人教版九年级二次函数综合测试题

合集下载

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。

第二十二章 二次函数 单元测试(含答案) 2024-2025学年人教版数学九年级上册

第二十二章 二次函数 单元测试(含答案) 2024-2025学年人教版数学九年级上册

第二十二章 二次函数一、选择题(每题3分,共24分)1.下列各式中,y 是x 的二次函数的是( )A .y =1x 2B .y =x 2+1x +1C .y =2x 2−1D .y =x 2−12.下列抛物线中,与y =−3x 2+1抛物线形状、开口方向完全相同,且顶点坐标为(−1,2)的是( )A .y =−3(x +1)2+2B .y =−3(x−1)2+2C .y =3(x +1)2+2D .y =−3(x +1)2+23.在平面直角坐标系中,将二次函数y =3x 2的图象向下平移3个单位长度,所得函数的解析式为( )A .y =3x 2−1B .y =3x 2+1C .y =3x 2−3D .y =3x 2+34.若A (−1,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y =−(x−2)2+k 的图象上,则y 1,y 2,y 3的大小关系为( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 3<y 2<y 15.二次函数y =−x 2−2x +c 2−2c 在−3≤x ≤2的范围内有最小值为−5,则c 的值( )A .3或−1B .−1C .−3或1D .36.已知二次函数y =x 2−3x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2−3x +m =0的两实数根是( )A .x 1=0,x 2=−1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=37.如图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面3m ,水面宽6m .如图(2)建立平面直角坐标系,则抛物线的解析式是( )A .y =−13x 2B .y =13x 2C .y =−3x 2D .y =3x 28.如图,已知经过原点的抛物线y =a x 2+bx +c(a ≠0)的对称轴是直线x =−1,下列结论中:①ab >0,②a +b +c >0,③当−2<x <0时y <0.正确的个数是( )A.0个B.1个C.2个D.3个二、填空题(每题4分,共20分)9.抛物线y=−3(x−1)2−2的对称轴是直线 .10.若y=(m−2)x m2−2+x−3是关于x的二次函数.则m的值为 .11.抛物线y=a x2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点为(3,0),对称轴为直线x=1,则当y≤0时,x的取值范围是 .12.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m处达到最高,高度为5m,水柱落地处离池中心距离为6m,则水管的长度OA是 m.13.如图,在平面直角坐标中,抛物线y=a x2+bx(a>0)和直线y=kx(k>0)交于点O和点A,则不等式a x2 +bx<kx的解集为 .三、解答题(共56分)14.如图所示,二次函数y=a x2+bx+c(a≠0)的图保与x轴相交于A,B两点,其中点A的坐标为(−1,0),M(2,9)为抛物线的顶点.(1)求抛物线的函数表达式.(2)求△MCB的面积.15.如图所示,在平面直角坐标系中,二次函数y=a x2+4x−3的图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后的图象所对应的二次函数的表达式. 16.已知,一个铝合金窗框如图所示,所使用的铝合金材料长度为18m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式.(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.17.第十九届亚运会在杭州隆重举办,政府鼓励全民加强体育锻炼,李明在政府的扶持下投资销售一种进价为每件50元的乒乓球拍.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=−10x+900.(1)设月利润为W(元),求W关于x的函数表达式.(2)销售单价定为每件多少元时,所得月利润最大?最大月利润为多少元?(3)若物价部门规定这种乒乓球拍的销售单价不得超过75元,李明想使获得的月利润不低于3000元,求销售单价x的取值范围.18.如图,二次函数y=a x2+bx+c的图象交x轴于A(−1,0),B(2,0),交y轴于C(0,−2).(1)求二次函数的解析式;(2)若点M为该二次函数图象在第四象限内一个动点,求点M运动过程中,四边形ACMB面积的最大值;(3)点P在该二次函数图象的对称轴上,且使|PB−PC|最大,求点P的坐标。

第二十二章二次函数单元测试 2024—2025学年人教版数学九年级上册

第二十二章二次函数单元测试 2024—2025学年人教版数学九年级上册

第二十二章二次函数单元测试人教版2024—2025学年九年级上册一、选择题(每小题3分共12小题,满分36分)1.下列函数中,属于二次函数的是()A.y=x﹣3 B.y=x2﹣(x+1)2 C.y=x(x﹣1)﹣1D.2.抛物线y=﹣2(x﹣3)2﹣4的顶点坐标()A.(﹣3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(3,4)3.抛物线y=x2+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=0D.直线y=14.若抛物线y=x2+bx+c与x轴交于(1,0),(3,0),则b和c的值为()A.b=4,c=﹣3B.b=﹣4,c=3C.b=﹣4,c=﹣3D.b=4,c=﹣35.函数y=(x+2)(x﹣1)图象与x轴的交点坐标为()A.(0,﹣2)B.(﹣2,0)、(1,0)C.(2,0)、(1,0)D.(2,0)、(﹣1,0)6.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣257.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5 8.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0)B.(4,0)C.(5,0)D.(﹣6,0)9.若抛物线y=x2﹣2x﹣1与x轴的交点坐标为(a,0),则代数式a2﹣2a+2025的值为()A.2027B.2026C.2025D.202410.抛物线y=﹣x2+2x+1与x轴两交点之间的距离是()A.4B.2C.2D.011.二次函数y=x2﹣2x﹣3的图象与y轴的交点坐标是()A.(0,﹣3)B.(1,0)C.(1,﹣4)D.(3,0)12.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1.下列结论中:①abc>0;①2a+b=0;①方程ax2+bx+c=3有两个不相等的实数根;①抛物线与x轴的另一个交点坐标为(﹣2,0);①若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有()A.5个B.4个C.3个D.2个二、填空题(每小题3分共6小题,满分18分13.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=.14.二次函数y=﹣x2+2kx+3的对称轴是x=2,则k=.15.已知函数y=﹣(x﹣1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1y2(填“<”、“>”或“=”)16.抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=.17.如图,各抛物线所对应的函数解析式分别为:①y=ax2;①y=bx2;①y=cx2;①y=dx2.比较a,b,c,d的大小,用“>”连接为.18.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.二次函数单元检测卷答题卡姓名:____座位号:______ 准考证号:_______一、选择题(每小题3分共12小题,满分36分)题号123456789101112答案二、填空题(每小题3分共6小题,满分18分)13、_________ 14、___________ 15、_______________16、_________ 17、___________ 18、_______________三、解答题(满分46分)19.(6分)已知抛物线y=x2+(b﹣2)x+c经过点M(﹣1,﹣2b).(1)求b+c的值.(2)若b=4,求这条抛物线的顶点坐标.20.(6分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.21.(8分)服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件70元,经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式.(2)求该服装店要想销售这批秋衣日获利750元,售价应定多少元?(3)请销售单价为多少元时,该服装店日获利最大?最大获利是多少元?22.(8分)如图,直线y=﹣x﹣2交x轴于点A,交y轴于点B,抛物线y=a(x﹣h)2的顶点为A,且经过点B.(1)求该抛物线对应的函数解析式;(2)若点C(m,﹣)在该抛物线上,求m的值;(3)请在抛物线的对称轴上找一点P,使PO+PB的值最小,求出点P的坐标.23. (9分)小明根据学习函数的经验,对函数y=x 4﹣5x 2+4的图象与性质进行了 探究.下面是小明的探究过程,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应数值如下表:x …﹣2﹣112…y …4.33.20 ﹣2.2 ﹣1.4 02.83.74 3.7 2.8 0 ﹣1.4 ﹣2.2 m 3.2 4.3 …(1)其中m= ;(2)如图,在平面直角坐标系xOy 中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质 ; (4)进一步探究函数图象发现:①方程x 4﹣5x 2+4=0有 个互不相等的实数根;①有两个点(x 1,y 1)和(x 2,y 2)在此函数图象上,当x 2>x 1>2时,比较y 1和y 2的大小关系为:y 1 y 2(填“>”、“<”或“=”); ①若关于x 的方程x 4﹣5x 2+4=a 有4个互不相等的实数根,则a 的取值范围是 .24.已知直线y=x+2分别交x轴、y轴于A、B两点,抛物线y=x2+mx﹣2经过点A,和x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求①ABD面积的最大值;(3)如图2,经过点M(﹣4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE•OF的值.。

人教版数学教材九年级上册《二次函数的图象和性质》综合测试题

人教版数学教材九年级上册《二次函数的图象和性质》综合测试题

《二次函数的图象和性质》综合检测题附参照答案一.选择题(每题 4 分,共 40 分)1、抛物线 y=x2-2x+1 的对称轴是()A.直线 x=1B.直线 x=-1C.直线 x=2D.直线 x=-22、(2008 年武汉市)以下命题:①若 a b c0 ,则b24ac 0 ;②若 b a c ,则一元二次方程ax2bx c0 有两个不相等的实数根;③若 b2a3c ,则一元二次方程ax2bx c 0 有两个不相等的实数根;④若 b24ac0 ,则二次函数的图像与坐标轴的公共点的个数是2或3.此中正确的选项是().A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④.3、对于y2(x 3)2 2 的图象以下表达正确的选项是()A.极点坐标为 (-3, 2)B.对称轴为 y=3C.当 x 3 时y随x增大而增大D.当 x 3 时y随x增大而减小4、(2008 年湖北省仙桃市潜江市江汉油田)如图,抛物线y ax 2bx c(a 0)的对称轴是直线 x 1,且经过点P( 3,0),则 a b c 的值为()A.0B.- 1C.1D.2y3P–1O 13 x5、函数 y=ax2(a≠ 0)的图象经过点 (a,8),则 a 的值为()A.±2B.-2C.2D.36、自由落体公式 h= 1gt2(g 为常量 ), h 与 t 之间的关系是()2A.正比率函数B.一次函数C.二次函数D.以上答案都不对7、以下结论正确的选项是()A. y=ax2是二次函数B.二次函数自变量的取值范围是全部实数C.二次方程是二次函数的特例D.二次函数的取值范围是非零实数8、以下函数关系中,能够看作二次函数2( a0 )模型的是()y ax bx cA.在必定的距离内汽车的行驶速度与行驶时间的关系B.我国人口年自然增加率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D.圆的周长与圆的半径之间的关系9、对于随意实数 m,以下函数必定是二次函数的是()A.y (m 1)2x2B.y (m 1)2x2C.y (m21)x 2D.y (m21) x 210、二次函数y=x2图象向右平移 3 个单位,获取新图象的函数表达式是()A. y=x2+3B.y=x 2-3C. y=(x+3)2D.y=(x-3)2第Ⅱ卷(非选择题,共80 分)二、填空题(每题 4 分,共 40 分)11、某工厂第一年的利润是20 万元,第三年的利润是y 万元,与均匀年增加率x之间的函数关系式是。

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)考试范围:全章综合测试 参考时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.对于函数y =5x 2,下列结论正确的是( )A . y 随x 的增大而增大B . 图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【答案】C .详解:a =5>0,开口向上,对称轴为y 轴,在y 轴左侧,y 随x 的增大而减小,在y 轴的右侧, y 随x 的增大而增大,当x =0时,y =0. 故A 错,B 错,C 对,D 错,∴答案选C . 2.二次函数y =x 2-4x 的图象的对称轴是( )A . x =4B . x =-4C . x =-2D . x =2 【答案】D .详解:a =1,b =-4,由对称轴公式,对称轴为x =-2ba=2,故选D . 3.二次函数y =2(x +1)2-3的图象的顶点坐标是( )A . (1,3)B . (-1,3)C . (1,-3)D .(-1,-3) 【答案】D .详解:知识点:抛物线的顶点式为y =a (x -h )2+k ,顶点坐标为(h ,k ).4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价. 若设平均每次降价的 百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( ) A . y =2a (x -1) B . y =2a (1-x ) C . y =a (1-x 2) D . y =a (1-x )2 【答案】D .详解:第一次降价后的价格为a (1-x )元,第二次降价后的价格为a (1-x )2,故选D . 5.用配方法将函数y =x 2-2x +2写成y =a (x -h )2+k 的形式是( )A . y =(x -1)2+1B . y =(x -1)2-1C . y =(x -1)2-3D . y =(.x +1)2-1 【答案】A .详解:y =x 2-2x +2=(x 2-2x +1)+1=(x -1)2+1,故选A .6.把抛物线y =2x 2绕原点旋转180°,再向右平移1个单位长度,向下平移2个单位长度,所得 的抛物线的函数表达式为( )A . y =2(x -1)2-2B . y =2(x +1)2-2C . y =-2(x -1)2-2D . y =-2(.x +1)2-2 【答案】C .详解:原抛物线的顶点为(0,0),旋转180°后,开口向下,顶点为(0,0),两次平移后的 顶点为(1,-2),故答案为y =-2(x -1)2-2.7. 在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A. y=-14x2+34x+1 B. y=-14x2+34x-1C. y=-14x2-34x+1 D. y=-14x2-34x-1【答案】A.详解:依题意,点B的坐标为(0,1),点A的坐标为(4,0),把A( 4,0),B(0,1)代入y=-14x2+bx+c,解得b=34,c=1,故选A.另法:由B(0,1),可排除B、D,根据“左同右异”的规律,可排除C.8.抛物线y=ax2-2ax+c经过点A(2,4),若其顶点在第四象限,则a的取值范围为()A. a>4B. 0<a<4C. a>2D. 0<a<2【答案】A.详解:把A(2,4)代入,得c=4,∴y=ax2-2ax+4=a(x-1)2+4-a,顶点为(1,4-a),∵顶点在第四象限,∴4-a<0,∴a>4.9.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米【答案】D.详解:配方得y=-32(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来.10. 如图,抛物线y=-2x2+mx+n与x轴交于A、B两点. 若线段AB的长度为4,则顶点C到x轴的距离为()A. 6B. 7C. 8D. 9【答案】C.详解:令y=0,得-2x2+mx+n=0,解得x=284m m n ±+.∴AB=|x1-x2|=282m n+=4,∴m2+8n=64.∴244ac ba-=24(2)4(2)n m---=288m n+=8,故答案选C.二、填空题(每小题3分,共18分)11.抛物线y =2x 2-4的顶点坐标是___________. 【答案】(0,-4).详解:a =2,b =0,c =-4,开口向上,对称轴为y 轴,顶点为(0,-4).12. 若方程ax 2+bx +c =0的解为x 1=-2,x 2=4,则二次函数y =ax 2+bx +c 的对称轴为______. 【答案】直线x =1. 详解:x =242-+=1. 13.如图,抛物线y =a (x -2)2+k (a 、k 为常数且a ≠0)与x 轴交于点A 、B 两点, 与y 轴交于点C ,过点C 作CD ∥x 轴与抛物线交于点D . 若点A 坐标为 (-2,0),则OBCD的值为_________. 【答案】32.详解:抛物线的对称轴为x =2,C 在y 轴上,∴CD =4.又∵A (-2,0),∴B (6,0),∴OB =6. ∴6342OB CD ==. 14.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 向右 平移得到△O 1AB 1,平移后的O 1A 1与抛物线交于点P ,若P 为线段A 1O 1 的中点,则点P 的坐标为________. 【答案】P (2,2).详解:把A (-2,4)代入y =ax 2得a =1,∴y =x 2. ∵A (-2,4),∴点A 1的纵坐标为4, ∵P 为O 1A 1的中点,∴点P 的纵坐标为2, 把y =2代入y =x 2,得x =±2. 取x =2,∴P (2,2).15.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上,若x 1<x 2,x 1+x 2<2m ,则y 1<y 2· 其中正确的结论是________________(填写序号). 【答案】①③.详解:对于①,根据对称轴公式,两抛物线对称轴均为x =m ,故①正确; 对于②,Δ=b 2-4ac =4m 2-4≥0,∴m ≥1或m ≤-1,故②错; 对于③,y =x 2-2mx +1的顶点为(m ,-m 2+1),显然③正确; 对于④,抛物线的开口向上,对称轴为x =m ,∵x 1+x 2<2m ,∴122x x +<m ,P O 1A 1B 1又∵x1<x2,∴点A离对称轴的距离大于点B离对称轴的距离,∴y1>y2,故④错;综上,正确的有①③.16.如图,抛物线y=x2+2x与直线y=2x+1交于A、B两点,与直线x=2交于点D,将抛物线沿着射线AB方向平移25个单位. 在整个平移过程中,点D经过的路程为___________.【答案】738.详解:平移前,D(2,8),∴直线AB的解析式为y=2x +1,∴抛物线沿射线AB方程平移25个单位时,相当于抛物线向右平移了4个单位,向上平移了2个单位. ∵原抛物线顶点为M(-1,-1),平移后的顶点为M′(3,1),平移后的抛物线为y=(x-3)2+1,此时D′(2,2),直线MM′的解析式为y=12x-12,平移过程中,抛物线的顶点始终在y=12x-12上,设顶点为(a,12a-12),-1≤a≤3,抛物线的解析式为y=(x-a)2+12a-12,当x=2时,y=(2-a)2+12a-12=a2-72a+72,即在平移过程中,抛物线与直线x=2的交点的纵坐标为y=a2-72a+72,∵y=a2-72a+72=(a-74)2+716,∴当a=74时,点D到达最低点,此时D(2,716)当a=3时,y=(x-3)2+1,此时D(2,2);观察图形,可知点D的运动路径为D(2,8)→D(2,716)→D(2,2),路径长为(8-716)+(2-716)=738.三、解答题(共8题,共72分)17.(8分)通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1) y=x2-4x+6;(2) y=-4x2+4x.【答案】(1) y=x2-4x+6=x2-4x+4+2=(x-2)2+2,开口向上,对称轴为x=2,顶点坐标为(2,2).(2) y=-4x2+4x=-4(x2-x)=-4(x2-x+14-14)=-4(x-12)2+1,yxM‘MBAD2O开口向下,对称轴为x =12,顶点坐标为(12,1).18.(8分)二次函数的最大值为4,其图象的对称轴为x =2,且过点(1,2),求此函数的解析式. 【答案】∵函数的最大值为4,图象的对称轴为x =2, ∴可设函数的解析式为y =a (x -2)2+4,把(1,2)代入,得:a (1-2)2+4=2,解得a =-2, ∴函数的解析式为y =-2(x -2)2+4.19.(8分)二次函数y =x 2+bx +c 图象上部分点的横坐标x 、纵坐标y 的对应值如下表: (1)求二次函数的表达式;(2)画出二次函数的示意图,结合函数图象, 直接写出y <0时自变量x 的取值范围. 【答案】(1) 把(0,3),(1,0)代入y =x 2+bx +c , 得:310c b c =⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,∴二次函数的表达式为y =x 2-4x +3;(2) 函数的图象如图所示,由图象,可知当1<x <3时,y <0.20.(8分)二次函数的图象与直线y =x +m 交于x 轴上一点A (-1,0), 图象的顶点为C (1,-4). (1)求这个二次函数的解析式;(2)若二次函数的图象与x 轴交于另一点B ,与直线 y =x +m 交于另一点D ,求△ABD 的面积. 【答案】(1)∵图象的顶点为C (1,-4),可设抛物线的解析式为y =a (x -1)2-4, 把(-1,0)代入,得:4a -4=0,∴a =1. ∴抛物线的解析式为y =(x -1)2-4, 即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0,∴x 1=-1,x 2=3. ∴B (3,0). 把A (-1,0)代入y =x +m ,得m =1,∴y =x +1. 联立2123y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩,∴D (4,5). ∵A (-1,0),B (3,0),∴AB =4,x… 0 1 2 3 … y … 3 0 -1 0 …yx123O∴△ABD 的面积S =12×4×5=10.21.(8分)如图,抛物线y =-12x 2+52x -2与x 轴相交于A 、B 两点,与y 轴相交于点C . (1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D . 若点P 在线段AB 上以 每秒1个单位长度的速度由点A 向点B 运动,同时点Q 在线 段CD 上以每秒1.5个单位长度的速度由点D 向点C 运动,问: 经过几秒时,PQ =AC ?【答案】(1)令y =0,得-12x 2+52x -2=0,得x 1=1,x 2=4. ∴A (1,0),B (4,0).令x =0,得y =-2,∴C (0,-2).△ABC 的面积为S =12AB ·OC =12×3×2=3.(2) 设经过t 秒后,PQ =AC . 则AP =t ,P (1+t ,0) 抛物线的对称轴为x =2.5,∵C (0,-2),∴D (5,-2). DQ =1.5t ,∴CQ =5-1.5t ,∴Q (5-1.5t ,-2).过P 作PH ⊥CQ 于H ,则PH =OC ,∵PQ =AC ,∴HQ =OA =1. 即|(1+t )-(5-1.5t )|=1,化简得|2.5t -4|=1,解得t =2或65.所以,经过2秒或65秒时,PQ =AC .22. (10分)如图,有一面长为a m 的墙,利用墙长和30m 的篱笆,围成中间隔有一道篱笆的长方形 花圃,设花圃的宽AB 为x m ,面积为S m 2. (1)当a =10时;①求S 与x 的关系式,并写出自变量x 的取值范围; ②如果要围成面积为48m 2的花圃,AB 的长是多少m ? (2)求长方形花圃的最大面积.【答案】(1) ①AB =CD =x ,BC =30-3x , ∴S =x (30-3x )=-3x 2+30x , 由0<BC ≤a ,得0<30-3x ≤10,∴203≤x <10. ② 令S =48,得-3x 2+30x =48,即x 2-10x +16=0,H30-3xxxx解得:x =8或2(舍),∴AB 的长为8m . (2) S =-3x 2+30x =-3(x -5)2+75, ∵0<30-3x ≤a ,∴10-3a≤x <10.∵抛物线开口向下,对称轴为x =5,1°当10-3a≤5时,即a ≥15,此时当x =5时,S 取得最大值75;2°当10-3a>5,即0<a <15,此时S 随x 的增大而减小,则当x =10-3a 时,S 的最大值为10a -13a 2.答:当a ≥15时,长方形花圃的最大面积为75m 2;当0<a <15,长方形花圃的最大面积为(10a -13a 2)m 2.23.(10分)某小区内超市在“新冠肺炎”疫情期间,两周内标价为10元/斤的某种水果,经过两次 降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)①从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的 相关信息如表所示:已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元), 求y 与x (1≤x <15)之间的函数解析式,并求出第几天时销售利润最大.②在①的条件下,问这14天中有多少天的销售利润不低于330元,请直接写出结果. 【答案】(1) 设该种水果每次降价的百分率为x ,依题意,得: 10(1-x )2=8.1,解得x =0.1或1.9(舍去). 答:该种水果每次降价的百分率为10%.(2) ① 当1≤x <9时,第一次降价后的价格为10(1-10%)=9(元), ∴y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352,y 随x 的增大而减小,∴当x =1时,y 取得最大值为334.3(元); 当9≤x <15时,第二次降价后的价格为8.1(元),∴y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80=-3(x -10)2+380, 图象的开口向下,当x =10时,y 取得最大值为380(元)>334.3(元).时间x (天) 1≤x <9 9≤x <15 售价(元/斤) 第1次降价后的价格第2次降价后的价格销量(斤) 80-3x 120-x 储存和损耗费用(元)40+3x3x 2-64x +400综上,第10天时销售利润最大. ②7天.提示:当1≤x <9时,y =-17.7x +352≥330,解得x ≤220177, ∵x 为正整数,∴x =1;当9≤x <15时,y =-3(x -10)2+380≥330,解得10-563≤x ≤10+563, ∵x 为正整数,9≤x <15,∴x =9,10,11,12,13,14,共6天; 1+6=7,故一共有7天.24.(12分)直线y =kx +k +2与抛物线y =12x 2交于A 、B 两点(A 在B 的左侧). (1)直线AB 经过一个定点M ,直接写出M 点的坐标;(2)如图1,点C (-1,m )在抛物线上,若△ABC 的面积为3,求k 的值;(3)如图2,分别过A 、B 且与抛物线只有唯一公共点的两条直线交于点P ,求OP 的最小值. 【答案】(1) M (-1,2);提示:y =k (x +1)+2, 直线AB 过定点,令x +1=0, 得y =2,∴定点为M (-1,2). (2) 过C 作CD ∥y 轴交AB 于D ,把C (-1,m )代入y =12x 2,得C (-1,12).把x =-1代入y =kx +k +2,得D (-1,2), ∴CD =2-12=32.联立2212y kx k y x =++⎧⎪⎨=⎪⎩,得x 2-2kx -(2k +4)=0, 设点A 、B 的横坐标分别为a 、b ,则a 、b 为上述方程的根, ∴a +b =2k ,ab =-(2k +4).∵△ABC 的面积为3,由铅垂法,得12CD (b -a )=3,即12×32(b -a )=3,∴b -a =4. 两边平方,得(a +b )2-4ab =16,∴(2k )2+4(2k +4)=16, 整理,得:k 2+2k =0,解得k =0或-2. (3) 设点A 、B 的横坐标分别为a 、b ,则a ≠b . 由(2),a +b =2k ,ab =-(2k +4),∴设直线P A 的解析式为y =px +q ,联立212y px qy x =+⎧⎪⎨=⎪⎩,得 x 2-2px -2q =0,D∵P A 与抛物线只有唯一公共点,∴上述方程有两个相等的实数根(x 1=x 2=a ), 由根与系数的关系,得a +a =2p ,a ·a =-2q ,∴p =a ,q =-12a 2.∴直线P A 的解析式为y =ax -12a 2.同理,直线PB 的解析式为y =bx -12b 2.联立221212y ax a y bx b ⎧=-⎪⎪⎨⎪=-⎪⎩,解得x =2a b +=k ,y =2ab =-(k +2). ∴P (k ,-k -2).∴OP 2=k 2+(-k -2)2=2k 2+4k +4=2(k +1)2+2, 当k =-1时,OP 2.。

人教版2024-2025学年九年级数学上册一元二次方程和二次函数综合测试题[含答案]

人教版2024-2025学年九年级数学上册一元二次方程和二次函数综合测试题[含答案]

人教版九年级秋期一元二次方程和二次函数综合测试题(9月份月考备用)考试范围:一元二次方程和二次函数;考试时间:100分钟;总分:120分一.选择题(共10小题,满分30分,每小题3分)1.下列方程中是关于x 的一元二次方程的是( )A .()22545x x -=B .20ax bx c ++=C .2310y x +-=D .2221x x =+2.关于x 的一元二次方程20ax bx c ++=()0a ¹的两根为11x =,21x =-那么下列结论一定成立的是( )A .240b ac ->B .240b ac -=C .240b ac -<D .240b ac -£3.用配方法解一元二次方程28100x x -+=配方后得到的方程是( )A .()2854x +=B .()2854x -=C .()246x +=D .()246x -=4.将代数式x 2+6x +2化成(x +p )2+q 的形式为( )A .(x -3)2+11B .(x +3)2-7C .(x +3)2-11D .(x +2)2+45.关于x 的一元二次方程2310kx x +-=有实数根,则k 的取值范围是( )A .94k £-B .94k ³-C .94k £-且0k ¹D .94k ³-且0k ¹6.方程 (x ﹣5)(x ﹣6)=x ﹣5 的解是( )A .x=5B .x=5 或x=6C .x=7D .x=5或 x=77.已知3是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰ABC V 的两条边的边长,则ABC V 的周长为( )A .7B .10C .11D .10或118.我们知道方程2230x x +-=的解是1213x x ==-,,现给出另一个方程()()22322330x x +++-=,它的解是( )A .1213x x ,==B .1213x x ==-,C .1213x x =-=,D .1213x x =-=-,9.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有100被感染.设每轮感染中平均每一台电脑会感染x 台其他电脑,由题意列方程应为( )A .1+2x =100B .x (1+x )=100C .(1+x )2=100D .1+x +x 2=10010.当﹣1<k <3时,则直线y =k 与函数y =22(1)1(3)(5)1(3)x x x x ì--£í-->î交点个数有( )A .1个B .2个C .3个D .4个二.填空题(共5小题,满分15分,每小题3分)11.把方程(21)(2)53x x x +-=-整理成一般形式是 .12.若关于x 的方程2(1)250k x kx k +-+-=有两个实数根,则k 的取值范围.13.已知2x =-是方程220x kx -+=的一个根,则实数k 的值为 .14.如图,在一块矩形的荒地上修建两条互相垂直且宽度相同的小路,使剩余面积是原矩形面积的一半,具体尺寸如图所示.求小路的宽是多少?设小路的宽是m x ,根据题意可列方程为 .15.下列关于二次函数22()1y x m m =--++(m 为常数)的结论,①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图像上,其中所有正确的结论序号是.三.解答题(共8小题,满分75分)16.用适当的方法解下列方程:(1)249211x x x ++=+;(2)()()313x x --=;(3)()()2225431y y -=-;(4)22410x x --=.17.已知关于x 的一元二次方程(x ﹣1)(x ﹣4)=p 2,p 为实数.(1)求证:方程有两个不相等的实数根;(2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由)18.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?19.如图,抛物线()21y a x =+的顶点为A ,与y 轴的负半轴交于点B ,且OA OB =.(1)求抛物线的解析式;(2)若点()3,C b -在该抛物线上,求b 的值;(3)若点()12,D y ,()23,E y 在此抛物线上,比较1y 与2y 大小.202+=有一位同学解答如下:这里,a b =c =,∴(224432b ac -=-=.∴2x ==.请你分析以上解答有无错误,如有错误,请作出正确解答.21.如图所示,在ABC V 中,90B Ð=°,6cm AB =,12cm BC =,点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动.如果P ,Q 分别从点A ,B 同时出发,几秒钟后PBQ V 的面积等于28cm ?22.如图,一次函数y kx b =+的图象与二次函数2y ax =的图象交于点()1A m ,和()24B -,,与y 轴交于点C .(1)求k b a ,,的值;(2)求AOB V 的面积.23.如图,在▱ABCD 中,AB =4,点D 的坐标是(0,8),以点C 为顶点的抛物线y =a (x ﹣h )2+k 经过x 轴上的点A ,B .(1)求点A ,B ,C 的坐标;(2)若抛物线向上平移后恰好经过点D ,求平移后抛物线的解析式.1.D【分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【详解】A 、()22545x x -=,化简之后不是一元二次方程,故此选项不合题意;B 、ax 2+bx +c =0中,如果a =0不是一元二次方程,故此选项不合题意;C 、2310y x +-=含有2个未知数,因此不是一元二次方程,故此选项不合题意;D 、2221x x =+是一元二次方程,故此选项符合题意;故选:D .【点睛】此题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.A【分析】由一元二次方程有两个不相等的实数根,确定出根的判别式的符号即可.【详解】解:∵关于x 的一元二次方程ax 2+bx+c=0(a≠0)的两根为x 1=1,x 2=-1,∴方程有两个不相等的实数根∴b 2-4ac >0,故选A .【点睛】此题考查了根与系数的关系,以及根的判别式,熟练掌握根的判别式的意义是解本题的关键.3.D【分析】本题主要考查了一元二次方程的配方法.把常数项移到等式右边后,利用完全平方公式配方得到结果,即可做出判断.【详解】解:28100x x -+=,移项得:2810x x -=-,配方得:28161016x x +=-+-,整理得:()246x -=,故选:D .4.B【分析】此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.【详解】x 2+6x +2=x 2+6x +32-32+2=(x +3)2-7.故选B .5.D【分析】本题考查的是一元二次方程根的判别式,一元二次方程的定义,掌握“一元二次方程有实数根,则0D ³”是解题的关键.根据一元二次方程有实数根,则0D ³列出不等式,解不等式即可,需要注意0k ¹.【详解】解:由题意得()2Δ34100k k ì=-´´-³í¹î,解得:94k ³-且0k ¹,故选:D .6.D【详解】(x-5)(x-6)=x-5(x-5)(x-6)-(x-5)=0(x-5)(x-7)=0解得:x 1=5,x 2=7;故选D .7.D【分析】本题主要考查了解一元二次方程,一元二次方程解的定义,构成三角形的条件,等腰三角形的定义,先把3x =代入原方程求出m 的值,进而解方程求出3x =或4x =,再分当腰长为3时,则底边长为4,当腰长为4时,则底边长为3,两种情况利用构成三角形的条件进行求解即可.【详解】解:∵3是关于x 的方程()2120x m x m -++=的一个实数根,∴()231320m m ++=-,解得6m =,∴原方程为27120x x -+=,解方程27120x x -+=得3x =或4x =,当腰长为3时,则底边长为4,∵334+>,∴此时能构成三角形,∴此时ABC V 的周长为33410++=;当腰长为4时,则底边长为3,∵344+>,∴此时能构成三角形,∴此时ABC V 的周长为34411++=,综上所述,ABC V 的周长为10或11,故选D .8.D【分析】把方程()()22322330x x +++-=看作关于23x +的一元二次方程,用换元法解题即可得到结果.【详解】把方程()()22322330x x +++-=看作关于23x +的一元二次方程,∴231x +=或233x +=-,∴1213x x =-=-,.故选D .【点睛】本题考查了一元二次方程求解方法中的换元法,熟悉换元法的解题步骤是解题关键.9.C【分析】此题可设每轮感染中平均一台电脑会感染x 台电脑,则第一轮共感染x +1台,第二轮共感染x (x +1)+x +1=(x +1)(x +1)台,根据题意列方程即可.【详解】设每轮感染中平均一台电脑会感染x 台电脑,根据题意列方程得(x +1)2=100,故选C .【点睛】考查了由实际问题抽象出一元二次方程的解,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.10.D【分析】画出函数y =22(1)1(3)(5)1(3)x x x x ì--£í-->î的图象,根据图象即可求得结论.【详解】解:画出函数y =22(1)1(3)(5)1(3)x x x x ì--£í-->î的图象如图:由图象可知,直线y =k 与函数y =22(1)1(3)(5)1(3)x x x x ì--£í-->î交点个数有4个,故选:D .【点睛】本题考查了二次函数的性质,数形结合是解题的关键.11.2270x -=【分析】通过移项合并同类项即可得到答案 .【详解】解:方程(21)(2)53x x x +-=-整理成一般形式后,得224253x x x x -+-=-,即2270x -=.故答案为:2270x -=.【点睛】本题主要考查一元二次方程的一般形式,掌握移项、合并同类项是关键.12.54k -≥且1k ¹-【分析】本题考查了一元二次方程的定义,一元二次方程根的判别式,根据题意可得Δ0³,且10k +¹,求解即可.【详解】解:根据题意,可得2Δ(2)4(1)(5)0k k k =--´+´-³,且10k +¹,即16200k +³且1k ¹-,解得:54k -≥且1k ¹-,故答案为:54k -≥且1k ¹-.13.3-【分析】将2x =-代入220x kx -+=,即可求解.【详解】将2x =-代入220x kx -+=,得:()()22220k --´-+=,解得:3k =-,故答案为:3-.【点睛】本题考查了一元二次方程的解定义,细心计算是关键,属于基础题型.14.()()1302030202x x --=´´【分析】本题主要考查了一元二次方程的应用,设道路的宽应为x 米,由题意有()()1302030202x x --=´´,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.【详解】解:设道路的宽应为x 米,由题意有()()1302030202x x --=´´.故答案为:()()1302030202x x --=´´.15.①②④【分析】①两个二次函数可以通过平移得到,由此即可得两个函数的图象形状相同;②求出当0x =时,y 的值即可得;③根据二次函数的增减性即可得;④先求出二次函数22()1y x m m =--++的顶点坐标,再代入函数21y x =+进行验证即可得.【详解】Q 当0m >时,将二次函数2y x =-的图象先向右平移m 个单位长度,再向上平移21m +个单位长度即可得到二次函数22()1y x m m =--++的图象;当0m <时,将二次函数2y x =-的图象先向左平移m -个单位长度,再向上平移21m +个单位长度即可得到二次函数22()1y x m m =--++的图象\该函数的图象与函数2y x =-的图象形状相同,结论①正确对于22()1y x m m =--++当0x =时,22(0)11y m m =--++=即该函数的图象一定经过点(0,1),结论②正确由二次函数的性质可知,当x m £时,y 随x 的增大而增大;当x m >时,y 随x 的增大而减小则结论③错误22()1y x m m =--++的顶点坐标为2(),1m m +对于二次函数21y x =+当x m =时,21y m =+即该函数的图象的顶点2(),1m m +在函数21y x =+的图象上,结论④正确综上,所有正确的结论序号是①②④故答案为:①②④.【点睛】本题考查了二次函数的图象与性质等知识点,熟练掌握二次函数的图象与性质是解题关键.16.(1)121,1x x ==(2)120,4x x ==(3)134y -(4)12x x ==【分析】(1)利用配方法即可求解;(2)整理方程后,利用因式分解法即可求解;(3)利用因式分解法即可求解;(4)利用公式法即可求解.【详解】(1)解:整理方程得:222x x += ∴2213x x ++=()213x +=1x +=∴121,1x x ==(2)解:整理方程得:240x x -=∴()40x x -=∴120,4x x ==(3)解:()()22025231y y ---ùëû=é()()87430y y ---=∴1273,84y y ==-(4)解:由方程可知:2,4,1a b c ==-=-∴2D =∴12x x ====【点睛】本题考查求解一元二次方程.掌握各类求解方法是解题关键.17.(1)见解析;(2)p =0、2、-2.【详解】解:(1)原方程可化为x 2﹣5x +4﹣p 2=0,∵△=(﹣5)2﹣4×(4﹣p 2)=4p 2+9>0,∴不论p 为任何实数,方程总有两个不相等的实数根;(2)原方程可化为x 2﹣5x +4﹣p 2=0,∴x ∵方程有整数解,∴p 可取0,2,﹣2时,方程有整数解.【点睛】本题考查了一元二次方程的根的情况,判别式△的符号,把求未知系数的范围的问题转化为解不等式的问题是解题的关键.18.(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【详解】(1)若降价3元,则平均每天销售数量为20+2×3=26件.(2)设每件商品应降价x 元时,该商店每天销售利润为1200元.根据题意,得(40-x )(20+2x )=1200,整理,得x 2-30x +200=0,解得:x 1=10,x 2=20.∵要求每件盈利不少于25元,∴x 2=20应舍去,∴x =10.答:每件商品应降价10元时,该商店每天销售利润为1200元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.19.(1)()21y x =-+(2)4b =-(3)12y y >【分析】(1)由点A 坐标求出1OA =,进一步得到点B 坐标,再利用待定系数法求解;(2)将()3,C b -代入()21y x =-+,即可求出b 值;(3)根据对称轴和开口方向判断增减性,再结合D ,E 两点的横坐标判断即可.【详解】(1)解:∵抛物线()21y a x =+的顶点为A ,∴()1,0A -,则1OA =,∵OA OB =,∴()0,1B -,代入()21y a x =+中,得:()2101a -=+,解得:1a =-,∴()21y x =-+;(2)将()3,C b -代入()21y x =-+中,得:()231b =--+,解得:4b =-;(3)∵抛物线()21y x =-+的对称轴为直线1x =-,且开口向下,∴当1x >-时,y 随x 的增大而减小,∵23<,∴12y y >.【点睛】本题考查了求二次函数解析式,二次函数的图象和性质,解题的关键是熟练掌握二次函数的性质,利用增减性判断函数值的大小.20.有错误,正确解答见解析【分析】将方程化为一般式,利用求根公式求解即可.【详解】解:有错误,错误的原因是没有将方程化为一般形式.2+=20+-=,故方程中的a b =c =-,224464b ac -=--=.所以x ==即1x =,2x =-.【点睛】本题考查一元二次方程的解-公式法,解题的关键是记住求根公式,属于中考常考题型.21.2秒或4秒【分析】设t 秒后, PBQ V 的面积等于28cm , 分别表示出线段PB 和线段BQ 的长,然后根据面积为8列出方程求得时间即可.【详解】设t 秒后, PBQ V 的面积等于28cm , 根据题意得:()12682t t ´-=,解得:12t =或24t =,答: 2秒或4秒后,PBQ V 的面积等于28cm .【点睛】本题考查了一元二次方程的应用,三角形的面积,能够表示出线段PB 和线段BQ 的长是解答本题的关键.22.(1)112k a b =-==,,(2)AOB V 的面积为3【分析】(1)用待定系数法,先将()24B -,代入2y ax =,求出a 的值为1,再将()1A m ,代入2y x =,求出点()11A ,,然后将()11A ,,()24B -,代入y kx b =+分别求出k b ,的值.(2)利用y 轴将AOB V 分割为AOC △和BOC V ,分别算出它们的面积后,即可求出AOB V 的面积.【详解】(1)∵点()2,4B -在二次函数2y ax =的图象上,∴44a =解得:1a =∴二次函数关系式为:2y x =将()1A m ,代入2y x =得:1m =∴()11A ,∵点()11A ,,()24B -,在一次函数y =kx +b 的图象上∴124k b k b +=ìí-+=î,解得:12k b =-ìí=î,∴112k a b =-==,,;(2)由(1)可知一次函数关系式2y x =-+当0x =时,2y =则一次函数2y x =-+与y 轴交点坐标为()02C ,∵2OC =,点A 横坐标为1A x =,点B 的横坐标为2-∴AOC S =V 12A OC x ×=1212´´1==BOC S V 12B OC x ×=1222´´2=∴123AOB AOC BOC S S S =+=+=V V V ∴AOB V 的面积为3.【点睛】本题考查了待定系数求二次函数解析式,求一次函数解析式,面积问题,求得解析式是解题的关键.23.(1)()()()2,0,6,0,4,8A B C ;(2)22168y x x =-++【分析】(1)根据平行四边形的性质可得4CD AB ==,根据D 的坐标,即可求得C 的坐标,根据C 为顶点,根据二次函数与x 轴交于点,A B ,则,A B 关于对称轴4x =对称, 且4AB =,即可求得,A B 的坐标;(2)根据(1)的结论求得抛物线解析式,设平移后的解析式为:代入D 的坐标即可求得b 的值,进而求得平移后的抛物线的解析式.【详解】(1)Q ▱ABCD 中,AB =4,点D 的坐标是(0,8),//CD AB \,(4,8)C \,Q C 为抛物线的顶点,\抛物线的对称轴为4x =,Q 二次函数与x 轴交于点,A B ,则,A B 关于对称轴4x =对称, 且4AB =,(2,0),(6,0)A B \,(2)Q ()()()2,0,6,0,4,8A B C ,设抛物线解析式为(2)(6)y a x x =--将(4,8)C 代入8(42)(46)a =--解得2a =-,\抛物线解析式为22(2)(6)2(4)8y x x x =---=--+,设向上平移b 个单位后新抛物线的解析式为22(4)8y x b =--++,依题意,新抛物线过点(0,8)D ,则82168b =-´++,解得32b =,\平移后的抛物线解析式为:22(4)40y x =--+即22168y x x =-++.【点睛】本题考查了平行四边形的性质,二次函数的性质,顶点式,二次函数图像的平移,掌握二次函数的性质是解题的关键.。

人教版九年级数学上册第22章二次函数 单元综合测试题(含解析)

人教版九年级数学上册第22章二次函数 单元综合测试题(含解析)

2022-2023学年人教版九年级数学上册《第22章二次函数》单元综合测试题(附答案)一、选择题(本大题共12小题,共36分)1.下列函数中不属于二次函数的是()A.y=(x+1)(x﹣2)B.y=(x+1)2C.y=2(x+2)2﹣2x2D.y=1﹣x22.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x﹣1)2+4C.y=(x+1)2+2D.y=(x﹣1)2+2 3.已知抛物线y=x2﹣x+1,与x轴的一个交点为(m,0),则代数式m2﹣m+2022的值为()A.2020B.2021C.2022D.20234.将抛物线y=2(x﹣4)2﹣1先向右平移4个单位长度,再向下平移2个单位长度,平移后所得抛物线解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣35.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=36.二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)7.已知抛物线y=a(x﹣2)2+k(a>0,a,k为常数),A(﹣3,y1)B(3,y2)C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依序排列为()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.9.抛物线y=﹣x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.x<﹣4或x>1B.x<﹣3或x>1C.﹣4<x<1D.﹣3<x<1 10.已知二次函数y=ax2+bx+c的图象如图所示,则下列说法正确的是()A.ac<0B.b<0C.b2﹣4ac<0D.a+b+c<0 11.若二次函数y=ax2+bx+c(a<0)图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值612.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0二、填空题(本大题共6小题,共24分)13.顶点为(﹣2,﹣5)且过点(1,﹣14)的抛物线的解析式为.14.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.15.把二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,则y=ax2+bx+c图象顶点坐标是.16.如图,一为运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y=﹣x2+x+,此运动员将铅球推出m.17.是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图建立平面直角坐标系,则抛物线的关系式是.18.如图,线段AB=8,点C是AB上一点,点D、E是线段AC的三等分点,分别以AD、DE、EC、CB为边作正方形,则AC=时,四个正方形的面积之和最小.三、解答题(本大题共7小题,共60分)19.如图,二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象写出A、B、C三点的坐标,并求出此二次函数的解析式;(2)求出此抛物线的顶点坐标和对称轴.20.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出方程ax2+bx+c<0时x的取值范围;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x轴的交点A、B的坐标;(2)在二次函数的图象上是否存在点P,使S△P AB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.22.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?23.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?24.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,﹣m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是直线x=﹣)25.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B 点在A点右侧)与y轴交于C点.(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.参考答案一、选择题(本大题共12小题,共36分)1.解:A、y=(x+1)(x﹣2)是二次函数,故此选项不合题意;B、y=(x+1)2是二次函数,故此选项不合题意;C、y=2(x+2)2﹣2x2=8x+8不是二次函数,故此选项符合题意;D、y=1﹣x2是二次函数,故此选项不合题意;故选:C.2.解:y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2.故选:D.3.解:∵抛物线y=x2﹣x+1与x轴的一个交点为(m,0),∴m2﹣m+1=0,∴m2﹣m+2022=m2﹣m+1+2021=2021.故选:B.4.解:抛物线y=2(x﹣4)2﹣1的顶点坐标为(4,﹣1),∵向右平移4个单位长度,再向下平移2个单位长度,∴平移后的函数图象的顶点坐标为(8,﹣3),∴平移后所得抛物线解析式为y=2(x﹣8)2﹣3,故选:D.5.解:∵﹣1,3是方程a(x+1)(x﹣3)=0的两根,∴抛物线y=a(x+1)(x﹣3)与x轴交点横坐标是﹣1,3,∵这两个点关于对称轴对称,∴对称轴是直线x==1.故选:A.6.解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.7.解:抛物线y=a(x﹣2)2+k(a>0,a,k为常数)的对称轴为直线x=2,所以A(﹣3,y1)到直线x=2的距离为5,B(3,y2)到直线x=2的距离为1,C(4,y3)到直线的距离为2,所以y2<y3<y1.故选:C.8.解:A、由抛物线可知,a<0,x=﹣<0,得b>0,由直线可知,a>0,b>0,故本选项错误;B、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0,故本选项错误.故选:B.9.解:函数的对称轴为:x=﹣1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(﹣3,0),故:y<0时,x<﹣3或x>1,故选:B.10.解:∵抛物线开口向上,∴a>0,∵抛物线交于y轴的正半轴,∴c>0,∴ac>0,A错误;∵﹣>0,a>0,∴b<0,∴B正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,C错误;当x=1时,y>0,∴a+b+c>0,D错误;故选:B.11.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.12.解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选:B.二、填空题(本大题共6小题,共24分)13.解:设顶点式y=a(x+2)2﹣5,将点(1,﹣14)代入,得a(1+2)2﹣5=﹣14,解得a=﹣1,∴y=﹣(x+2)2﹣5,即y=﹣x2﹣4x﹣9.14.解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.15.解:y=2(x﹣1)2的顶点坐标为(1,0),∵二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,∴二次函数y=ax2+bx+c的解析式为:y=2(x+1)2﹣3,∴二次函数y=ax2+bx+c的顶点坐标为(﹣1,﹣3),故答案为:(﹣1,﹣3).16.解:当y=0时,﹣x2+x+=0,解之得x1=10,x2=﹣2(不合题意,舍去),所以推铅球的距离是10米.故答案为:10.17.解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(﹣2,﹣2)点,故﹣2=4a,a=﹣,故y=﹣.18.解:设AC为x,四个正方形的面积和为y.则BC=8﹣x,AD=DE=EC=,∴y=3×()2+(8﹣x)2=x2﹣16x+64=,∴x=﹣=6时,四个正方形的面积之和最小.故答案为6.三、解答题(本大题共7小题,共60分)19.解:(1)根据二次函数的图象可知:A(﹣1,0),B(0,﹣3),C(4,5),把A(﹣1,0),B(0,﹣3),C(4,5)代入y=ax2+bx+c可得,解得.即二次函数的解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=y=(x﹣1)2﹣4,∴此抛物线的顶点坐标(1,﹣4),和对称轴x=1.20.解:(1)由图象可知,图象与x轴交于(1,0)和(3,0)点,则方程ax2+bx+c=0的两个根为1和3;(2)由图象可知当x<1或x>3时,不等式ax2+bx+c<0;(3)由图象可知,y=ax2+bx+c(a≠0)的图象的对称轴为x=2,开口向下,即当x>2时,y随x的增大而减小;(4)由图象可知,二次函数y=ax2+bx+c(a≠0)的最大值为2,若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,则k<2.21.解:(1)∵抛物线解析式为y=(x+m)2+k的顶点为M(1,﹣4)∴y=(x﹣1)2﹣4令y=0得(x﹣1)2﹣4=0令y=0得(x﹣1)2﹣4=0解得x1=3,x2=﹣1∴A(﹣1,0),B(3,0)(2)∵△P AB与△MAB同底,且S△P AB=S△MAB,∴|y P|=×4=5,即y P=±5又∵点P在y=(x﹣1)2﹣4的图象上∴y P≥﹣4∴y P=5,则(x﹣1)2﹣4=5,解得x1=4,x2=﹣2∴存在合适的点P,坐标为(4,5)或(﹣2,5).22.解:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷2000=12(平方米),即﹣x2+8x=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.23.解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.24.解:(1)设二次函数的解析式为y=a(x﹣2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=﹣.所以二次函数的解析式为y=﹣(x﹣2)2+1;(2)∵抛物线y=﹣(x﹣2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴△AOB的面积=×4×1=2;(3)∵点P(m,﹣m)(m≠0)为抛物线y=﹣(x﹣2)2+1上一点,∴﹣m=﹣(m﹣2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,﹣8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(﹣4,﹣8).25.解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,4)代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为(x,﹣x2+x+4)(0<x<8),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.(3)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4),∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴点M的坐标为(2,6)或(6,4);当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=4﹣2,m4=4+2,∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).综上所述:M点的坐标为(4﹣2,﹣1)、(2,6)、(6,4)或(4+2,﹣﹣1).。

二次函数(单元重点综合测试)(解析版)-2023-2024学年九年级数学上册单元速记巧练(人教版)

二次函数(单元重点综合测试)(解析版)-2023-2024学年九年级数学上册单元速记巧练(人教版)

二次函数(单元重点综合测试)一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023秋·河南驻马店·九年级统考期末)关于二次函数()215y x =++,下列说法正确的是()A .函数图象的开口向下B .函数图象的顶点坐标为()1,5C .该函数有最大值,最大值为5D .当1x >时,y 随x 的增大而增大【答案】D 【分析】通过分析二次函数顶点式判断函数图象开口方向、顶点坐标、最值以及增减性即可求解.【详解】解:()215y x =++中,2x 的系数为1,10>,函数图象开口向上,A 错误;函数图象的顶点坐标是()1,5-,B 错误;函数图象开口向上,有最小值为5,C 错误;函数图象的对称轴为=1x -,1x <-时y 随x 的增大而减小;1x >-时,y 随x 的增大而增大,所以,当1x >时,y 随x 的增大而增大,故D 正确.故选:D .【点睛】本题考查了二次函数图象的基本知识和性质,熟练掌握二次函数图象是解题的关键.2.(2022秋·河北唐山·九年级校考阶段练习)若()221m y m x -=-是二次函数,最大值为0,则m 的值为()A .2m =±B .m =C .2m =D .m =【答案】C【分析】根据二次函数的定义(形如2y ax bx c =++,,,a b c 为常数,且0a ≠的函数叫做二次函数)可得222m -=,由最大值为0,可得10m -<,由此即可求解.【详解】解:由题意得:22210m m ⎧-=⎨-<⎩,解得2m =,故选:C .【点睛】本题考查了二次函数的定义和性质,熟练掌握二次函数的性质是解题关键.3.(2023·福建宁德·模拟预测)若二次函数2(0)y ax bx c a =++>图象,过不同的六点()1,A n -、()5,1B n -、()6,1C n +、()14,D y 、)2Ey 、()32,F y ,则1y 、2y 、3y 的大小关系是()A .123y y y <<B .132y y y <<C .213y y y <<D .321y y y <<【答案】D 【分析】由解析式可知抛物线开口向上,点()1,A n -,()5,1B n -,()6,1C n +求得抛物线对称轴的范围,然后根据二次函数性质判定可得.【详解】解:由二次函数2(0)y ax bx c a =++>可知,抛物线开口向上,()1,A n - 、()5,1B n -、()6,1C n +,即有11n n n -<<+,A ∴点关于对称轴的对称点在5与6之间,∴对称轴的取值范围为2 2.5x <<,13y y ∴>,点E 到对称轴的距离小于2.5D 到对称轴的距离大于4 2.5 1.5-=,321y y y ∴<<,故选:D .【点睛】本题主要考查二次函数的图象上点的坐标特征,二次函数的性质,根据题意得到抛物线的对称轴和开口方向是解题的关键.4.(2023秋·河北张家口·九年级统考期末)某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可以售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,若设每件商品涨x 元,销售利润为y 元,可列函数为:()()302040020y x x =+--.对所列函数中出现的代数式,下列说法错误的是()A .()3020x +-表示涨价后商品的单价B .20x 表示涨价后少售出商品的数量C .()40020x -表示涨价后商品的数量D .()30x +表示涨价后商品的单价【答案】A 【分析】根据题意,分析得出涨价后的单价为()30x +元,涨价后销量为()40020x -件,再根据利润等于售价减去进价得出涨价后每件利润为()3020x +-元即可.【详解】解:A 、()3020x +-表示涨价后单件商品的利润,不是商品的单价,故本选项不符合题意;B 、由销售单价每提高1元,销售量相应减少20件,得每件商品涨x 元后,20x 表示涨价后少售出商品的数量,故本选项符合题意;C 、由题可知,原销量为400件,涨价后少售出20x 件,则涨价后的商品数量为()40020x -件,故本选项符合题意;D 、由题可知,每件商品原价为30元,涨x 元后单价为()30x +元,故本选项符合题意.故选:A .【点睛】本题考查了应用题中的利润问题,根据题意准确得出涨价前后的售价和销量以及熟练掌握利润的计算公式是本题的重点.5.(2023·陕西渭南·统考二模)将抛物线22y ax bx =+-(a 、b 是常数,0a ≠)向下平移2个单位长度后,得到的新抛物线恰好和抛物线2142y x x =+-关于y 轴对称,则a 、b 的值为()A .1a =-,2b =-B .12a =-,1b =-C .12a =,1b =-D .1a =,2b =【答案】C 【分析】先求出抛物线2142y x x =+-关于y 轴对称的抛物线为()219122y x =--,再根据抛物线平移的性质得出抛物线22y ax bx =+-向下平移2个单位长度后为24y ax bx =+-,即可得出a 和b 的值.【详解】解:∵()2211941222y x x x =+-=+-,∴抛物线2142y x x =+-关于y 轴对称的抛物线为()219122y x =--,∵抛物线22y ax bx =+-向下平移2个单位长度后为24y ax bx =+-,∵24y ax bx =+-与2142y x x =+-关于y 轴对称,∴()22419122y ax bx x =-+-=-,整理得:224412y x x a bx x +-=--=,∴12a =,1b =-,故选:C .【点睛】本题主要考查了二次函数的平移规律,解题的关键是掌握将二次函数化为顶点式的方法和步骤,以及二次函数的平移规律:上加下减,左加右减.6.(2020秋·河南安阳·九年级校考期中)如图,一段抛物线:y =﹣x (x ﹣4)(0≤x ≤4)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3…如此变换进行下去,若点P (21,m )在这种连续变换的图象上,则m 的值为()A .2B .﹣2C .﹣3D .3【答案】C 【分析】根据题意和题目中的函数解析式,可以得到点A 1的坐标,从而可以求得OA 1的长度,然后根据题意,即可得到点P (21,m )中m 的值和x =1时对应的函数值互为相反数,从而可以解答本题.【详解】解:∵y =﹣x (x ﹣4)(0≤x ≤4)记为C 1,它与x 轴交于两点O ,A 1,∴点A 1(4,0),∴OA 1=4,∵OA 1=A 1A 2=A 2A 3=A 3A 4,∴OA 1=A 1A 2=A 2A 3=A 3A 4=4,∵点P (21,m )在这种连续变换的图象上,∴x =21和x =1∴﹣m =﹣1×(1﹣4)=3,∴m =﹣3,故选:C.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数与几何变换,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.7.(2023·浙江杭州·统考中考真题)设二次函数()()(0,,y a x m x m k a m k =--->是实数),则()A .当2k =时,函数y 的最小值为a-B .当2k =时,函数y 的最小值为2a -C .当4k =时,函数y 的最小值为a-D .当4k =时,函数y 的最小值为2a -【答案】A【分析】令0y =,则()()0a x m x m k =---,解得:1x m =,2x m k =+,从而求得抛物线对称轴为直线222m m k m k x +++==,再分别求出当2k =或4k =时函数y 的最小值即可求解.【详解】解:令0y =,则()()0a x m x m k =---,解得:1x m =,2x m k =+,∴抛物线对称轴为直线222m m k m k x +++==当2k =时,抛物线对称轴为直线1x m =+,把1x m =+代入()()2y a x m x m =---,得y a =-,∵0a >∴当1x m =+,2k =时,y 有最小值,最小值为a -.故A 正确,B 错误;当4k =时,抛物线对称轴为直线2x m =+,把2x m =+代入()()4y a x m x m =---,得4y a =-,∵0a >∴当2x m =+,4k =时,y 有最小值,最小值为4a -,故C 、D 错误,故选:A .【点睛】本题考查抛物线的最值,抛物线对称轴.利用抛物线的对称性求出抛物线对称轴是解题的关键.8.(2023·广东深圳·模拟预测)如图,排球运动员站在点O 处练习发球,将球从点O 正上方2m 的A 处发出,把球看成点,其运行的高度()m y 与运行的水平距离()m x 满足关系式2(6) 2.6y a x =-+.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A .球运行的最大高度是2.43mB .150a =-C .球会过球网但不会出界D .球会过球网并会出界【答案】D 【分析】根据顶点式2(6) 2.6y a x =-+的特征即可判断A 选项;将点()0,2代入函数解析式中即可求得a 的值,即可判断B 选项;分别求出9x =和18x =的函数值,再分别和2.43、0比较大小即可判断C 、D 选项.【详解】解: 球的运行的高度()m y 与运行的水平距离()m x 满足关系式2(6) 2.6y a x =-+,∴当6x =时,y 取得最大值2.6,∴运行的最大高度时2.6m ,故A 错误;球从点O 正上方2m 的A 处发出,2(6) 2.6y a x ∴=-+的图象经过点()0,2,22(06) 2.6a ∴=-+,解得:160a =-,故B 错误;当9x =时,21(96) 2.6 2.4560y =--+=,2.45 2.43> ,∴球会过球网,当18x =时,21(186) 2.60.260y =--+=,0.20> ,∴球会出界,故C 选项错误,D 选项正确.故选:D .【点睛】本题主要考查了二次函数的应用,掌握用待定系数求二次函数解析式以及将实际问题转化为二次函数问题是解题关键.9.(2023·河南周口·周口恒大中学校考三模)如右图,直线l 的解析式为4y x =-+,它与x 轴和y 轴分别相交于A 、B 两点,点C 为线段OA 上一动点,过点C 作直线l 的平行线m ,交y 轴于点D .点C 从原点O 出发,沿OA 以每秒1个单位长度的速度向终点A 运动,运动时间为t 秒,以CD 为斜边作等腰直角三角形CDE (E ,O 两点分别在CD 两侧).若CDE 和OAB 的重合部分的面积为S ,则S 与t 之间的函数关系图象大致是()A .B.C.D.【答案】C【分析】分类讨论02,24t t ≤<≤≤时,S 与t 之间的函数关系式式即可求解.【详解】解:①当02t ≤<时,如图所示:可知:212DCE S S == ②当24t ≤≤时,如图所示:此时,DCE EFGS S S =- (),0C t ,(),4G t t -+,(),E t t ()424EG EF t t t ∴==--+=-()2221132488222DCE EFG S S S t t t t ∴=-=--=-+- 综上:()()22102238822t t S t t t ⎧≤⎪⎪=⎨⎪-+-≥⎪⎩<显然只有C 选项符合题意故选:C【点睛】本题考查二次函数的实际应用.根据题意找到S 与t 之间的函数关系式是解题关键.10.(2023秋·河北张家口·九年级统考期末)题目:“如图,抛物线2y x mx =+与直线y x b =-+相交于点()2,0A 和点B .点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标M x 的取值范围.”对于其答案,甲答:3M x =,乙答:12M x -≤<,丙答:12M x -<≤,丁答:12M x -≤≤,则正确的是()A .只有甲答的对B .甲、乙答案合在一起才完整C .甲、丙答案合在一起才完整D .甲、丁答案合在一起才完整【答案】B 【分析】当点M 在线段AB 上时,当点M 在点B 的左侧时,当点M 在点A 的右侧时,分类求解确定MN 的位置,进而求解.【详解】解:将点A 的坐标代入抛物线表达式得:420m +=,解得2m =-,将点A 的坐标代入直线表达式得:20b -+=,解得2b =,∴抛物线的解析式为22y x x =-,直线的解析式为2y x =-+,当点M 在线段AB 上时,线段MN 与抛物线只有一个公共点,M ,N 的距离为3,而A ,B 的水平距离是3,故此时只有一个交点,即12M x -≤<,当点M 在点A 的右侧时,当3M x =时,抛物线和MN 交于抛物线的顶点(1,1)-,即3M x =时,线段MN 与抛物线只有一个公共点,综上所述,12M x -≤<或3M x =,即甲、乙答案合在一起才完整,故选:B .【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,分类求解确定MN 位置是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022秋·九年级单元测试)已知二次函数()224y x =--+,当2x >时,若y 随着x 的增大而(填“增大”“不变”或“减小”).【答案】减小【分析】根据二次函数顶点式的图象与性质进行解答即可.【详解】∵1a =-,对称轴2x =,∴当2x >时,若y 随着x 的增大而减小,故答案为:减小.【点睛】本题考查二次函数顶点式()2y a x h k =-+的图象与性质,分清a 、h 的符号和二次函数顶点式的增减性是解题的关键.12.(2020秋·广东广州·九年级广州市第二中学校考阶段练习)已知点()()A a m B b m ,、,、(),P a b n +为抛物线224y x x =-+上的点,则n =.【答案】4【分析】由抛物线的解析式可知抛物线的对称轴是直线1x =,根据点A 和B 的坐标知,则点A 和B 关于直线1x =对称.据此易求a b +的值,进而把P 点的坐标代入解析式即可求得n 的值.【详解】∵抛物线解析式为224y x x =-+,∴该抛物线的对称轴是直线212x -=-=,∵点()()A a m B b m ,、,为抛物线24y x x =-+上的点,∴点()()A a m B b m ,、,关于直线1x =对称,∴12a b +=,∴2a b +=,∴()2,P n 把2x =代入抛物线的解析式得,222244n =-⨯+=.故答案是:4.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质.二次函数图象上所有点的坐标均满足该函数解析式.13.(2022秋·天津西青·九年级校考期中)行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离我们将它称为“刹车距离”.某车的刹车距离s (m )与车速x (km/h )之间的函数关系是20.010.002s x x =+,现在该车在限速120km/h 的高速公路上出了交通事故,事后测得刹车距离为46.5m ,请推测该车刹车时是否超速(填“是”或“否”),车速为km/h .【答案】是150【分析】将46.5s =代入函数解析式,求出车速x ,与120km/h 比较即可得出答案.【详解】根据题意,当46.5s =时,得:20.010.00246.5x x +=,解得:1155x =-(舍),2150120x =>,∴刹车前,汽车超速.故答案为:是,150.【点睛】本题考查了二次函数的应用,解答本题的关键是将s 的值代入,解一元二次方程,注意将实际问题转化为数学模型.14.(2022秋·山东济宁·九年级济宁学院附属中学校考期末)若二次函数()20y ax bx c a =++≠中,函数值y与自变量x 的部分对应值如表:x…2-1-012…y …02-2-04…则当32x -≤≤时,y 的最大值为.【答案】4【分析】根据表中点的坐标得出函数的对称轴,设二次函数的表达式是21(2y a x k =++,把点的坐标代入求出该二次函数的表达式是22y x x =+-;再画出图象,即可利用图象法求解.【详解】解:根据表中可知:点(1,2)--和点(0,2)-关于对称轴对称,即对称轴是直线12x =-,设二次函数的表达式是21(2y a x k =++,把点(2,0)-和点(0,2)-代入得:221(2)021(0)22a k a k ⎧-++=⎪⎪⎨⎪++=-⎪⎩,解得:1a =,94k =-,2219(224y x x x =+-=+-,所以该二次函数的表达式是2219224y x x x ⎛⎫=+-=+- ⎪⎝⎭;函数图象如图所示,由图象可得∶当32x -≤≤时,﹣944y ≤≤,最大值为4.故答案为∶4.【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式等知识点,能求出二次函数的解析式是解此题的关键.15.(2023·吉林长春·统考中考真题)2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A 、B 的水平距离为80米时,两条水柱在物线的顶点H 处相遇,此时相遇点20米,喷水口A 、B 距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A '、B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面米.【答案】19【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令0x =求平移后的抛物线与y 轴的交点即可.【详解】解:由题意可知:()40,4A -、()40,4B 、()0,20H ,设抛物线解析式为:220y ax =+,将()40,4A -代入解析式220y ax =+,解得:1100a =-,220100x y ∴=-+,消防车同时后退10米,即抛物线220100x y =-+向左(右)平移10米,平移后的抛物线解析式为:()21020100x y +=-+,令0x =,解得:19y =,故答案为:19.【点睛】本题考查了待定系数法求抛物线解析式、函数图像的平移及坐标轴的交点;解题的关键是求得移动前后抛物线的解析式.16.(2023秋·河南驻马店·九年级统考期末)已知二次函数224y x x =--+,当1a x a ≤≤+时,函数值y 的最小值为1,则a 的值为.【答案】0或-31y =时自变量x 的值,结合1a x a ≤≤+时,函数值y 的最小值为1,可得到关于a 的一元一次方程,解即可.【详解】解:令1y =,则2241x x --+=,解得:12x =-,21x =.1a x a ≤≤+时,函数值y 的最小值为1∴12a +=-或11a +=,∴3a =-或0a =.故答案为:3-或0.【点睛】本题考查了二次函数图像上点的坐标特征以及函数的最值.利用二次函数图像上点的特征找出1y =时自变量x 的值是解题的关键.三、解答题(本大题共7小题,共62分.解答时应写出文字说明、证明过程或演算步骤)17.(2023秋·河北张家口·九年级统考期末)如图,坐标平面上有一透明片,透明片上有一抛物线L :()227y x =+-.(1)写出L 的对称轴和y 的最小值;(2)点P 为透明片上一点,P 的坐标为()9,6.平移透明片,平移后,P 的对应点为P ',抛物线L 的对应抛物线为L ',其表达式恰为267y x x =-+,求PP '移动的最短路程.【答案】(1)对称轴为直线:7x =,y 的最小值为2(2)PP '=【分析】(1)直接根据解析式进行作答即可;(2)求出平移后的抛物线的顶点坐标,PP '移动的最短路程为两个顶点间的距离,进行求解即可.【详解】(1)解:∵()()222277y x x ==--++,顶点坐标为()7,2,∴对称轴为直线7x =,y 2;(2)∵()226732y x x x =-+=--,顶点坐标为()3,2-,∵抛物线L 的顶点坐标为()7,2,∴PP '=【点睛】本题考查二次函数的图象与性质,二次函数图象的平移.熟练掌握二次函数的图象和性质,是解题的关键.18.(2023秋·河南开封·九年级开封市第十三中学校考期末)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于60元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售2箱.(1)求平均每天销售量y 箱与销售价x 元/箱之间的函数关系式.(2)求批发商平均每天的销售利润w (元)与销售价x (元/箱)之间函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【答案】(1)()21905060y x x =-+≤≤(2)()2227076005060w x x x =-+-≤≤(3)当每箱苹果的销售价为60元时,可以获得1400元的最大利润.【分析】(1)在销售90箱的基础上,价格每提高1元,平均每天少销售2箱,再列函数关系式即可;(2)由销售量乘以每箱苹果的利润可得总利润,可得函数关系式;(3)再依据二次函数的增减性求得最大利润.【详解】(1)解:根据题意,平均每天的销售量y (箱)与销售单价x (元/箱)之间得()90250y x =--,即()21905060y x x =-+≤≤.(2)由(1)可得:()()()2402190227076005060w x x x x x =--+=-+-≤≤;(3)∵222707600w x x =-+-,∵20a =-<,∴抛物线开口向下.当()27067.522x =-=⨯-时,w 有最大值.又67.5x <,w 随x 的增大而增大.∴当60x =元时,w 的最大值为1400元.∴当每箱苹果的销售价为60元时,可以获得1400元的最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在2b x a=-时取得.19.(2020秋·广东广州·九年级广州市第十三中学校考期中)如图,矩形花圃ABCD ,它的一边AD 利用已有的围墙,可利用的围墙长度不超过30m ,另外三边所围的栅栏的总长度是60m ,设AB 长为x 米.(1)若矩形的面积为2400m ,求AB 的长度.(2)若矩形的面积是S ,求当x 为何值时,S 有最大值?【答案】(1)20米(2)15x =【分析】(1)设AB 长为x 米,则BC 长为(602)x -米,根据矩形的面积公式列出方程,解之取合适的值即可;(2)列出S 关于x 的函数关系式,再根据二次函数的最值求解即可.【详解】(1)解:设AB 长为x 米,则BC 长为(602)x -米,依题意,得()602400x x -=,解得:110x =,220x =,当10x =时,6021040BC =-⨯=,超过了围墙的长度,∴不合题意,舍去,∴20x =,即AB 的长为20米;(2)设矩形的面积是S ,则()()22602260215450S x x x x x =-=-+=--+,∵20-<,∴()2215450S x =--+开口向下,∴当15x =时,S 有最大值.【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用,根据题意正确表示出BC 的长是解题关键.20.(2022秋·河北张家口·九年级张家口市实验中学校考期中)在平面直角坐标系中,已知点()1,3A ,()3,5B ,()3,7C -,直线:l y x m =+经过点A ,抛物线2:b 2L y ax x =++恰好经过A ,B ,C 三点中的两点.(1)判断点B 是否在直线l 上,并说明理由;(2)求,a b 的值;(3)平移抛物线L ,①使其顶点为B ,求此时抛物线与y 轴交点的坐标;②使其顶点仍在直线l 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【答案】(1)点B 在直线l 上,理由见解析,(2)2a =-,3b =(3)①()013-,;②178【分析】(1)先将A 代入y x m =+,求出直线解析式,然后将3x =代入解析式即可求解;(2)先根据抛物线22y ax bx =++与直线AB 都经过()02,点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入22y ax bx =++得出关于a ,b 的二元一次方程组;(3)①根据题意,可得抛物线解析式为()2235y x =--+,令0x =,即可求解;②设平移后所得抛物线的对应表达式为22()=--+y x h k ,根据顶点在直线2y x =+上,得出1k h =+,令0x =,得到平移后抛物线与y 轴交点的纵坐标为221h h -++,再将式子配方即可求出最大值.【详解】(1)解:∵直线:l y x m =+经过点()1,3A ,∴31m =+,解得:2m =,∴直线l :2y x =+,当3x =时,325y =+=,∴()3,5B 在直线l 上,(2) 抛物线22y ax bx =++与直线AB 都经过()0,2点,且B ,C 两点的横坐标相同,∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入22y ax bx =++得239327a b a b ++=⎧⎨++=-⎩,解得:2a =-,3b =;(3)解:①依题意,点()3,5B ,则抛物线解析式为()2235y x =--+,令0x =,解得:13y =-,∴抛物线与y 轴交点的坐标为()013-,;②设平移后所得抛物线的对应表达式为22()=--+y x h k ,∵顶点在直线2y x =+上,∴2k h =+,令0x =,得到平移后抛物线与y 轴交点的纵坐标为222h h -++,∵2211722248h h h ⎛⎫-++=--+ ⎪⎝⎭,∴当14h =时,此抛物线与y 轴交点的纵坐标取得最大值178.【点睛】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键.21.(2023春·山东德州·九年级德州市第十中学校考阶段练习)某班“数学兴趣小组”对函数22y x x =-的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:x...3-52--21-012523...y (35)4m 1-01-0543…其中,m =___________.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x 轴有___________个交点,所以对应的方程220x x -=有___________个实数根;②方程222x x -=有___________个实数根;③关于x 的方程22x x a -=有4个实数根时,a 的取值范围是___________.【答案】(1)0(2)见解析(3)见解析(4)①3,3;②2;③10a -<<【分析】(1)根据函数的对称性,即可求解;(2)描点即可画出函数图象;(3)任意指出函数的两条性质即可,如函数的最小值为1-;1x >时,y 随x 的增大而增大,答案不唯一;(4)①从图象上看函数与x 轴有3个交点,即可求解;②设22||y x x =-,从图象看2y =与22||y x x =-有两个交点,即可求解;③当y a =与22||y x x =-有2个交点时,a 在x 轴的下方,即可求解.【详解】(1)解:根据函数的对称性,0m =,故答案为:0;(2)描点画出如下函数图象:(3)函数的最小值为1-;1x >时,y 随x 的增大而增大(答案不唯一);(4)①从图象上看函数与x 轴有3个交点,故对应方程2|2||0x x -=有3个根,故答案为:3,3;②设22||y x x =-,从图象看2y =22||y x x =-有两个交点;故答案为:2;③当y a =与22||y x x =-有2个交点时,a 在x 轴的下方,故10a -<<,故答案为:10a -<<.【点睛】本题考查了抛物线的性质,描点法画函数图象,抛物线与x 轴的交点,数形结合是解答本题的关键.22.(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度OA 为28.75cm 的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y (单位:cm ),乒乓球运行的水平距离记为x (单位:cm ).测得如下数据:水平距离x /cm0105090130170230竖直高度y /cm 28.7533454945330(1)在平面直角坐标系xOy 中,描出表格中各组数值所对应的点(),x y ,并画出表示乒乓球运行轨迹形状的大致图象;(2)①当乒乓球到达最高点时,与球台之间的距离是__________cm ,当乒乓球落在对面球台上时,到起始点的水平距离是__________cm ;②求满足条件的抛物线解析式;(3)技术分析:如果只上下调整击球高度OA ,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出OA 的取值范围,以利于有针对性的训练.如图②.乒乓球台长OB 为274cm ,球网高CD 为15.25cm .现在已经计算出乒乓球恰好过网的击球离度OA 的值约为1.27cm .请你计算出乒乓球恰好落在对面球台边缘点B 处时,击球高度OA 的值(乒乓球大小忽略不计).【答案】(1)见解析(2)①49;230;②()20.00259049y x =--+(3)乒乓球恰好落在对面球台边缘点B 处时,击球高度OA 的值为64.39cm【分析】(1)根据描点法画出函数图象即可求解;(2)①根据二次函数图象的对称性求得对称轴以及顶点,根据表格数据,可得当0y =时,230=x ;②待定系数法求解析式即可求解;(3)根据题意,设平移后的抛物线的解析式为()20.0025904928.75y x h =--++-,根据题意当274x =时,0y =,代入进行计算即可求解.【详解】(1)解:如图所示,(2)①观察表格数据,可知当50x =和130x =时,函数值相等,则对称轴为直线90x =,顶点坐标为()90,49,又抛物线开口向下,可得最高点时,与球台之间的距离是49cm ,当0y =时,230=x ,∴乒乓球落在对面球台上时,到起始点的水平距离是230cm ;故答案为:49;230.②设抛物线解析式为()29049y a x =-+,将()230,0代入得,()202309049a =-+,解得:0.0025a =-,∴抛物线解析式为()20.00259049y x =--+;(3)∵当28.75OA =时,抛物线的解析式为()20.00259049y x =--+,设乒乓球恰好落在对面球台边缘点B 处时,击球高度OA 的值为h ,则平移距离为28.75h -()cm ,∴平移后的抛物线的解析式为()20.0025904928.75y x h =--++-,依题意,当274x =时,0y =,即()20.0025274904928.750h --++-=,解得:64.39h =.答:乒乓球恰好落在对面球台边缘点B 处时,击球高度OA 的值为64.39cm .【点睛】本题考查了二次函数的应用,画二次函数图象,二次函数图象的平移,熟练掌握二次函数图象的性质是解题的关键.23.(2023年湖南省娄底市中考数学真题)如图,抛物线2y x bx c =++过点()1,0A -、点()5,0B ,交y 轴于点C .(1)求b ,c 的值.(2)点()()000,05P x y x <<是抛物线上的动点①当0x 取何值时,PBC 的面积最大?并求出PBC 面积的最大值;②过点P 作PE x ⊥轴,交BC 于点E ,再过点P 作PF x ∥轴,交抛物线于点F ,连接EF ,问:是否存在点P ,使PEF !为等腰直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)4b =-,5c =-(2)①当052x =时,PBC 的面积由最大值,最大值为1258;②当点P 的坐标为72⎛ ⎝⎭或()4,5-时,PEF !为等腰直角三角形【分析】(1)将将()1,0A -、()5,0B 代入抛物线2y x bx c =++即可求解;(2)①由(1)可知:245y x x =--,得()0,5C -,可求得BC 的解析式为5y x =-,过点P 作PE x ⊥轴,交BC 于点E ,交x 轴于点Q ,易得20005E PE y y x x =-=-+,根据PBC 的面积PEC PEB S S =+△△,可得PBC的面积()()001122C B PE x x PE x x =⋅-+⋅-2055125228x ⎛⎫=--+ ⎪⎝⎭,即可求解;②由题意可知抛物线的对称轴为4221x -=-=⨯对,则04F x x =-,分两种情况:当点P 在对称轴左侧时,即002x <<时,当点P 在对称轴右侧时,即025x <<时,分别进行讨论求解即可.【详解】(1)解:将()1,0A -、()5,0B 代入抛物线2y x bx c =++中,可得:102550b c b c -+=⎧⎨++=⎩,解得:45b c =-⎧⎨=-⎩,即:4b =-,5c =-;(2)①由(1)可知:245y x x =--,当0x =时,5y =-,即()0,5C -,设BC 的解析式为:y kx b =+,将()5,0B ,()0,5C -代入y kx b =+中,可得505k b b +=⎧⎨=-⎩,解得:15k b =⎧⎨=-⎩,∴BC 的解析式为:5y x =-,过点P 作PE x ⊥轴,交BC 于点E ,交x 轴于点Q ,∵()()000,05P x y x <<,则200045y x x =--,∴点E 的横坐标也为0x ,则纵坐标为05E y x =-,∴()()220000005455E PE y y x x x x x =-=----=-+,PBC 的面积PEC PEBS S =+△△()()001122C B PE x x PE x x =⋅-+⋅-()12B C PE x x =⋅-()200552x x =-+2055125228x ⎛⎫=--+ ⎪⎝⎭,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数测试题
一、选择题(每小题3分,共30分)
1.抛物线2
(1)3y x =-+的对称轴是( )
(A )直线1x = (B )直线3x = (C )直线1x =- (D )直线3x =- 2.对于抛物线21(5)33y x =--+,下列说法正确的是( )
(A )开口向下,顶点坐标(53), (B )开口向上,顶点坐标(53),
(C )开口向下,顶点坐标(53)-,
(D )开口向上,顶点坐标(53)-, 3.若A (1,413y -
),B (2,4
5y -),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是( ) (A )123y y y <<
(B )213y y y << (C )312y y y << (D )132y y y << 4.二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( )
(A )3<k (B )03≠<k k 且 (C )3≤k (D )03≠≤k k 且
5.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) (A)23(1)2y x =-- (B)23(1)2y x =+-
(C )23(1)2y x =++ (D )23(1)2y x =-+
6.烟花厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时
间(s)t 的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引
爆需要的时间为( )
(A)3s (B)4s (C)5s (D)6s
7.如图,当ab >0时,函数2ax y =与函数a bx y +=的图象大致是( )
8. .某大学的校门是一抛物线形水泥建筑物(如图所示),大门的地面宽度为8米,两侧距地面4米
高处各有一个挂校名匾用的铁环,两铁环的水平距离为6米,则校门的高为(精确到0.1米,水
泥建筑物的厚度忽略不记)( ).
A .5.1米
B .9米
C .9.1米
D .9.2米
9.如图是二次函数2的图象,其对称轴为1,下列结论:①>0;②20;③42<0;④若(﹣),()是抛物线上两点,则y 1<y 2其中结论正确的是( )
A .①②
B .②③
C .②④
D .①③④
二、填空题(每小题3分,共18分)
1.平移抛物线228y x x =+-,使它经过原点,写出平移后抛物线的一个解析式 .
2. 抛物线()
42)2(22-++-=m x x m y 的图象经过原点,则=m . 3.将(21)(2)1y x x =-++化成()y a x m n 2=++的形式为 .
4.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为 元时,获得的利润最多.
5.已知二次函数2y ax bx c =++的图象如图所示,则点()P a bc ,在第 象限.
6.已知二次函数22y x x m =-++的部分图象如右图所示,则关于x 的一元
二次方程220x x m -++=的解为 .
7.老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:
甲:函数的图像经过第一、二、四象限;乙:当x <2时,y 随x 的增大而减小.丙:函数的图像与坐标轴...
只有两个交点. x
y O
已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数.
三、解答题(第17小题6分,第18、19小题各7分,共20分))
1.已知一抛物线与x 轴的交点是)0,2( A 、B (1,0),且经过点C (2,8)。

(1)求该抛物线的解析式; (2)求该抛物线的顶点坐标。

2.如图所示,二次函数﹣x 2+2的图象与x 轴的一个交点为A (3,0),另一个交点为B ,且与y 轴交于点C .
(1)求m 的值;
(2)求点B 的坐标;
(3)该二次函数图象上有一点D (x ,y )(其中x >0,y >0) 使S △△,求点D 的坐标.
3.如图,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系,y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m .
(1)求抛物线的解析式;
(2)一辆货运卡车高4.5m ,宽2.4m ,它能通过该隧道吗?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.4m 的隔离带,则该辆货运卡车还能通过隧道吗?
4.已知:如图,二次函数2的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0), 点C(0,5),另抛物线经过点(1,8),M 为它的顶点.
(1)求抛物线的解析式;
(2)求△的面积S △.
A D C
B O E y
四.实际应用问题。

1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大?最大面积是多少?
2.某商场将进价为30元的书包以40元售出,平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个。

(1)请写出每月售出书包的利润y元与每个书包涨价x元间的函数关系式;
(2)设每月的利润为10000的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元。

(3)请分析并回答售价在什么范围内商家就可获得利润。

3.某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后,要提高租金。

经市场调查,如果1间客房的日租金每提高5元,则客房每天出租数会减少6间。

不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?
4.楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.
(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x 的函数关系式;
(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价)。

相关文档
最新文档