(10分)(2011•梧州)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?.26.(12分)(2011•吉林)如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s时,y=2cm2;当x=s时,y=9cm2.(2)当5≤x≤14 时,求y与x之间的函数关系式.(3)当动点P在线段BC上运动时,求出S梯形ABCD时x的值.(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.x=y==2sy==9)x x∵×8=x,即时,=,即=;=,即=;=,即=.、或参与本试卷答题和审题的老师有:zhangCF;CJX;HLing;345624;zjx111;Linaliu;蓝月梦;liume。

相关文档
最新文档