4.2016年西安市铁一中第三次模拟考试
陕西省西安市届九年级数学第三次模拟考试试题精选资料0324156

陕西2016届第三次模拟考试数学试题一、选择题1.,227,π,0,其中无理数的个数是()A.4B.3C.2D.12.如图所示几何体的主视图是()A B C D3.下列计算正确的是()A.325a a a+= B.623a a a=÷C.()236326a a a-⋅=- D.()222121ab a b ab--=++4.如图,AB CD∥,EF与AB、CD分别相交于点E、F,EP EF⊥,与EFD∠的平分线FP相交于点P,且50BEP∠=︒,则EPF∠的度数为()PFEC DBAA.55︒B.60︒C.65︒D.70︒5.已知正比例函数()0y kx k=>的图象经过()11,A x y,()22,B x y两点,且12x x<,则下列不等式一定成立的是()A.12y y-< B.12y y+< C.12y y-> D.12y y+>6.如图,直线123l l l∥∥,直线AC分别交1l,2l,3l于点A,B,C;直线DF分别交1l,2l,3l于点D,E,F.AC与DF相交于点H,且2AH=,1HB=,5BC=,则DEEF的值为()l3l2l1FHEDCBAA.12B.2C.25D.357.已知一次函数y kx b=+的图象经过()1,a和(),1a-,其中1a>,则k,b的取值范围是()A.0k>,0b> B.0k<,0b> C.0k>,0b< D.0k<,0b<8.如图,AB是半圆的直径,点D是AC的中点,50ABC∠=︒,则DAB∠等于()DBAA.55︒B.60︒C.65︒D.70︒9.已知m ,n 是方程2210x x --=的两根,且()()227143678m m a n n -+--=,则a 的值是() A.5- B.5 C.9- D.9 10.已知二次函数2223y x mx m =-++(m 为常数),下列结论正确的是() A.当0m =时,二次函数图象的顶点坐标为()0,0 B.当0m <时,二次函数图象的对称轴在y 轴右侧C.若将该函数图象沿y 轴向下平移6个单位,则平移后图象与x轴两交点之间的距离为D.设二次函数的图象与y 轴交点为A ,过A 作x 轴的平行线,交图象于另一点B ,抛物线的顶点为C ,则ABC △的面积为3m 二、填空题11.分解因式:232a a a -+=_____________.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分. A.正十边形的一个外角的度数是____________;B.如图,在地面上的点A 处测得树顶B 的仰角为63︒,7.2AC =米,则树高BC 为_________米.(用科学计算器计算,结果精确到0.1米)CBA13.如图,直线12y x =与双曲线()0,0k y k x x =>>交于点A ,将直线12y x =向上平移4个单位长度后,与y 轴交于点C ,与双曲线ky x=交于点B ,若3OA BC =,则k 的值为__________.14.如图,在Rt ABC △中,90C ∠=︒,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知5AC =,OC =BC 的长为__________.ODCA三、解答题15.111tan 603-⎛⎫-︒- ⎪⎝⎭.16.分式化简:22121121x x x x x x --⎛⎫-+ ⎪+++⎝⎭÷. 17.如图,将矩形ABCD 沿对角线AC 折叠,点B 落在点E 处,请用尺规作出点E .(不写画法,保留作图痕迹)DCB A18.本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.九年级某班跳绳测试得分人数统计图 九年级某班跳绳测试得分扇形统计图5分2分3分4分50%根据统计图解答下列问题:(1)在扇形统计图中,得5分学生的测试成绩所占扇形的圆心角度数为____________; (2)被测学生跳绳测试成绩的众数是_______分;中位数是_________分; (3)本次测试成绩的平均分是多少分?19.如图,在ABC △中,AB AC =,BD 平分ABC ∠,CE 平分ACB ∠,过点A 分别作BD 、CE 的垂线段AD 、AE ,垂足为D 、E ,求证:AD AE =.ECB A20.学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB ,其测量步骤如下:①在中心广场测点C 处安置侧倾器,测得此时山顶A 的仰角30AFH ∠=︒;②在测点C 与山脚B 之间的D 处安置侧倾器(C 、D 与B 在同一直线上,且C 、D 之间的距离可以直接测得),测得此时山顶上红军亭顶部E 的仰角45EGH ∠=︒;③测得侧倾器的高度 1.5CF DG ==米,并测得CD 之间的距离为288米.已知红军亭的高度AE 为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB .1.732,结果保留整数)BCF DGAE21.随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不A ,B y .(1)如图是A y 与x 之间函数关系的图象,请根据图象填空:m =______,n =_____,并求A y 与x 之间函数关系式;(2)当方案A 与方案B 的收费金额相等时,求每月的上网学习时间.y/22.九(3)班“2016年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌. (1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,则小芳获奖的概率是__________. (2)如果小芳、小明都有翻两张牌...的机会.小芳先翻一张,放回洗匀后再翻一张;小明同时翻开两张纸牌.它们各自翻开的两张纸牌中只要出现笑脸就获奖.它们获奖的机会相等吗?分析说明理由. 23.如图,AB 是O 的直径,点C 在O 上,过点C 作O 的切线CM . (1)求证:ACM ABC ∠=∠;(2)延长BC 到D ,使CD BC =,连接AD 与CM 交于点E ,若O 的半径为2,1ED =,求AC 的长.24.如图,直线:l y x m =+与x轴交于A 点,且经过点()2B .已知抛物线2:9C y ax bx =++与x 轴只有一个公共点,恰为A 点. (1)求m 的值及BAO ∠的度数; (2)求抛物线C 的函数表达式; (2)将抛物线C 沿x 轴左右平移,记平移后的抛物线为1C ,其顶点为P .平移后,将PAB △沿直线AB翻折得到DAB △,点D 能否落在抛物线1C 上?如能,求出此时顶点P 的坐标;如不能,说明理由.25.如图1,在边长为4的菱形ABCD 中,AC 为其对角线,60ABC ∠=︒,点M 、N 是分别是边BC 、边CD 上的动点,且MB NC =.连接AM 、AN 、MN 、MN 交AC 于点P . (1)AMN △是什么特殊的三角形?说明理由,并求其面积最小值; (2)求点P 到直线CD 距离的最大值;(3)如图2,已知1MB NC ==,点E 、F 分别是边AM 、边AN 上的动点,连接EF 、PF ,EF PF +是否存在最小值?若存在,求出最小值及此时AE 、AF 的长;若不存在,请说明理由.PNMFEDC BA图1 图2。
陕西省西安市高考数学三模试卷(理科).docx

高中数学学习材料马鸣风萧萧*整理制作2016年陕西省西安市高考数学三模试卷(理科)一、选择题(共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数2﹣mi是(m,n均为实数)的共轭复数,则m+n的值为()A.﹣6 B.﹣3 C.3 D.62.sin30°sin75°﹣sin60°cos105°=()A.B.﹣C.D.﹣3.若a+b=5,则a>0,b>0是ab有最大值的()A.必要非充分条件B.充要条件C.充分非必要条件D.既非充分也非必要条件4.已知{a n}是公差为﹣2等差数列,若S5=10,则a100=()A.﹣192 B.﹣194 C.﹣196 D.﹣1985.投篮测试中,每人投3次,至少连续投中2个才能通过测试,若某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.504 C.0.36 D.0.3126.阅读如图所示的程序框图,如果输出的函数值在区间内,那么输入实数x的取值范围是()A.[﹣2,﹣1]B.(﹣∞,﹣1]C.[﹣1,2] D.[2,+∞)7.已知M(x0,y0)是函数C: +y2=1上的一点,F1,F2是C上的两个焦点,若•<0,则x0的取值范围是()A.(﹣,)B.(﹣,)C.(﹣,) D.(﹣,)8.函数y=cos2(x+)﹣cos2(x﹣)是()A.周期为2π的偶函数B.周期为2π的奇函数C.周期为π的偶函数 D.周期为π的奇函数9.若平面四边形ABCD满足=2,(﹣)•=0,则该四边形一定是()A.矩形 B.直角梯形 C.等腰梯形 D.平行四边形10.假设(+)n的二项展开式的系数之和为729,则其展开式中常数项等于()A.15 B.30 C.60 D.12011.在正四面体A﹣BCD中,若AB=6,则这个正四面体外接球的表面积为()A.27πB.36πC.54πD.63π12.已知k>0,函数f(x)=kx2﹣lnx在其定义域上有两个零点,则实数k的取值范围是()A.B.C. D.二、填空题(共4小题,每小题5分,满分20分)13.某几何体的三视图如图所示,则其体积为________.14.在同一坐标系中,直线l是函数f(x)=在(0,1)处的切线,若直线l也是g(x)=﹣x2+mx的切线,则m=________.15.经过双曲线﹣=1的左焦点和右顶点,且面积最小的圆的标准方程为________.16.一避暑山庄占地的平面图如图所示,它由三个正方形和四个三角形构成,其中三个正方形的面积分别为18亩、20亩和26亩,则整个避暑山庄占地________亩.三、解答题(本大题分必考题和选考题两部分,共5小题,满分60分,解答时应写出文字说明,证明过程或演算过程)必考题17.设数列{a n}的前n项和为S n,且a1=1,a n+1=3S n(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=n•a n,求数列{b n}的前n项的和.18.随机抽取某厂的某种产品400件,经质检,其中有一等品252件、二等品100件、三等品40件、次品8件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(Ⅰ)求ξ的分布列;(Ⅱ)求1件产品的平均利润;(Ⅲ)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.75万元,则三等品率最多是多少?19.如图,四棱柱ABCD﹣A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD 的中点,D1E⊥CD,AB=2BC=2.(1)求证:D1E⊥底面ABCD;(2)若平面BCC1B1与平面BED1的夹角为,求线段D1E的长.20.已知椭圆C: +=1(a>b>0)的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)若P为椭圆C上任意一点,以P为圆心,OP为半径的圆P与以椭圆C的右焦点E为圆心,其中O为坐标原点,以为半径的圆F相交于A,B两点,求△PAB面积的最大值.21.已知函数f(x)=xlnx,g(x)=.(1)记F(x)=f(x)﹣g(x),求证:F(x)=0在区间(1,+∞)内有且仅有一个实根;(2)用min{a,b}表示a,b中的最小值,设函数m(x)=min{xf(x),g(x)},若方程m(x)=c在(1,+∞)有两个不相等的实根x1,x2(x1<x2),记F(x)=0在(1,+∞)内的实根x0.求证:>x0.选考题题(请在22、23、24题中任选一题作答,如果多做,则按所做的第一题记分。
精选陕西省西安市2016届九年级数学第三次模拟考试试题无答案

陕西2016届第三次模拟考试数学试题一、选择题1.,227,π,0,其中无理数的个数是()A.4B.3C.2D.12.如图所示几何体的主视图是()A B C D3.下列计算正确的是()A.325a a a+= B.623a a a=÷C.()236326a a a-⋅=- D.()222121ab a b ab--=++4.如图,AB CD∥,EF与AB、CD分别相交于点E、F,EP EF⊥,与EFD∠的平分线FP相交于点P,且50BEP∠=︒,则EPF∠的度数为()PFEC DBAA.55︒B.60︒C.65︒D.70︒5.已知正比例函数()0y kx k=>的图象经过()11,A x y,()22,B x y两点,且12x x<,则下列不等式一定成立的是()A.12y y-< B.12y y+< C.12y y-> D.12y y+>6.如图,直线123l l l∥∥,直线AC分别交1l,2l,3l于点A,B,C;直线DF分别交1l,2l,3l于点D,E,F.AC与DF相交于点H,且2AH=,1HB=,5BC=,则DEEF的值为()l3l2l1FHEDCBAA.12B.2C.25D.357.已知一次函数y kx b=+的图象经过()1,a和(),1a-,其中1a>,则k,b的取值范围是()A.0k>,0b> B.0k<,0b> C.0k>,0b< D.0k<,0b<8.如图,AB是半圆的直径,点D是AC的中点,50ABC∠=︒,则DAB∠等于()DBAA.55︒B.60︒C.65︒D.70︒9.已知m ,n 是方程2210x x --=的两根,且()()227143678m m a n n -+--=,则a 的值是() A.5- B.5 C.9- D.9 10.已知二次函数2223y x mx m =-++(m 为常数),下列结论正确的是() A.当0m =时,二次函数图象的顶点坐标为()0,0 B.当0m <时,二次函数图象的对称轴在y 轴右侧C.若将该函数图象沿y 轴向下平移6个单位,则平移后图象与x轴两交点之间的距离为D.设二次函数的图象与y 轴交点为A ,过A 作x 轴的平行线,交图象于另一点B ,抛物线的顶点为C ,则ABC △的面积为3m 二、填空题11.分解因式:232a a a -+=_____________.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分. A.正十边形的一个外角的度数是____________;B.如图,在地面上的点A 处测得树顶B 的仰角为63︒,7.2AC =米,则树高BC 为_________米.(用科学计算器计算,结果精确到0.1米)CBA13.如图,直线12y x =与双曲线()0,0k y k x x =>>交于点A ,将直线12y x =向上平移4个单位长度后,与y 轴交于点C ,与双曲线ky x=交于点B ,若3OA BC =,则k 的值为__________.14.如图,在Rt ABC △中,90C ∠=︒,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知5AC =,OC =BC 的长为__________.ODCA三、解答题15.111tan 603-⎛⎫-︒- ⎪⎝⎭.16.分式化简:22121121x x x x x x --⎛⎫-+ ⎪+++⎝⎭÷. 17.如图,将矩形ABCD 沿对角线AC 折叠,点B 落在点E 处,请用尺规作出点E .(不写画法,保留作图痕迹)DCB A18.本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.九年级某班跳绳测试得分人数统计图 九年级某班跳绳测试得分扇形统计图5分2分3分4分50%根据统计图解答下列问题:(1)在扇形统计图中,得5分学生的测试成绩所占扇形的圆心角度数为____________; (2)被测学生跳绳测试成绩的众数是_______分;中位数是_________分; (3)本次测试成绩的平均分是多少分?19.如图,在ABC △中,AB AC =,BD 平分ABC ∠,CE 平分ACB ∠,过点A 分别作BD 、CE 的垂线段AD 、AE ,垂足为D 、E ,求证:AD AE =.EDCB A20.学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB ,其测量步骤如下:①在中心广场测点C 处安置侧倾器,测得此时山顶A 的仰角30AFH ∠=︒;②在测点C 与山脚B 之间的D 处安置侧倾器(C 、D 与B 在同一直线上,且C 、D 之间的距离可以直接测得),测得此时山顶上红军亭顶部E 的仰角45EGH ∠=︒;③测得侧倾器的高度 1.5CF DG ==米,并测得CD 之间的距离为288米.已知红军亭的高度AE 为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB .1.732,结果保留整数)BCF DGAE21.随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不A ,B y .(1)如图是A y 与x 之间函数关系的图象,请根据图象填空:m =______,n =_____,并求A y 与x 之间函数关系式;(2)当方案A 与方案B 的收费金额相等时,求每月的上网学习时间.y/22.九(3)班“2016年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌. (1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,则小芳获奖的概率是__________. (2)如果小芳、小明都有翻两张牌...的机会.小芳先翻一张,放回洗匀后再翻一张;小明同时翻开两张纸牌.它们各自翻开的两张纸牌中只要出现笑脸就获奖.它们获奖的机会相等吗?分析说明理由. 23.如图,AB 是O 的直径,点C 在O 上,过点C 作O 的切线CM . (1)求证:ACM ABC ∠=∠;(2)延长BC 到D ,使CD BC =,连接AD 与CM 交于点E ,若O 的半径为2,1ED =,求AC 的长.24.如图,直线:l y x m =+与x 轴交于A 点,且经过点()2B .已知抛物线2:9C y ax bx =++与x 轴只有一个公共点,恰为A 点. (1)求m 的值及BAO ∠的度数; (2)求抛物线C 的函数表达式; (2)将抛物线C 沿x 轴左右平移,记平移后的抛物线为1C ,其顶点为P .平移后,将PAB △沿直线AB 翻折得到DAB △,点D 能否落在抛物线1C 上?如能,求出此时顶点P 的坐标;如不能,说明理由.25.如图1,在边长为4的菱形ABCD 中,AC 为其对角线,60ABC ∠=︒,点M 、N 是分别是边BC 、边CD 上的动点,且MB NC =.连接AM 、AN 、MN 、MN 交AC 于点P . (1)AMN △是什么特殊的三角形?说明理由,并求其面积最小值; (2)求点P 到直线CD 距离的最大值;(3)如图2,已知1MB NC ==,点E 、F 分别是边AM 、边AN 上的动点,连接EF 、PF ,EF PF +是否存在最小值?若存在,求出最小值及此时AE 、AF 的长;若不存在,请说明理由.PNMFEC BA图1 图2。
西安市铁一中学中考化学三模试卷解析版

西安市铁一中学中考化学三模试卷解析版一、选择题(培优题较难)1.除去下列杂质,所选用的试剂和操作方法不合理的是( )A.A B.B C.C D.D【答案】C【解析】A、KNO3和NaCl的溶解度受温度的影响不同,硝酸钾溶解度受温度影响较大,而氯化钠受温度影响较小,所以可采取加热水溶解配成饱和溶液、冷却热饱和溶液使KNO3先结晶出来、再过滤的方法,正确;B、K2CO3能与盐酸反应生成氯化钾、水和二氧化碳,再蒸发除去盐酸和水,能除去杂质且没有引入新的杂质,符合除杂原则,正确;C、碳和氧化铁在高温的条件下反应生成铁和二氧化碳,碳粉过量,会引入新的杂质,错误D、铜和氧气在加热的条件下生成氧化铜,错误。
故选C。
点睛:根据原物质和杂质的性质选择适当的除杂剂和分离方法,所谓除杂(提纯),是指除去杂质,同时被提纯物质不得改变。
除杂质题至少要满足两个条件:①加入的试剂只能与杂质反应,不能与原物质反应;②反应后不能引入新的杂质。
2.现有一包由5.6g铁、7.2g镁、1.0g碳混合而成的粉末,把它加入一定量的CuCl2溶液中。
实验结束后,测得剩余固体中含有三种物质。
则剩余固体的质量不可能是A.26. 2gB.26.6gC.26. 0gD.25. 8g【答案】B【解析】【分析】镁的金属活动性强于铁,铁强于铜,镁先和氯化铜反应生成氯化镁和铜,镁完全反应后,铁和氯化铜反应生成氯化亚铁和铜,碳和氯化铜不反应。
【详解】设7.2g镁和氯化铜完全反应产生铜的质量为x22Mg +CuCl =MgCl +Cu 24647.2gx2464=7.2g x x=19.2g若铁没有反应,剩余固体的质量为19.2g+1.0g+5.6g=25.8g 设5.6g 铁和硝酸铜完全反应产生铜的质量为y22Fe +CuCl =FeCl +Cu 56645.6g y5664=5.6g y y=6.4g若铁完全反应,剩余固体的质量为19.2g+1.0g+6.4g=26.6g铁没有反应或部分反应,因此剩余固体的质量大于或等于25.8g ,小于26.6g 。
陕西省西安市高新2016年中考数学三模试卷附答案解析

2016年陕西省西安市高新中考数学三模试卷一、选择题1.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.3.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115° D.120°4.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣3=0的解C.a是8的算术平方根 D.3<a<45.已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.6.在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1 B.y=2x﹣1 C.y=2x+2 D.y=2x﹣27.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.28.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于()A.B.C.2 D.9.如图,线段BD为锐角△ABC上AC边上的中线,E为△ABC的边上的一个动点,则使△BDE为直角三角形的点E的位置有()A.4个 B.3个 C.2个 D.1个10.已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,)的下方,那么m的取值范围是()A.B.C.D.全体实数二、填空题11.与2+最接近的正整数是.12.如图,过点A(3,4)作AB⊥x轴,垂足为B,交反比例函数y=的图象于点C(x1,y1),连接OA交反比例函数y=的图象于点D(2,y2),则y2﹣y1=.13.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.三、填空题14.如果一个正多边形的中心角为72°,那么这个正多边形的边数是.15.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).三、解答题16.计算:﹣12016++(﹣)﹣1﹣tan30°.17.化简(a﹣)+,并请从﹣1,0,1,2中选择你喜欢的数代入求值.18.如图,已知直线及其上一点A,请用尺规作⊙O,使得⊙O与直线相切于点A,且半径等于r长.(保留作图痕迹,不写作法)19.考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.数据收集整理后,绘制了图1和图2两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)请通过计算,补全条形统计图;(2)请直接写出扇形统计图中“享受美食”所对应圆心角的度数为;(3)根据调查结果,可估计出该校九年级学生中减压方式的众数和中位数分别是,.20.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:AE=AB.21.如图所示,当小华站立在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°.若小华向后退0.5米到B处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:≈1.73)22.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.23.小明、小亮、和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如下:游戏规则:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)如图,请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求一个回合不能确定两人先下棋的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,抛物线M:y=(x+1)(x+a)(a>1)交x轴于A、B两点(A在B的左边),交y轴于C点.抛物线M关于y轴对称的抛物线N交x轴于P、Q两点(P在Q的左边)(1)直接写出A、C坐标:A(),C();(用含有a的代数式表示)(2)在第一象限存在点D,使得四边形ACDP为平行四边形,请直接写出点D的坐标(用含a的代数式表示);并判断点D是否在抛物线N上,说明理由.(3)若(2)中平行四边形ACDP为菱形,请确定抛物线N的解析式.26.对于一个四边形给出如下定义:有一组对角相等且有一组邻边相等,则称这个四边形为奇特四边形.如图①中,∠B=∠D,AB=AD;如图②中,∠A=∠C,AB=AD则这样的四边形均为奇特四边形.(1)在图①中,若AB=AD=4,∠A=60°,∠C=120°,请求出四边形ABCD的面积;(2)在图②中,若AB=AD=4,∠A=∠C=45°,请直接写出四边形ABCD面积的最大值;(3)如图③,在正方形ABCD中,E为AB边上一点,F是AD延长线上一点,且BE=DF,连接EF,取EF的中点G,连接CG并延长交AD于点H.若EB+BC=m,问四边形BCGE的面积是否为定值?如果是,请求出这个定值(用含m的代数式表示);如果不是,请说明理由.2016年陕西省西安市高新中考数学三模试卷参考答案与试题解析一、选择题1.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|【考点】实数与数轴.【专题】常规题型.【分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【解答】解:根据图形可知:﹣2<a<﹣1,0<b<1,则|b|<|a|;故选:D.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴上的任意两个数,右边的数总比左边的数大,负数的绝对值等于它的相反数,正数的绝对值等于本身.2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115° D.120°【考点】平行线的性质.【分析】如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=55°,借助三角形外角的性质求出∠AMO即可解决问题.【解答】解:如图,∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠AMO=∠A+∠ANM=60°+55°=115°,∴∠2=∠AMO=115°.故选C.【点评】该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础.4.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣3=0的解C.a是8的算术平方根 D.3<a<4【考点】一元二次方程的解;无理数.【分析】由无理数,算术平方根,方程的解的概念进行判断即可.【解答】解:∵边长为a的正方形的面积为8,∴a==2,∴A,C,D都正确,故选B.【点评】本题考查了无理数,算术平方根,方程的解,熟记概念是解题的关键.5.已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由x﹣3>0,得x>3,由x+1≥0,得x≥﹣1.不等式组的解集是x>3,故选:C.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1 B.y=2x﹣1 C.y=2x+2 D.y=2x﹣2【考点】一次函数图象与几何变换.【分析】根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将直线y=2x向左平移1个单位所得的直线的解析式是y=2(x+1)=2x+2.即y=2x+2,故选C【点评】本题考查的是一次函数的图象与几何变换,熟知“左加右减”的原则是解答此题的关键.7.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.2【考点】等边三角形的判定与性质;勾股定理的应用;正方形的性质.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC===,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.8.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于()A.B.C.2 D.【考点】圆周角定理;锐角三角函数的定义.【专题】网格型.【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故选D.【点评】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.9.如图,线段BD为锐角△ABC上AC边上的中线,E为△ABC的边上的一个动点,则使△BDE为直角三角形的点E的位置有()A.4个 B.3个 C.2个 D.1个【考点】圆周角定理.【分析】根据直径所对的圆周角是直角,分BD是斜边和BD是直角边两种情况作出图形,然后确定出点E的位置即可.【解答】解:如图,BD是斜边时,点E有两个位置,BD是直角边时点E有一个位置,综上所述,使△BDE为直角三角形的点E的位置有3个.故选B.【点评】本题考查了圆周角定理,直角三角形的定义,主要利用了直径所对的圆周角是直角,作出图形更形象直观.10.已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,)的下方,那么m的取值范围是()A.B.C.D.全体实数【考点】抛物线与x轴的交点.【专题】压轴题.【分析】因为抛物线y=x2﹣(4m+1)x+2m﹣1与x轴有一个交点的横坐标大于2,另一个交点的横坐标小于2,且抛物线开口向上,所以令f(x)=x2﹣(4m+1)x+2m﹣1,则f(2)<0,解不等式可得m>,又因为抛物线与y轴的交点在点(0,)的下方,所以f(0)<﹣,解得m<,即可得解.【解答】解:根据题意,令f(x)=x2﹣(4m+1)x+2m﹣1,∵抛物线y=x2﹣(4m+1)x+2m﹣1与x轴有一个交点的横坐标大于2,另一个交点的横坐标小于2,且抛物线开口向上,∴f(2)<0,即4﹣2(4m+1)+2m﹣1<0,解得:m>,又∵抛物线与y轴的交点在点(0,)的下方,∴f(0)<﹣,解得:m<,综上可得:<m<,故选A.【点评】本题考查二次函数图象特征,要善于合理运用题目已知条件.二、填空题11.与2+最接近的正整数是4.【考点】估算无理数的大小.【分析】先估算出的范围,然后再确定即可.【解答】解:∵4<6<6.25,∴2<<2.5,∴4<2+<4.5.所以与2+最接近的正整数是4.故答案为:4.【点评】本题主要考查的是估算无理数的大小,估算出2+的大致范围是解题的关键.12.如图,过点A(3,4)作AB⊥x轴,垂足为B,交反比例函数y=的图象于点C(x1,y1),连接OA交反比例函数y=的图象于点D(2,y2),则y2﹣y1=.【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征结合点A的坐标以及点D的横坐标即可得出点C、D的坐标,由点A的坐标利用待定系数法即可求出直线OA的解析式,将点D的坐标代入直线OA的解析式中即可求出k值,再将其代入y2﹣y1=中即可得出结论.【解答】解:∵过点A(3,4)作AB⊥x轴,垂足为B,交反比例函数y=的图象于点C(x1,y1),∴点C(3,).∵连接OA交反比例函数y=的图象于点D(2,y2),∴点D(2,).设直线OA的解析式为y=mx(m≠0),将A(3,4)代入y=mx中,4=3m,解得:m=,∴直线OA的解析式为y=x.∴点D(2,)在直线OA上,∴=×2,解得:k=,∴y2﹣y1=﹣==.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征以及待定系数法求正比例函数解析式,根据点A 的坐标利用待定系数法求出直线OA的解析式是解题的关键.13.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是+1.【考点】旋转的性质;全等三角形的判定与性质;角平分线的性质;等边三角形的判定与性质;等腰直角三角形.【专题】压轴题.【分析】如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM•sin60°=,最终得到答案BM=BO+OM=1+.【解答】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM•sin60°=,∴BM=BO+OM=1+,故答案为:1+.【点评】本题考查了图形的变换﹣旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.三、填空题14.如果一个正多边形的中心角为72°,那么这个正多边形的边数是5.【考点】正多边形和圆.【分析】根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可.【解答】解:根据题意得:这个多边形的边数是360°÷72°=5,故答案为:5.【点评】本题考查的是正多边形的中心角的有关计算,掌握正多边形的中心角和边数的关系是解题的关键.15.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为14.1cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).【考点】解直角三角形的应用.【分析】作BE⊥CD于E,根据等腰三角形的性质和∠CBD=40°,求出∠CBE的度数,根据余弦的定义求出BE的长.【解答】解:如图2,作BE⊥CD于E,∵BC=BD,∠CBD=40°,∴∠CBE=20°,在Rt△CBE中,cos∠CBE=,∴BE=BC•cos∠CBE=15×0.940=14.1cm.故答案为:14.1.【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,作出合适的辅助线构造直角三角形是解题的重要环节.三、解答题16.计算:﹣12016++(﹣)﹣1﹣tan30°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用乘方的意义,二次根式性质,负整数指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1+﹣2﹣=﹣3.【点评】此题考查了实数的运算,负整数指数幂,以及特殊角的三角函数值,注意区别﹣12016与(﹣1)2016.17.化简(a﹣)+,并请从﹣1,0,1,2中选择你喜欢的数代入求值.【考点】分式的化简求值.【分析】首先对括号内的分式进行通分相加,把除法转化为乘法,计算乘法即可化简,然后代入a=2求解.【解答】解:原式=+=+==当a=2时,原式==0.【点评】本题考查了分式的化简求值,正确进行通分、约分是关键,本题中要注意a不能取﹣1,0以及1.18.如图,已知直线及其上一点A,请用尺规作⊙O,使得⊙O与直线相切于点A,且半径等于r长.(保留作图痕迹,不写作法)【考点】作图—应用与设计作图;切线的判定与性质.【分析】过点A作直线DE⊥BC,在直线DE上截取OA=r,以O为圆心,OA为半径画圆即可.【解答】解:如图所示,圆O为所求.【点评】本题考查了尺规作图以及切线的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19.考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.数据收集整理后,绘制了图1和图2两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)请通过计算,补全条形统计图;(2)请直接写出扇形统计图中“享受美食”所对应圆心角的度数为72°;(3)根据调查结果,可估计出该校九年级学生中减压方式的众数和中位数分别是B,C.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【分析】(1)利用“流谈心”的人数除以所占的百分比计算求得总人数,用总人数乘以“体育活动”所占的百分比计算求出体育活动的人数,然后补全统计图即可;(2)用360°乘以“享受美食”所占的百分比计算即可得解;(3)根据众数和中位数的定义求解即可.【解答】解:(1)一共抽查的学生:8÷16%=50人,参加“体育活动”的人数为:50×30%=15人,补全统计图如图所示:(2)“享受美食”所对应扇形的圆心角的度数为:360°×=72°;(3)B出现了15次,出现的次数最多,则众数是B;因为共有50人,把这组数据从小到大排列,最中间两个都是C,所以中位数是C.故答案为:72°;B,C.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了众数和中位数的计算.20.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:AE=AB.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由在平行四边形ABCD中,AM=DM,易证得△AEM≌△DCM(AAS),即可得AE=CD=AB.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠E=∠DCM,在△AEM和△DCM中,,∴△AEM≌△DCM(AAS),∴AE=CD,∴AE=AB.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质,熟记平行四边形的各种性质以及全等三角形各种判断方法是解题的关键.21.如图所示,当小华站立在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°.若小华向后退0.5米到B处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:≈1.73)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】利用等腰直角三角形的性质得出AC=AA1,进而得出tan30°==求出即可.【解答】解:∵当小华站立在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°.∴AC=AA1,∵若小华向后退0.5米到B处,这时他看自己的脚在镜中的像的俯角为30°,∴AB=A1B1=0.5米,∠DB1B=30°,∴tan30°====,解得:BD=≈≈1.4(米),答:小华的眼睛到地面的距离为1.4米.【点评】此题主要考查了解直角三角形中仰角与俯角问题以及平面镜成像的性质,得出AB=A1B1=0.5米,再利用锐角三角函数求出是解题关键.22.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为15.5万元和两种手机的销售利润为2.1万元建立方程组求出其解即可;(2)设甲种手机减少a部,则乙种手机增加2a部,表示出购买的总资金,由总资金不超过17.25万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.【解答】解:(1)设该商场计划购进甲种手机x部,乙种手机y部,由题意得,解得.答:该商场计划购进甲种手机20部,乙种手机30部;(2)设甲种手机减少a部,则乙种手机增加3a部,由题意得4000(20﹣a)+2500(30+3a)≤172500解得a≤5设全部销售后的毛利润为w元.则w=300(20﹣a)+500(30+3a)=1200a+21000.∵1200>0,∴w随着a的增大而增大,5+21000=27000∴当a=5时,w有最大值,w最大=1200×答:当商场购进甲种手机15部,乙种手机45部时,全部销售后毛利润最大,最大毛利润是2.7万元.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用及一次函数的性质的运用,解答本题时灵活运用一次函数的性质求解是关键.23.小明、小亮、和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如下:游戏规则:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)如图,请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求一个回合不能确定两人先下棋的概率.【考点】列表法与树状图法.【专题】图表型.【分析】(1)此题需两步完成,可根据题意画树状图求得所有可能出现的结果;(2)根据树状图求得一个回合不能确定两人先下棋的情况,再根据概率公式求解即可.【解答】解:(1)画树状图得:(2)∴一共有8种等可能的结果,一个回合不能确定两人先下棋的有2种情况,∴一个回合能确定两人先下棋的概率为:=.【点评】此题考查了树状图法与列表法求概率.树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC 得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O 的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.【点评】本题考查了切线的判定及圆周角定理,解答本题的关键是掌握切线的判定定理、圆周角定理及含30°直角三角形的性质.25.如图,抛物线M:y=(x+1)(x+a)(a>1)交x轴于A、B两点(A在B的左边),交y轴于C点.抛物线M关于y轴对称的抛物线N交x轴于P、Q两点(P在Q的左边)(1)直接写出A、C坐标:A(﹣a,0),C(0,a);(用含有a的代数式表示)(2)在第一象限存在点D,使得四边形ACDP为平行四边形,请直接写出点D的坐标(用含a的代数式表示);并判断点D是否在抛物线N上,说明理由.(3)若(2)中平行四边形ACDP为菱形,请确定抛物线N的解析式.【考点】二次函数综合题.【分析】(1)令y=0可求得x,则可求得A、B坐标,令x=0可求得C点坐标;(2)可先求得抛物线N的解析式,则可求得P点坐标,由平行四边形的性质可知CD=AP,则可求得D点坐标;(3)由菱形的性质可知AC=AP,则可得到关于a的方程,可求得抛物线N的解析式.【解答】解:(1)在y=(x+1)(x+a)中,令y=0可得(x+1)(x+a)=0,解得x=﹣1或x=﹣a,∵a>1,∴﹣a<﹣1,∴A(﹣a,0),B(﹣1,0),令x=0可得y=a,∴C(0,a),故答案为:﹣a,0;0,a;(2)∵抛物线N与抛物线M关于y轴对称,∴抛物线N的解析式为y=(x﹣1)(x﹣a),令y=0可解得x=1或x=a,∴P(1,0),Q(a,0),∴AP=1﹣(﹣a)=1+a,∵四边形ACDP为平行四边形,∴CD∥AP,且CD=AP,∴CD=1+a,且OC=a,∴D(1+a,a);(3)∵A(﹣a,0),C(0,a),∴AC=a,当四边形ACDP为菱形时则有AP=AC,∴a=1+a,解得a=+1,∴抛物线N的解析式为y=(x﹣1)(x﹣﹣1).【点评】本题为二次函数的综合应用,涉及函数图象与坐标轴的交点、轴对称、平行四边形的性质、菱形的性质、勾股定理等知识.在(1)中注意函数图象与坐标轴交点的求法,在(2)中由平行四边形的性质求得AP=CD、AP∥CD是解题的关键,在(3)中由菱形的性质得到AC=AP是解题的关键.本题考查知识点较多,综合性较强,难度适中.26.对于一个四边形给出如下定义:有一组对角相等且有一组邻边相等,则称这个四边形为奇特四边形.如图①中,∠B=∠D,AB=AD;如图②中,∠A=∠C,AB=AD则这样的四边形均为奇特四边形.(1)在图①中,若AB=AD=4,∠A=60°,∠C=120°,请求出四边形ABCD的面积;(2)在图②中,若AB=AD=4,∠A=∠C=45°,请直接写出四边形ABCD面积的最大值;(3)如图③,在正方形ABCD中,E为AB边上一点,F是AD延长线上一点,且BE=DF,连接EF,取EF的中点G,连接CG并延长交AD于点H.若EB+BC=m,问四边形BCGE的面积是否为定值?如果是,请求出这个定值(用含m的代数式表示);如果不是,请说明理由.【考点】四边形综合题.【分析】(1)如图①中,设AC与BD交于点O.首先证明△ABD是等边三角形,AC⊥BD,根据S四。
2016年陕西省西安市XX中学中考数学三模试卷含答案解析

2016年陕西省西安市XX中学中考数学三模试卷一.选择题1.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣32.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A. B.C.D.3.下列运算正确的是()A.(﹣2a)3=﹣6a3B.﹣3a2•4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2D.2a3﹣a2=2a4.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B 点落在AC边上的B′处,则∠ADB′等于()A.40°B.35°C.30°D.25°5.若正比例函数的图象经过点(﹣1,2),(﹣m,4﹣2m),则m的值为()A.﹣1 B.﹣2 C.2 D.16.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.117.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6, B.,3 C.6,3 D.,8.在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1 B.y=2x﹣1 C.y=2x+2 D.y=2x﹣29.如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:=AB2①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD其中正确的结论有()A.1个 B.2个 C.3个 D.4个10.已知抛物线y=ax2+bx﹣2与x轴没有交点,过A(﹣、y1)、B(﹣3,y2)、C(1,y2)、D (,y3)四点,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y2>y1二.填空题11.分解因式:x3y2﹣4x=.14.如图,反比例函数y=(x>0)的图象经过平行四边形ABCO的顶点A和对角线的交点E,点A的横坐标为3,对角线AC所在的直线交y轴于(0,6)点,则函数y=的表达式为.15.如图,⊙O的半径为1cm,弦AB、CD的长度分别为cm,1cm,则弦AC、BD所夹的锐角α=度.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.在矩形ABCD中,AB=3,BC=4,BD的垂直平分线交AD于E,则AE的长为.13.在Rt△ABC中,∠ACB=90°,∠A=41°,BC=3,则AB的长为.(用科学计算器计算,结果精确到0.01)三、解答题16.求不等式组的整数解.17.先化简,再求值:,其中x=+1.18.如图,已知线段a,c.求作Rt△ABC,使∠C=90°,AB=c,BC=a(尺规作图,保留作图痕迹).19.西安市地铁改变了人们的出行情况,也改变了学生到校的方式.小明同学就本校学生上学方式进行了一次统计调查,如图是他采集数据后绘制的两幅不完整的统计图.请你根据图中提供的信息回答以下问题:(A:步行,B:乘公交,C:坐地铁,D:骑自行车).(1)求被调查的学生人数;(2)补全两个统计图(3)若全校有1500人,估计该校学生上学坐地铁的人数,并根据调查结果,请你对西安开通地铁对学生上学的影响谈谈你的感想或建议.20.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC和CD上.(1)求证:CE=CF;(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.某蔬菜生产基地经市场调查,对种植的A、B、C三种蔬菜的成本与售价情况统计如表:蔬菜品种A B C成本(元/吨)300022001500售价(元/吨)700040003200并且从市场调研中总结得知:该基地的蔬菜C的种植面积一般是蔬菜B种植面积的2倍,生产基地要按照这个规律种植,才不至于滞销.现知道基地共有用地200亩,蔬菜A每亩产量为3吨,蔬菜B每亩产量为5吨,蔬菜C每亩产量为7吨.若设种植蔬菜B为x亩,基地假设把生产的蔬菜都能销售出去,其利润为y元.(1)求y与x之间的函数关系式;(2)根据市场行情,蔬菜A的种植不能多于50亩,求该蔬菜生产基地在这次种植中能获得的最大利润.23.有6张不透明的卡片,除正面写有不同的数字﹣1,2,,π,0,﹣外,其他均相同,将这6张卡片背面朝上洗匀后放在桌面上.从中随机抽取一张卡片记录数据后放回,重新洗匀后,再从中抽取一张卡片并记录数据.求两次抽取的数字之积是无理数的概率.24.如图,正方形ABCD接于⊙O,延长BA到E,使AE=AB,连接ED.(1)求证:直线ED是⊙O的切线;(2)连接EO交AD于F,若⊙O的半径为2,求FO的长.25.已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,使得点P、Q、B、O的四边形为平行四边形,求Q的坐标.26.问题探究(1)请在图①的正方形ABCD的对角线BD是作一点P,使PA+PC最小;(2)如图②,点P为矩形ABCD的对角线BD上一动点,AB=2,BC=2,点E为BC边的中点,求作一点P,使PE+PC最小,并求这个最小值.问题解决(3)如图③,李师傅有一块边长为1000米的菱形ABCD采摘园,AC=1200米,BD为小路,BC 的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出的点P位置,并求出这个最短距离;若不存在,请说明理由.2016年陕西省西安市XX中学中考数学三模试卷参考答案与试题解析一.选择题1.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣3【考点】有理数的减法.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:﹣1﹣2=﹣3,故选D.2.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆,故选:D.3.下列运算正确的是()A.(﹣2a)3=﹣6a3B.﹣3a2•4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2D.2a3﹣a2=2a【考点】单项式乘多项式;合并同类项;去括号与添括号;幂的乘方与积的乘方;单项式乘单项式.【分析】先根据同底数幂的乘法法则,幂的乘方,积的乘方,合并同类项分别求出每个式子的值,再判断即可.【解答】解:A、(﹣2a)3=﹣8a3;故本选项错误;B、﹣3a2•4a3=﹣12a5;故本选项正确;C、﹣3a(2﹣a)=6+﹣3a2;故本选项错误;D、不是同类项不能合并;故本选项错误;故选B.4.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B 点落在AC边上的B′处,则∠ADB′等于()A.40°B.35°C.30°D.25°【考点】三角形内角和定理;翻折变换(折叠问题).【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CB′D的度数,再由三角形外角的性质即可得出结论.【解答】解:∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°,∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°.故选:A.5.若正比例函数的图象经过点(﹣1,2),(﹣m,4﹣2m),则m的值为()A.﹣1 B.﹣2 C.2 D.1【考点】一次函数图象上点的坐标特征.【分析】根据点的坐标利用待定系数法即可求出正比例函数解析式,再根据一次函数图象上点的坐标特征即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:设正比例函数解析式为y=kx(k≠0),将(﹣1,2)代入y=kx中,2=﹣k,解得:k=﹣2.∴正比例函数解析式为y=﹣2x.∵点(﹣m,4﹣2m)在正比例函数y=﹣2x的图象上,∴4﹣2m=2m,解得:m=1.故选D.6.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【考点】平行四边形的性质;勾股定理.【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.7.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6, B.,3 C.6,3 D.,【考点】正多边形和圆.【分析】由正方形的边长、外接圆半径、内切圆半径正好组成一个直角三角形,从而求得它们的长度.【解答】解:∵正方形的边长为6,∴AB=3,又∵∠AOB=45°,∴OB=3∴AO==3,即外接圆半径为3,内切圆半径为3.故选:B.8.在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1 B.y=2x﹣1 C.y=2x+2 D.y=2x﹣2【考点】一次函数图象与几何变换.【分析】根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将直线y=2x向左平移1个单位所得的直线的解析式是y=2(x+1)=2x+2.即y=2x+2,故选C9.如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:=AB2①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD其中正确的结论有()A.1个 B.2个 C.3个 D.4个【考点】菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.【分析】先判断出△ABD、BDC是等边三角形,然后根据等边三角形的三心(重心、内心、垂心)合一的性质,结合菱形对角线平分一组对角,三角形的判定定理可分别进行各项的判断.【解答】解:①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG=CG,故可得出BG+DG=CG,即②也正确;③首先可得对应边BG≠FD,因为BG=DG,DG>FD,故可得△BDF不全等△CGB,即③错误;=AB•DE=AB•BE=AB•AB=AB2,即④正确.④S△ABD综上可得①②④正确,共3个.故选C.10.已知抛物线y=ax2+bx﹣2与x轴没有交点,过A(﹣、y1)、B(﹣3,y2)、C(1,y2)、D (,y3)四点,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y2>y1【考点】二次函数图象上点的坐标特征.【分析】由题意可知抛物线开口向下,对称轴为x==﹣1,然后根据点(﹣、y1)、C(1,y2)、D(,y3)离对称轴的远近可判断y1、y2、y3大小关系.【解答】解:由题意可知抛物线开口向下,对称轴为x==﹣1,∵|﹣1﹣(﹣)|<|1+1|<|+1|∴y1>y2>y3,故选A.二.填空题11.分解因式:x3y2﹣4x=x(xy+2)(xy﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x3y2﹣4x,=x(x2y2﹣4),=x(xy+2)(xy﹣2).14.如图,反比例函数y=(x>0)的图象经过平行四边形ABCO的顶点A和对角线的交点E,点A的横坐标为3,对角线AC所在的直线交y轴于(0,6)点,则函数y=的表达式为y=.【考点】平行四边形的性质;反比例函数图象上点的坐标特征.【分析】设A的坐标是(3,a),利用待定系数法即可求得直线AC的解析式,则C的坐标可求得,进而得到B的坐标,根据E是OB的中点,则E的坐标利用a可以表示出来,代入反比例函数解析式即可求解.【解答】解:设A的坐标是(3,a),则3a=k,即a=,设直线AC的解析式是y=mx+b,则,解得:,则直线AC的解析式是:y=x+6,令y=0,解得:x=,即OC=,则B的横坐标是:3+,则E的坐标是(+,),∵E在y=上,则(+)=k,又∵a=,∴(+)=k,解得:k=12,则反比例函数的解析式是:y=.故答案是:y=.15.如图,⊙O的半径为1cm,弦AB、CD的长度分别为cm,1cm,则弦AC、BD所夹的锐角α=75度.【考点】圆心角、弧、弦的关系;三角形的外角性质;勾股定理;垂径定理.【分析】根据勾股定理的逆定理可证△AOB是等腰直角三角形,故可求∠OAB=∠OBA=45°,又由已知可证△COD是等边三角形,所以∠ODC=∠OCD=60°,根据圆周角的性质可证∠CDB=∠CAB,而∠ODB=∠OBD,所以∠CAB+∠OBD=∠CDB+∠ODB=∠ODC=60°,再根据三角形的内角和定理可求α.【解答】解:连接OA、OB、OC、OD,∵OA=OB=OC=OD=1,AB=,CD=1,∴OA2+OB2=AB2,∴△AOB是等腰直角三角形,△COD是等边三角形,∴∠OAB=∠OBA=45°,∠ODC=∠OCD=60°,∵∠CDB=∠CAB,∠ODB=∠OBD,∴α=180°﹣∠CAB﹣∠OBA﹣∠OBD=180°﹣∠OBA﹣(∠CDB+∠ODB)=180°﹣45°﹣60°=75°.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.在矩形ABCD中,AB=3,BC=4,BD的垂直平分线交AD于E,则AE的长为.【考点】矩形的性质;线段垂直平分线的性质.【分析】如图,连接BE.设AE=x,则DE=4﹣x.因为BD的垂直平分线交AD于E,所以EB=ED=4﹣x,在Rt△ABE中,根据AB2+AE2=BE2,列出方程即可解决问题.【解答】解:如图,连接BE.设AE=x,则DE=4﹣x.∵四边形ABCD是矩形,∴AD=CB=4,∠A=90°,∵BD的垂直平分线交AD于E,∴EB=ED=4﹣x,在Rt△ABE中,∵AB2+AE2=BE2,∴32+x2=(4﹣x)2,∴x=,∴AE=.故答案为.13.在Rt△ABC中,∠ACB=90°,∠A=41°,BC=3,则AB的长为 1.97.(用科学计算器计算,结果精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】根据三角函数定义即可得到结论.【解答】解:∵∠ACB=90°,∠A=41°,BC=3,∴sin41°=,∴AB=BC•sin41°=3×0.656≈1.97,故答案为:1.97.三、解答题16.求不等式组的整数解.【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集,再求其整数解即可.【解答】解:解不等式①得:x>﹣2;解不等式②得:x≤;所以不等式组的解集为﹣2<x≤.整数解为:﹣1,0,1.17.先化简,再求值:,其中x=+1.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=﹣,当x=+1时,原式=﹣=﹣3+2.18.如图,已知线段a,c.求作Rt△ABC,使∠C=90°,AB=c,BC=a(尺规作图,保留作图痕迹).【考点】作图—复杂作图.【分析】先画线段AB=c,以线段c为直径作⊙O,再用点B为圆心,以线段a的长为半径作圆,角⊙O于点C,连接AC,则△ABC即为所求.【解答】解:如图,△ABC即为所求三角形.19.西安市地铁改变了人们的出行情况,也改变了学生到校的方式.小明同学就本校学生上学方式进行了一次统计调查,如图是他采集数据后绘制的两幅不完整的统计图.请你根据图中提供的信息回答以下问题:(A:步行,B:乘公交,C:坐地铁,D:骑自行车).(1)求被调查的学生人数;(2)补全两个统计图(3)若全校有1500人,估计该校学生上学坐地铁的人数,并根据调查结果,请你对西安开通地铁对学生上学的影响谈谈你的感想或建议.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用乘车人数除以其所占比例即可得到该班的人数;(2)利用总人数乘以对应的百分比即可求得乘公交车和骑自行车的人数,从而补全统计图;(3)结合图上信息,提出符合实际意义的建议即可.【解答】解:(1)50÷10%=500名,即被调查的学生人数500名;(2)乘公交车的人数是:500×30%=150(人),骑自行车的人数是:500﹣50﹣150﹣200=100(人),坐地铁的占百分比:=40%,骑自行车的占百分比:=20%,条形统计图和扇形统计图如下:(3)估计该校学生坐地铁人数约有1500×=600人.从条形统计图和扇形统计图看出,坐地铁学生最多,速度快,节省时间,利于学习.20.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC和CD上.(1)求证:CE=CF;(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质;等腰直角三角形.【分析】(1)根据正方形可知AB=AD,由等边三角形可知AE=AF,于是可以证明出△ABE≌△ADF,即可得出CE=CF;(2)连接AC,交EF与G点,由三角形AEF是等边三角形,三角形ECF是等腰直角三角形,于是可知AC⊥EF,求出EG=1,设BE=x,利用勾股定理求出x,即可求出BC的上,进而求出正方形的周长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∵,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF.又BC=DC,∴BC﹣BE=DC﹣DF,即EC=FC∴CE=CF,(2)解:连接AC,交EF于G点,∵△AEF是等边三角形,△ECF是等腰直角三角形,∴AC⊥EF,在Rt△AGE中,EG=sin30°AE=×2=1,∴EC=,设BE=x,则AB=x+,在Rt△ABE中,AB2+BE2=AE2,即(x+)2+x2=4,解得x1=,x2=(舍去)∴AB=+=,∴正方形ABCD的周长为4AB=2+2.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH 的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.某蔬菜生产基地经市场调查,对种植的A、B、C三种蔬菜的成本与售价情况统计如表:蔬菜品种A B C成本(元/吨)300022001500售价(元/吨)700040003200并且从市场调研中总结得知:该基地的蔬菜C的种植面积一般是蔬菜B种植面积的2倍,生产基地要按照这个规律种植,才不至于滞销.现知道基地共有用地200亩,蔬菜A每亩产量为3吨,蔬菜B每亩产量为5吨,蔬菜C每亩产量为7吨.若设种植蔬菜B为x亩,基地假设把生产的蔬菜都能销售出去,其利润为y元.(1)求y与x之间的函数关系式;(2)根据市场行情,蔬菜A的种植不能多于50亩,求该蔬菜生产基地在这次种植中能获得的最大利润.【考点】一次函数的应用;解一元一次不等式;一次函数的性质.【分析】(1)设种植蔬菜B为x亩,则种植蔬菜C为2x亩,种植蔬菜A为亩,根据总利润=种植A种蔬菜的利润+种植B种蔬菜的利润+种植C种蔬菜的利润即可得出y与x之间的函数关系式;(2)由蔬菜A的种植不能多于50亩即可得出关于x的一元一次不等式,解不等式即可得出x 的取值范围,再根据一次函数的性质即可解决最值问题.【解答】解:(1)设种植蔬菜B为x亩,则种植蔬菜C为2x亩,种植蔬菜A为亩,根据题意得:y=3×+5××2x+7×x=﹣6100x+2400000.(2)∵200﹣3x≤50,解得:x≥50.∵在y=﹣6100x+2400000中k=﹣6100<0,∴当x=50时,y取最大值,最大值为2095000.答:该蔬菜生产基地在这次种植中能获得的最大利润为2095000元.23.有6张不透明的卡片,除正面写有不同的数字﹣1,2,,π,0,﹣外,其他均相同,将这6张卡片背面朝上洗匀后放在桌面上.从中随机抽取一张卡片记录数据后放回,重新洗匀后,再从中抽取一张卡片并记录数据.求两次抽取的数字之积是无理数的概率.【考点】列表法与树状图法;无理数.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两次抽取的数字之积是无理数的情况,再利用概率公式即可求得答案.【解答】解:列表得:﹣12π0﹣﹣11﹣2﹣﹣π02﹣2422π02﹣227π0﹣9π﹣π2πππ20﹣π0000000﹣﹣2﹣9﹣π03∵共有36种等可能的结果,两次抽取的数字之积是无理数的情况有18种,所以两次抽取的数字之积是无理数的概率==.24.如图,正方形ABCD接于⊙O,延长BA到E,使AE=AB,连接ED.(1)求证:直线ED是⊙O的切线;(2)连接EO交AD于F,若⊙O的半径为2,求FO的长.【考点】切线的判定;正方形的性质.【分析】(1)连接BD,则可知BD为直径,根据正方形的性质和已知条件可求得∠ADE=∠ODA=45°,可求得∠ODE=90°,可证得结论;(2)由勾股定理可求得正方形的边长,则可求得AE和AD,则可求得DE,在Rt△ODE中可求得OE的长,作OM⊥AB于M,根据平行线分线段成比例定理可证得EF=2OF,则可求得OF的长.【解答】(1)证明:如图1,连接BD.∵四边形ABCD为正方形,AE=AB.∴AE=AB=AD,∠EAD=∠DAB=90°,∴∠EDA=45°,∠ODA=45°,∴∠ODE=∠ADE+∠ODA=90°,∴直线ED是⊙O的切线;(2)如图2,作OM⊥AB于M,∵O为正方形的中心,∴M为AB中点,∴AE=AB=2AM,AF∥OM,∴==2,∴EF=2FO ,∵⊙O 的半径为2, ∴OD=2,BD=4, ∴AD=AE==2,∴DE=4,在Rt △ODE 中,由勾股定理可得OE==2,∴OF=OE=.25.已知抛物线经过A (﹣4,0),B (0,﹣4),C (2,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S ,求S 关于m 的函数关系式,并求S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y=﹣x 上的动点,使得点P 、Q 、B 、O 的四边形为平行四边形,求Q 的坐标.【考点】二次函数综合题.【分析】(1)先假设出函数解析式,利用三点法求解函数解析式. (2)设出M 点的坐标,利用S=S △AOM +S △OBM ﹣S △AOB 即可进行解答;(3)当OB 是平行四边形的边时,表示出PQ 的长,再根据平行四边形的对边相等列出方程求解即可;当OB 是对角线时,由图可知点A 与P 应该重合.【解答】解:(1)设此抛物线的函数解析式为:y=ax 2+bx +c (a ≠0).将A (﹣4,0),B (0,﹣4),C (2,0)三点代入函数解析式得:,解得,所以此函数解析式为:y=x 2+x=4. (2)如图所示:∵M 点的横坐标为m ,且点M 在这条抛物线上, ∴M 点的坐标为:(m ,), ∴S=S △AOM +S △OBM ﹣S △AOB=×4×(﹣m 2﹣m +4)+×4×(﹣m )﹣×4×4 =﹣m 2﹣2m +8﹣2m ﹣8 =﹣m 2﹣4m , =﹣(m +2)2+4, ∵﹣4<m <0,当m=﹣2时,S 有最大值为:S=﹣4+8=4. 答:m=﹣2时S 有最大值S=4. (3)设P (x , x 2+x ﹣4).当OB 为边时,根据平行四边形的性质知PQ ∥OB ,且PQ=OB , ∴Q 的横坐标等于P 的横坐标, 又∵直线的解析式为y=﹣x , 则Q (x ,﹣x ).由PQ=OB ,得|﹣x ﹣(x 2+x ﹣4)|=4, 解得x=0,﹣4,﹣2±2.x=0不合题意,舍去.如图,当BO 为对角线时,知A 与P 应该重合,OP=4.四边形PBQO 为平行四边形则BQ=OP=4,Q 横坐标为4,代入y=﹣x 得出Q 为(4,﹣4). 由此可得Q (﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)或(4,﹣4).26.问题探究(1)请在图①的正方形ABCD的对角线BD是作一点P,使PA+PC最小;(2)如图②,点P为矩形ABCD的对角线BD上一动点,AB=2,BC=2,点E为BC边的中点,求作一点P,使PE+PC最小,并求这个最小值.问题解决(3)如图③,李师傅有一块边长为1000米的菱形ABCD采摘园,AC=1200米,BD为小路,BC 的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出的点P位置,并求出这个最短距离;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)利用正方形的对称性直接连接AC即可;(2)作出点C关于BD的对称性,连接C'E交BD于P,进而判断出△CEC'是直角三角形,利用勾股定理即可求出;(3)直接连接AE交BD于P,再过点E作EF⊥AC,构造出直角三角形,再利用三角形的中位线求出EF,进而利用勾股定理求出CF,最后在Rt△AEF中利用勾股定理即可.【解答】解:(1)如图①,连接AC交BD于P,则AP+CP最小=AC;(2)如图②,作点C关于BD的对称点C'交BD于F,连接C'E交BD于P,则PE+PC最小=C'E.∵BD是矩形ABCD的对角线,∴CD=AB=2,∠BCD=90°,在Rt△BCD中,CD=2,BC=2,∴tan∠CBD===,∴∠CBD=30°,由对称知,CC'=2CF,CC'⊥BD,∴∠CFD=90°,∴∠BCF=60°,∠DCF=30°,在Rt△CDF中,CD=2,∠DCF=30°,∴CF=,∴CC'=2CF=2,∵点E为BC边的中点,∴CE=BC=,∴CF=CE,连接EF,∴△CEF是等边三角形,∴EF=CF=C'F,∴△CEC'是直角三角形,在Rt△CEC'中,CC'=2,CE=,∴C'E=3,∴PE+PC最小为3;(3)如图③,菱形ABCD的对角线相交于点O,∴OC=OA=AC=600,AC⊥BD,在Rt△BOC中,OB==800,过点E作EF⊥AC于F,∴EF∥OB,∵点E是BC的中点,EF=OB=400,∵CE=BC=500,根据勾股定理得,CF==300,∴AF=AC﹣CF=1200﹣300=900,连接AE交BD于P,即:PC+PE最小=AE,在Rt△AEF中,根据勾股定理得,AE==100,2017年4月16日。
西安市铁一中学中考化学三模试卷解析版
西安市铁一中学中考化学三模试卷解析版一、选择题(培优题较难)1.将22.2gCu 2(OH)2CO 3放在密闭容器内高温加热一段时间后,冷却,测得剩余固体的质量为15.2g 。
在剩余固体里加入100.0g 稀硫酸恰好完全反应,过滤得红色金属。
已知:Cu 2O+H 2SO 4 =Cu+CuSO 4+H 2O ,下列说法正确的是A .15.2g 剩余固体是纯净物B .过程中生成CO 2和H 2O 的质量和为7.0gC .残留红色金属质量为12.8gD .稀硫酸的溶质质量分数为14.7%【答案】D【解析】【分析】【详解】根据题中信息可知,碱式碳酸铜分解时,部分生成了氧化铜,部分生成氧化亚铜 设分解生成氧化铜的碱式碳酸铜的质量为m ,生成氧化铜的质量为x ()23222Cu OH CO C Δ+uO H O +22280m CO x↑①22280 =m x()23222222Cu OH CO 2Cu O Δ+++2222214422.2g-m 15.22H O 2CO g-xO ⨯↑⨯↑②22222144=22.2g-m 15.2g-x⨯⨯ 由①②计算可得m=11.1g x=8g因此生成氧化铜、氧化亚铜的碱式碳酸铜的质量均为11.1g ,生成氧化亚铜的质量为 15.2g-8g=7.2g设生成铜的质量为y,与氧化亚铜反应的硫酸的质量为n 1,与氧化铜反应的硫酸的质量为n 2 224421Cu O +H SO =Cu +CuSO +H O14498647.2g n y11449864==7.2g n y1n =4.9gy=3.2g24422CuO +H SO =CuSO +H O 80988g n28098=8g n 2n =9.8gA 、剩余固体加硫酸后生成铜,说明15.2g 剩余固体是氧化铜和氧化亚铜,是混合物,故A 不正确;B 、过程中生成CO 2和H 2O 、氧气的质量和为7.0g ,故B 不正确;C 、残留红色金属为铜,质量是3.2g ,故C 不正确;D 、稀硫酸的溶质质量分数为9.8g+4.9g 100%=14.7%100g⨯,故D 正确。
陕西省西安中学2016届高三第三次模拟考试语文试卷.doc
陕西省西安中学2016届高三第三次模拟考试语文试卷本题考查默写常见的名句名篇的能力。
理解性默写的题目难度比根据上下文默写要难,首先要选准所要填的诗句,然后不要出现错别字。
此题注意提示语中的“不吸取别人的教训就会重蹈覆辙走向灭亡”“在风烟的迷茫之中,遥望送别之地”与“在艰难时刻追随先帝,说明创业的艰难”,这样就能准确地答出题目。
注意“哀”“鉴”“阙”“受”等易错字的书写。
5阅读下面的文字,完成问题。
日子陈忠实两架罗筛,用木制三脚架撑住,斜立在掏挖出湿漉漉的沙石的大坑里。
男人一把镢头一把铁锨,女人也使用一把镢头一把铁锨;男人有两只铁丝编织的铁笼和一根扁担,女人也配备着两只铁丝编成的铁笼和一根扁担。
我回到乡下的第一天,走到滋水河边发现了河对面的这一对夫妇。
就我目力所及,上游和下游的沙滩上,支着罗网埋头这种劳作的再没有第二个人了。
早春中午的太阳已见热力,晒得人脸上烫烫的,却很舒服。
“你该到城里找个营生干,”我说,“你是高中生,该当……”“找过。
也干过。
干不成。
”男人说。
“一家干不成,再换一家嘛!”我说。
“换过不下五家主儿,还是干不成。
”女人说。
“工作不合适?没找到合适的?”我问。
“有的干了不给钱,白干了。
有的把人当狗使,喝来喝去没个正性。
受不了啊!”他说。
“那是个硬熊。
想挣人家钱,还不受人家白眼。
”她说。
“不是硬熊软熊的事。
出力挣钱又不是吃舍饭。
”他说。
“凭这话,老陈就能听出来你是个硬熊,”女人说,“他爷是个硬熊。
他爸是个硬熊。
他还是个不会拐弯的硬熊——种系的事。
”“中国现时啥都不缺,就缺硬熊。
”他说。
“弓硬断弦。
人硬了……没好下场。
”她说。
“这话倒对。
俺爷被土匪绑在明柱上,一刀一刀割。
割一刀问一声,直到割死也不说银元在哪面墙缝里藏着。
俺爸被斗了三天两夜,不给吃不给喝不准眨眼睡觉直到昏死,还是不承认‘反党’……我不算硬。
”“你已经硬到只能挖石头咧!你再硬就没活路了。
硬熊——”他很坦率又不无迷津地悄声对我说,他也搞不清自己为什么偏偏注意女人的腰,一定要娶一个腰好的媳妇,脸蛋嘛倒在其次,能看过去就行了。
6.2016年西安市铁一中中考数学第三次模拟考试
6.2016年西安市铁一中第三次模拟考试一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1. 下列各数中,最小的数是( )A. 3-2B. 25 C. |-17| D. 22. 如图是一些完全相同的小正方体搭成的几何体的三视图,这个几何体只能是( )第2题图3. 下列计算正确的是( )A. a4+a4=a8B. 3(a-2b)=3a-2bC. a5÷a3=a2D. (2a-b)2=4a2-b24. 下列图形中,由AB∥CD,能得到∠1=∠2的是( )5. 如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是( )A. 15°B. 20°C. 25°D. 30°第5题图第6题图第8题图6. 如图,位似图形由三角尺与其灯光照射下的中心投影组成,灯与三角尺距离为2米,三角尺与投影面距离为3米,且三角尺的面积为24 cm2,则投影三角形的面积为( )A. 60 cm2B. 120 cm2C. 150 cm2D. 180 cm27. 一次函数y=3x+2的图象绕坐标原点旋转180度后的一次函数的表达式为( )A. y=-3x+2B. y=3x-2C. y=-3x-2D. y=2x-38. 如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE,CD交于点H,且点C是弧AB的中点,若扇形的半径是2,则图中阴影部分的面积等于( )A. 2π-4B. 2π-2C. π+4D. π-19. 八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为( )A. y=35x B. y=34xC. y=910x D. y=x10. 已知y=x(x+5-a)+2是关于x的二次函数,当x的取值范围在1≤x≤4时,y在x=1时取得最大值,则实数a的取值范围是( )A. a≥8B. a≥4C. a≥9D. a≥10第Ⅱ卷(非选择题共90分)二、填空题(共4小题,每小题3分,计12分)11. 因式分解:x2-4xy-1+4y2=________.12. 如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,m),C(4,m+6),那么图象同时经过点B与点D的反比例函数表达式为________.第12题图第13A题图第13B题图13. 请从以下两个题中任选一个作答,若多选,则按第一题计分.A.把边长相等的正五边形ABCDE和正方形ABFG,按照如图所示的方式叠合在一起,连接AD,则∠DAG=________.B.如图,在山坡AB上种树,已知∠C=90°,∠A=28°,AC=6米,则相邻两树的坡面距离AB≈________米.(精确到0.1米)14. 在平行四边形ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=3,则AF的长为________.三、解答题(共11小题,计78分.解答应写出过程)15. (本题满分5分)解不等式组:⎩⎪⎨⎪⎧3(x +1)>6x +4①x -12≤2x -13 ②,并把解集表示在数轴上. 16. (本题满分5分)先化简,再求值:(a +1a +2)÷(a -2+3a +2),其中a 满足a2-a -2=0.17. (本题满分5分)小军在为班级办黑板报时遇到了一个难题,在版面设计过程中将一个半圆面三等分,请你帮助他设计一个合理的等分方案.(要求:不写作法,保留作图痕迹)第17题图18. (本题满分5分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图①和图②两幅尚不完整的统计图.(1)本次抽测的男生有________人,抽测成绩的众数是________;(2)请你将图②的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校900名九年级男生中估计有多少人体能达标?第18题图19. (本题满分7分)如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F是AG上两点,连接BE、DF,∠1=∠2,∠3=∠4.(1)求证:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.第19题图20. (本题满分7分)某山坡上有一棵与水平面垂直的大树,狂风过后,大树被刮的倾斜后折断,倒在山坡上,树的顶部恰好接触到坡面(如图),已知山坡的坡角∠AEF=23°,量得树干的倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4米.(1)求∠DAC的度数;(2)这棵大树折断前高约多少米?(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4)第20题图21. (本题满分7分)一个水池中有一个进水管和两个出水管,从某一时刻开始2 min内只进水不出水.在随后的4 min内开启了一个出水管,既进水又出水,每个出水管每分钟出水7.5 L,每分钟的进水量和出水量保持不变,容器内的水量y(L)与时间x(min)之间的函数关系如图所示.(1)求a的值;(2)当2≤x≤6时,求y关于x的函数关系式;(3)若在6 min之后,两个出水管均开启,进水管关闭,请在图中补全函数图象.第21题图22. (本题满分7分)某市一公交线路共设置六个站点,分别为A0,A1,A2,A3,A4,A5.现有甲乙两人同时从A0站点上车,且他们中的每个人在站点Ai(i=1,2,3,4,5)下车是等可能的.(1)求甲在A2站点下车的概率;(2)求甲乙两人不在同一站点下车的概率.如图,已知圆O 的直径AB 垂直弦CD 于点E.连接CO 并延长交AD 于点F ,且CF ⊥AD.(1)求证:E 是OB 的中点;(2)若AB =8,求CD 的长.第23题图24. (本题满分10分)如图,直线y =33x +b 经过点B(-3,2),且与x 轴交于点A.将抛物线y =13x2沿x 轴作左右平移,记平移后的抛物线为C ,其顶点为P. (1)求∠BAO 的度数;(2)抛物线C 与y 轴交于点E ,与直线AB 交于两点,其中一个交点为F.当线段EF ∥x 轴时,求平移后的抛物线C 对应的函数关系式;(3)在抛物线y =13x2平移过程中,将△PAB 沿直线AB 翻折得到△DAB ,点D 能否落在抛物线C 上?如能,求出此时抛物线C 顶点P 的坐标;如不能,请说明理由.第24题图25. (本题满分12分)如图①,P 是⊙O 外的一点,直线PO 分别交⊙O 于点A 、B ,则PA 是点P 到⊙O 上的点的最短距离.(1)探究一:如图②,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于D ,P 是CD ︵上的一个动点,连接AP ,则AP 的最小值是________;(2)探究二:如图③,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,请求出A ′C 长度的最小值;(3)探究三:在正方形ABCD 中,动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动.连接AE 和DF 交于点P ,由于点E ,F 的移动,使得点P 也随之运动,若AD =4,试求出线段CP 的最小值.第25题图答案????????????。
2024-2025学年陕西省西安市铁一中学高三(上)第三次月考数学试卷(含答案)
2024-2025学年陕西省西安市铁一中学高三(上)第三次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.定义差集M−N ={x|x ∈M 且x ∉N}.已知集合A ={2,3,5},B ={3,5,8},则A−(A ∩B)=( )A. ⌀B. {2}C. {8}D. {3,5}2.已知复数z 满足z =−1+i1+i ,则复数z 的共轭复数的模|−z |=( )A.102B.22C.24D. 123.已知sinα+cosβ=22,cosα−sinβ=−12,则cos (2α−2β)=( )A. 732B. −732C.5 3932D. −539324.已知点M 在抛物线C :y 2=4x 上,抛物线C 的准线与x 轴交于点K ,线段MK 的中点N 也在抛物线C 上,抛物线C 的焦点为F ,则线段MF 的长为( )A. 1B. 2C. 3D. 45.已知a =sin0.5,b =30.5,c =log 0.30.5,则a ,b ,c 的大小关系是( )A. a <b <cB. a <c <bC. c <a <bD. c <b <a6.折扇是我国传统文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为( )A. 5023π B. 9π C. 7πD. 1423π7.已知△ABC 中,AB =2,AC =1,AB ⋅AC =1,O 为△ABC 所在平面内一点,且满足OA +2OB +3OC =0,则AO ⋅BC 的值为( )A. −4B. −1C. 1D. 48.已知可导函数f (x )的定义域为R ,f (x2−1)为奇函数,设g (x )是f (x )的导函数,若g (2x +1)为奇函数,且g (0)=12,则∑10k =1kg (2k )=( )A. 132B. −132C. 112D. −112二、多选题:本题共3小题,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2016年西安市铁一中第三次模拟考试
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)
1. 下列各数中,最小的数是()
A. 3-2
B. 2
5 C. |-
1
7| D. 2
2. 如图是一些完全相同的小正方体搭成的几何体的三视图,这个几何体只能是()
第2题图
3. 下列计算正确的是()
A. a4+a4=a8
B. 3(a-2b)=3a-2b
C. a5÷a3=a2
D. (2a-b)2=4a2-b2
4. 下列图形中,由AB∥CD,能得到∠1=∠2的是()
5. 如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA 的度数是()
A. 15°
B. 20°
C. 25°
D. 30°
第5题图第6题图第8题图
6. 如图,位似图形由三角尺与其灯光照射下的中心投影组成,灯与三角尺距离为2米,三角尺与投影面距离为3米,且三角尺的面积为24 cm2,则投影三角形的面积为()
A. 60 cm2
B. 120 cm2
C. 150 cm2
D. 180 cm2
7. 一次函数y=3x+2的图象绕坐标原点旋转180度后的一次函数的表达式为()
A. y=-3x+2
B. y=3x-2
C. y=-3x-2
D. y=2x-3
8. 如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE,CD交于点H,且点C是弧AB的中点,若扇形的半径是2,则图中阴影部分的面积等于()
A. 2π-4
B. 2π-2
C. π+4
D. π-1
9. 八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为( )
A. y =35x
B. y =34x
C. y =9
10
x D. y =x
第9题图
10. 已知y =x (x +5-a)+2是关于x 的二次函数,当x 的取值范围在1≤x ≤4时,y 在x =1时取得最大值,则实数a 的取值范围是( )
A. a ≥8
B. a ≥4
C. a ≥9
D. a ≥10
第Ⅱ卷(非选择题 共90分)
二、填空题(共4小题,每小题3分,计12分) 11. 因式分解:x 2-4xy -1+4y 2=________.
12. 如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,m),C(4,m +6),那么图象同时经过点B 与点D 的反比例函数表达式为________.
第12题图 第13A 题图 第13B 题图 13. 请从以下两个题中任选一个....
作答,若多选,则按第一题计分. A .把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连接AD ,则∠DAG =________.
B .如图,在山坡AB 上种树,已知∠
C =90°,∠A =28°,AC =6米,则相邻两树的坡面距离AB ≈________米.(精确到0.1米)
14. 在平行四边形ABCD 中,点E 、F 、G 分别是AD ,BC ,CD 的中点,BE ⊥EG ,AD =25,AB =3,则AF 的长为________.
第14题图
三、解答题(共11小题,计78分.解答应写出过程)
15. (本题满分5分)
解不等式组:⎩⎨⎧3(x +1)>6x +4①
x -12≤2x -1
3 ②
,并把解集表示在数轴上.
16. (本题满分5分)
先化简,再求值:(a +1a +2)÷(a -2+3
a +2
),其中a 满足a 2-a -2=0.
17. (本题满分5分)
小军在为班级办黑板报时遇到了一个难题,在版面设计过程中将一个半圆面三等分,请你帮助他设计一个合理的等分方案.(要求:不写作法,保留作图痕迹)
第17题图
18. (本题满分5分)
为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图①和图②两幅尚不完整的统计图.
(1)本次抽测的男生有________人,抽测成绩的众数是________;
(2)请你将图②的统计图补充完整;
(3)若规定引体向上5次以上(含5次)为体能达标,则该校900名九年级男生中估计有多少人体能达标?
第18题图
19. (本题满分7分)
如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F是AG上两点,连接BE、DF,∠1=∠2,∠3=∠4.
(1)求证:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长.
第19题图
20. (本题满分7分)
某山坡上有一棵与水平面垂直的大树,狂风过后,大树被刮的倾斜后折断,倒在山坡上,树的顶部恰好接触到坡面(如图),已知山坡的坡角∠AEF=23°,量得树干的倾斜角∠BAC =38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4米.
(1)求∠DAC的度数;
(2)这棵大树折断前高约多少米?
(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4)
第20题图
21. (本题满分7分)
一个水池中有一个进水管和两个出水管,从某一时刻开始2 min内只进水不出水.在随后的4 min内开启了一个出水管,既进水又出水,每个出水管每分钟出水7.5 L,每分钟的进水量和出水量保持不变,容器内的水量y(L)与时间x(min)之间的函数关系如图所示.
(1)求a的值;
(2)当2≤x≤6时,求y关于x的函数关系式;
(3)若在6 min之后,两个出水管均开启,进水管关闭,请在图中补全函数图象.
第21题图
22. (本题满分7分)
某市一公交线路共设置六个站点,分别为A0,A1,A2,A3,A4,A5.现有甲乙两人同时从A0站点上车,且他们中的每个人在站点A i(i=1,2,3,4,5)下车是等可能的.
(1)求甲在A2站点下车的概率;
(2)求甲乙两人不在同一站点下车的概率.
23. (本题满分8分)
如图,已知圆O的直径AB垂直弦CD于点E.连接CO并延长交AD于点F,且CF⊥AD.
(1)求证:E是OB的中点;
(2)若AB=8,求CD的长.
第23题图
24. (本题满分10分) 如图,直线y =
33x +b 经过点B(-3,2),且与x 轴交于点A.将抛物线y =1
3
x 2沿x 轴作左右平移,记平移后的抛物线为C ,其顶点为P.
(1)求∠BAO 的度数;
(2)抛物线C 与y 轴交于点E ,与直线AB 交于两点,其中一个交点为F.当线段EF ∥x 轴时,求平移后的抛物线C 对应的函数关系式;
(3)在抛物线y =1
3
x 2平移过程中,将△PAB 沿直线AB 翻折得到△DAB ,点D 能否落在
抛物线C 上?如能,求出此时抛物线C 顶点P 的坐标;如不能,请说明理由.
第24题图
25. (本题满分12分)
如图①,P 是⊙O 外的一点,直线PO 分别交⊙O 于点A 、B ,则PA 是点P 到⊙O 上的点的最短距离.
(1)探究一:如图②,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于D ,P 是CD ︵
上的一个动点,连接AP ,则AP 的最小值是________;
(2)探究二:如图③,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在直线翻折得到△A′MN ,连接A ′C ,请求出A′C 长度的最小值;
(3)探究三:在正方形ABCD 中,动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动.连接AE 和DF 交于点P ,由于点E ,F 的移动,使得点P 也随之运动,若AD =4,试求出线段CP 的最小值.
第25题图
答案。