最新苏教版五年级下册数学知识点复习总结归纳
【精品】苏教版数学五年级下册知识点归纳总结(全册)

苏教版五年级(下册)数学知识要点归纳第一单元简易方程1、表示相等关系的式子叫做等式。
含有未知数的等式是方程。
例:x+50=150、2x=200方程一定是等式;等式不一定是方程。
3、等式的性质:①等式两边同时加上或减去同一个数,所得结果仍然是等式。
②等式两边同时乘或除以同一个不等于0的数,所得的结果任然是等式。
4、使方程左右两边相等的未知数的值叫做方程的解。
求方程中未知数的过程,叫做解方程。
5、解方程60-4X=20,解4X=60-204X=40X=10检验: 把X=10代入原方程, 左边=60-4×10=20,右边=20,左边=右边,所以X=10是原方程的解。
方程左边=60-4×10=20=方程右边,所以X=10是方程的解。
6、解方程时常用的关系式:一个加数=和-另一个加数减数=被减数-差被减数=减数+差一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数8、四个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)9、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题,B、理清题目的等量关系,C、设未知数,一般是把所求的数用X表示,D、根据等量关系列出方程,E、解方程,F、检验,G、作答。
注意:解完方程,要养成检验的好习惯。
第二单元折线统计图1、复式折线统计图从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。
2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺)。
注意:先画表示实线的统计图,再画虚线统计图。
苏教版五年级下册数学知识点汇总

苏教版五年级下册数学知识点汇总第一单元:方程•等式的性质:•理解等式的意义,掌握等式的基本性质(等式两边同时加上或减去同一个数,等式仍然成立;等式两边同时乘或除以同一个不为0的数,等式仍然成立)。
•简易方程:•初步理解方程的意义,知道方程是含有未知数的等式。
•学会用等式的性质解简易方程(如ax=b,a≠0;ax±b=c等形式),并会检验。
•列方程解决实际问题:•学习根据题目中的等量关系列方程解决简单的实际问题,如和差倍问题、简单的行程问题等。
第二单元:折线统计图•折线统计图的认识:•认识折线统计图,理解折线统计图的特点(能清楚地看出数量的增减变化情况)。
•绘制折线统计图:•学会根据统计表中的数据绘制折线统计图,注意标出图例、单位等。
•分析折线统计图:•能根据折线统计图中的数据进行分析,预测趋势,解决简单问题。
第三单元:因数与倍数•因数与倍数的概念:•理解因数与倍数的概念,知道一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
•找因数与倍数的方法:•掌握找一个数的因数和倍数的方法,学会用列举法找出一个数的所有因数或倍数。
•2、3、5的倍数的特征:•掌握2、3、5的倍数的特征,并能运用这些特征进行判断或解决问题。
•质数与合数:•理解质数与合数的概念,知道1既不是质数也不是合数,会判断一个数是质数还是合数。
第四单元:分数的意义和性质•分数的意义:•进一步理解分数的意义,知道分数表示的是整体与部分的关系。
•分数与除法的关系:•理解分数与除法的关系,知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线,商相当于分数值。
•分数的基本性质:•掌握分数的基本性质(分数的分子和分母同时乘或除以同一个不为0的数,分数的大小不变)。
•约分与通分:•学会约分和通分的方法,能将分数化为最简分数或进行通分以便比较大小或进行加减运算。
苏教版小学五年级下册数学总复习资料和知识重点

5、三角形 ( s:面积 a:底 面积 =底 ×高 ÷2 s=ah÷2
h:高)
三角形高 =面积 ×2÷底 三角形底 =面积 ×2÷高
6、平行四边形 ( s:面积 面积 =底 ×高 s=ah
a:底
h:高)
7、梯形 ( s:面积 a:上底 b:下底 面积 =( 上底 +下底 ) ×高 ÷2 s=(a+b) ×h ÷2
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用 符号 ( , ) 。两个数的公因数也是有限的。
注意:解完方程,要养成检验的好习惯。
4、两个素数的积一定是合数。举例: 3×5=15, 15 是合数。
6、五个连续的自然数 (或连续的奇数,连续的偶数 )的和,等于中间的一个数的 然数 (或连续的奇数,连续的偶数 )的和 ÷个数 =中间数
5 数的整除
整数 a 除以整数 b(b ≠ )0,除得的商是整数而没有余数,我们就说
a 能被 b 整除,或者说b 能整除 a 。
如果数 a 能被数 b( b ≠ 0)整除, a 就叫做 b 的倍数, b 就叫做 a 的约数(或 a 的因数)。倍数和约数是相
互依存的。
因为 35 能被 7 整除,所以 35 是 7 的倍数, 7 是 35 的约数。
例如把 28 分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如
12 的
特殊关系的数 (两个都是合数, 一个是奇数, 一个是偶数, 但他们之间只有一个公因数 4 和 15、 10 和 21,最大公因数是 1,最小公倍数是它们的乘积。
1),比如 4 和 9、
一般关系的两个数, 求最大公因数用列举法或短除法, 求最小公倍数用大数翻倍法或短除法。 本 31 页内容 )
新苏教版五年级下册数学知识点

新苏教版五年级下册数学知识点第一单元:小数的认识和运算1.小数的认识:了解小数的概念和三位小数的意义。
2.小数的读法和写法:掌握小数的读法和写法,能准确理解小数的整数部分和小数部分。
3.小数的比较:学会使用大小比较符号进行小数的比较,掌握比较大小的方法。
4.小数的加减法:掌握小数的加法和减法运算规则,能够熟练进行小数的运算。
5.小数的乘法:学习小数的乘法运算,能够进行小数之间和小数与整数的乘法计算。
6.小数的除法:掌握小数的除法运算,能够熟练进行小数与整数之间和小数之间的除法计算。
第二单元:图形的认识和运用1.图形的分类:了解常见的几何图形,如三角形、四边形、圆等,并学会将图形进行分类。
2.图形的性质:掌握图形的各种性质,如边的个数、角的个数、图形的对称性等。
3.图形的面积和周长:学习计算图形的面积和周长的方法,能够准确计算各种图形的面积和周长。
4.图形的位置关系:学会描述和判断图形的位置关系,如两个图形是否相交、是否相邻等。
5.图形的变换:了解图形的平移、旋转和翻转等基本变换,能够进行简单的图形变换操作。
第三单元:时间、长度和质量单位换算1.时间的认识和表示:学习常用的时间单位,如秒、分钟、小时,并掌握时间的读写和换算方法。
2.长度的认识和表示:了解常用的长度单位,如米、分米、厘米,能够准确表示和读取长度的数值。
3.长度单位的换算:学习不同长度单位之间的换算关系,能够准确进行长度单位的换算计算。
4.质量的认识和表示:掌握常用的质量单位,如千克、克,并能够准确读取和表示质量的数值。
5.质量单位的换算:学习质量单位之间的换算关系,能够准确进行质量单位的换算计算。
第四单元:分数的认识和运算1.分数的认识:了解分数的概念和分数的表示方法,能够描述分数的意义。
2.分数的读法和写法:学习分数的读法和写法,能够准确理解分数的整数部分、分子和分母的含义。
3.分数的比较:掌握分数的比较大小的方法,能够根据分数的大小进行比较。
(完整版)最新苏教版五年级(下册)数学知识点总结

最新苏教版五年级(下册)数学知识点总结第一单元:方程1、表示相等关系的式子叫做等式。
2、含有未知数的等式叫方程。
3、方程一定是等式;等式不一定是方程.4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
这也是等式的性质。
5、使方程左右两边相等的未知数的值叫做方程的解。
6、求方程中未知数的过程,叫做解方程。
注意:解完方程,要养成检验的好习惯。
7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。
五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
8、列方程解应用题的思路:①、审题并弄懂题目的已知条件和所求问题。
②、理清题目的数量关系。
③、设未知数,一般是把问题中的量用X表示。
④、根据数量关系列出方程。
⑤、解方程。
⑥、检验。
⑦、答。
第二单元:折线统计图9.折线统计图的特点:能够反映物体的变化趋势情况。
作图时要注意描点、写数据、连线。
第三单元:因数与倍数10、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
11、是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
12、2的倍数特征:末尾是0、2、4、6、8;5的倍数特征:末尾是0或5;3的倍数特征:各个数位上数字之和是3的倍数。
13、只有1和它本身两个因数的数叫作质数(素数);除了1和它本身还有别的因数的数叫作合数。
如果一个数的因数是质数,这个因数就是它的质因数;把一个合数用质因数相乘的形式表示出来,叫作分解质因数。
14、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。
两个数的公因数也是有限的。
15、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
苏教版数学五下知识点汇总

苏教版数学五下知识点汇总《苏教版数学五下知识点汇总》苏教版数学五年级下册有好多有趣又重要的知识点呢。
就说数与代数这部分吧。
因数和倍数的概念可重要啦。
一个数的因数是能整除这个数的数,像6的因数有1、2、3、6。
倍数呢,就是这个数乘一个整数得到的数,6的倍数有6、12、18等等。
还有质数与合数,质数就像2、3、5、7这些,只有1和它本身两个因数,合数就不一样啦,像4、6、8、9,除了1和它本身还有别的因数呢。
再看分数这一块。
分数的意义和性质很关键哦。
把单位“1”平均分成若干份,表示这样一份或几份的数就是分数。
分数的基本性质也很有趣,分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
这就像魔法一样,能把分数变来变去,还不改变它的大小。
约分和通分也在这个范畴里,约分就是把分数化简成最简分数,通分是把异分母分数变成同分母分数,这样方便比较大小和进行加减运算呢。
图形的运动也很有意思。
像轴对称图形,沿着一条对称轴对折后,两边能完全重合,等腰三角形、正方形都是轴对称图形呢。
还有图形的平移和旋转,平移就是物体在平面内沿着某个方向移动,形状大小都不变。
旋转就是绕着一个点转动,就像风车转动一样。
长方体和正方体这部分知识点也不少。
要知道长方体和正方体的特征,长方体有6个面,相对的面相等,12条棱,相对的棱长度相等。
正方体呢,6个面都相等,12条棱也都相等。
它们的表面积和体积的计算也很重要,表面积是各个面的面积之和,体积是长、宽、高的乘积(正方体就是棱长的立方)。
我觉得苏教版数学五下的这些知识点就像一个个小宝藏,每一个都很有用。
在学习的时候,就像是在探索一个充满惊喜的小世界。
把这些知识点都掌握好,数学的小宇宙就会变得更加有趣啦。
这些知识点虽然看起来有点多,但只要用心去学,就像搭积木一样,一块一块搭起来,最后就能构建起一个牢固的数学知识大厦。
苏教版数学五年级下册知识点归纳
苏教版数学五年级下册知识点在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
下面是整理的苏教版数学五年级下册知识点,仅供参考希望能够帮助到大家。
苏教版数学五年级下册知识点1、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。
找因数的方法:一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。
一个数的倍数的个数是无限的,最小的倍数是它本身。
2、自然数按是否是2的倍数来分:奇数偶数奇数:不是2的倍数偶数:是2的倍数(0也是偶数)最小的奇数是1,最小的偶数是0.个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
能同时是2、3、5的倍数的的两位数是90,最小的三位数是120。
3、自然数按因数的个数来分:质数、合数、1.质数:有且只有两个因数,1和它本身合数:至少有三个因数,1、它本身、别的因数1:只有1个因数。
“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4。
20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、974、分解质因数用短除法分解质因数(一个合数写成几个质数相乘的形式)5、公因数、公因数几个数公有的因数叫这些数的公因数。
其中的那个就叫它们的公因数。
用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。
两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质;⑷2和所有奇数互质; ⑸质数与比它小的合数互质;6、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。
其中最小的那个就叫它们的最小公倍数。
苏教版五年级下册数学总复习知识点回顾(提纲+练习)
苏教版五年级下册数学总复习知识点回顾(提纲+练习) 第一单元方程1、左右两边相等关系的式子叫做等式。
(通俗的说就是含有“=”号的式子就是等式。
) 2、含有未知数的等式是方程。
[注:(判断题)含有未知数的式子是方程(?)] 3、(背诵)方程一定是等式;等式不一定是方程。
4、等式的性质。
(1)等式两边同时加上或减去同一个数,所得结果仍然是等式。
(2)等式两边同时乘或除以同一个(不等于0)的数,所得结果仍然是等式。
用途:解方程5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:加法:加数+加数=和和-一个加数=另一个加数减法:被减数-减数=差被减数-差=减数差+减数=被减数乘法:因数×因数=积积÷一个因数=另一个因数除法:被除数÷除数=商被除数÷商=除数商×除数=被除数注意:解完方程,要养成检验的好习惯。
6、3个、5个或7个连续的自然数(或连续的奇数,连续的偶数)它们的和=中间的数×3、5或7。
中间的数=连续数的和÷3、5或7 (个数为奇数)比如:1、2、3、4、5 1+2+3+4+5=15 即:3×5=15 15÷5=3 又比如:6÷3=2 1、2、3 35÷5=7 3、5、7、9、11 7、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。
B、理清题目的等量关系。
C、设未知数,一般是把所求的数用X表示。
D、根据等量关系列出方程E、解方程F、检验G、作答。
第一单元相应练习题1、哪些是等式,哪些是方程,请填入相应的横线上。
(填序号) ①3+x=12 ②3.6+x ③ 4+17.5=21.5 ④48+x��63等式________________________;方程:________________________ 2、含有未知数的式子叫方程。
()【判断】 3、等式都是方程,方程都是等式。
苏教版五年级下册数学知识点总结
苏教版五年级下册数学知识点总结1、表示相等关系的式子叫做等式.含有未知数的等式是方程.例:x+50=150、2x=2002、方程一定是等式;等式不一定是方程.3、等式的性质:①等式两边同时加上或减去同一个数,所得结果仍然是等式.②等式两边同时乘或除以同一个不等于0的数,所得的结果任然是等式.4、使方程左右两边相等的未知数的值叫做方程的解. 求方程中未知数的过程,叫做解方程.5、解方程60-4X=20,解4X=60-204X=40X=10检验: 把X=10代入原方程, 左边=60-4×10=20,右边=20,左边=右边,所以X=10是原方程的解.6、解方程时常用的关系式:一个加数=和-另一个加数一个因数=积÷另一个因数减数=被减数-差被减数=减数+差除数=被除数÷商被除数=商×除数7、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍.奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数8、四个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)9、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题,B、理清题目的等量关系,C、设未知数,一般是把所求的数用X表示,D、根据等量关系列出方程,E、解方程,F、检验,G、作答.注意:解完方程,要养成检验的好习惯.第二单元折线统计图1、复式折线统计图从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较.2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺).注意:先画表示实线的统计图,再画虚线统计图.不能同时描点画线,以免混淆.(也可以先画虚线的统计图)第三单元因数和倍数1、几个非零自然数相乘,每个自然数都叫它们积的因数,积是这几个自然数的倍数.因数与倍数是相互依存绝不能孤立的存在.2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的.(找因数的方法:成对的找.)3、一个数最小的倍数是它本身,没有最大的倍数.一个数倍数的个数是无限的.(找一个数倍数的方法:从自然数1、2、3、……分别乘这个数)4、一个数最大的因数等于这个数最小的倍数.5、按照一个数因数个数的多少可以把非0自然数分成三类①只有自己本身一个因数的1②只有1和它本身两个因数的数叫作质数(素数).最小的质数是2.在所有的质数中,2是唯一的一个偶数.③除了1和它本身两个因数还有别的因数的数叫作合数.(合数至少有 3个因数)最小的合数是4.按照是否是2的倍数可以把自然数分成两类偶数和奇数.最小的偶数是0.6、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , ).两个数的公因数也是有限的.公因数只有1的两个数叫作互质数7、两个数公有的倍数,叫做这两个数的公倍数,其中最小的一个,叫做这两个数的最小公倍数,用符号[ ,]表示.两个数的公倍数也是无限的.8、两个素数的积一定是合数.举例:3×5=15,15是合数.9、两个数的最小公倍数一定是它们的最大公因数的倍数.举例:[6,8]=24,(6,8)=2,24是2的倍数.10、求最大公因数和最小公倍数的方法:(列举法、图示法、短除法 ......)①倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数.举例:15和5,[15,5]=15,(15,5)=5②互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积.举例:[3,7]=21,(3,7)=1③一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法.11、质因数:如果一个数的因数是质数,这个因数就是它的质因数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫作分解质因数.12、是2的倍数的数叫作偶数,不是2的倍数的数叫作奇数.相邻的偶数(奇数)相差2.13、2 的倍数的特征:个位是0、2、4、6、8.5的倍数的特征:个位是0或5.3 的倍数的特征:各位上数字的和一定是3的倍数.14、和与积的奇偶性:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数偶数×偶数=偶数偶数×奇数=偶数奇数×奇数=奇数第四单元分数的意义和性质1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”.把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.表示其中一份的数,叫做分数单位.一个分数的分母是几,它的分数单位就是几分之一.2、分母越大,分数单位越小,最大的分数单位是1/2.3、举例说明一个分数的意义:3/7表示把单位“1”平均分成7份,表示这样的3份;还表示把3平均分成7份,表示这样的1份.3/7吨表示把1吨平均分成7份,表示这样的3份;还表示把3吨平均分成7份,表示这样的1份.4、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母.被除数÷除数= 被除数/除数如果用a表示被除数,b表示除数,可以写成a÷b=a/b(b≠0)5、4米的1/5和1米的4/5同样长.6、求一个数是(占)另一个数的几分之几,用除法列算式计算.方法:是(占)前面的数除以后面的数写成分数.男生人数是女生人数的3/4,则女生人数是男生人数的4/3.7、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数.8、真分数小于1.假分数大于或等于1.真分数总是小于假分数.9、能化成整数的假分数,它们的分子都是分母的倍数.反过来,分子是分母倍数的假分数,都能化成整数.(用分子除以分母)10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数.带分数是假分数的另一种形式.例如,4/3就可以看作是3/3(就是1)和1/3合成的数,写作1⅓,读作一又三分之一.带分数都大于真分数,同时也都大于1.11、把分数化成小数的方法:用分数的分子除以分母.12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变.14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变.15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子,母为指定的分母.16、大于3/7而小于5/7的分数有无数个;分数单位是1/7的分数只有4/7一个.17、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质.它和整数除法中的商不变规律类似.18、分子和分母只有公因数1,这样的分数叫最简分数.约分时,通常要约成最简分数.19、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分.约分方法:直接除以分子、分母的最大公因数.20、把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分.通分过程中,相同的分母叫做这几个分数的公分母.通分时,一般用原来几个分母的最小公倍数作公分母.21、比较异分母分数大小的方法:(1)先通分转化成同分母的分数再比较.(2)化成小数后再比较.(3)先通分转化成同分子的分数再比较.(4)十字相乘法.第五单元分数加法和减法1、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算;计算结果能约分要约成最简分数,是假分数的要化为带分数;计算后要验算.2、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和.分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差.3、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近2(1);分子分母越接近,分数就越接近1.4、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同.没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式.5、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便.乘法分配律也适用分数的简便计算.6、裂项公式(用于特殊简便计算,选学)第六单元圆1、圆是由一条曲线围成的平面图形.(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)2、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示.在同一个圆里,有无数条半径和直径.在同一个圆里,所有半径的长度都相等,所有直径的长度都相等.3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆.画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周.4、在同一个圆里,半径是直径的一半,直径是半径的2倍.(d=2r,r=d÷2)5、圆是轴对称图形,有无数条对称轴,对称轴就是直径.6、圆心决定圆的位置,半径决定圆的大小.所以要比较两圆的大小,就是比较两个圆的直径或半径.扇形是由圆心角的两条半径和圆心角所对的弧围成的图形.扇形的大小是由圆心角决定的.(半圆与直径的组合也是扇形)7、正方形里最大的圆:两者联系:边长=直径画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆.8、长方形里最大的圆:两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆.9、同一个圆内的所有线段中,圆的直径是最长的.10、车轮滚动一周前进的路程就是车轮的周长.每分前进米数(速度)=车轮的周长×转数11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率.用字母π(读pài)表示.π是一个无限不循环小数.π=3.141592653……我们在计算时,一般保留两位小数,取它的近似值3.14.π>3.1412、如果用C表示圆的周长,那么C=πd或C = 2πr13、求圆的半径或直径的方法:d=C÷πr =C÷π÷2= C÷2π14、半圆的周长等于圆周长的一半加一条直径.C半圆= πr+2rC半圆= πd÷2+d15、常用的3.14的倍数:3.14×2=6.28 3.14×3=9.423.14×4=12.56 3.14×5=15.73.14×6=18.84 3.14×7=21.983.14×8=25.12 3.14×9=28.2616、圆的面积公式:S=πr².圆的面积是半径平方的π倍.17、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a=c/2=πr).即:S长方形= a × bS圆= πr × r=πr²注意:切拼后的长方形的周长比圆的周长多了两条半径.C长方形=2πr+2r=C圆+d18、半圆的面积和周长.S半圆=πr²÷2C半圆=C/2+d19、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径的倍数的平方20、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短.21、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算.S圆环=πR²-πr²=π(R²-r²)22、常用的平方数:11²=121 12²=14413²=169 14²=196 15²=225 16²=256 17²=289 18²=324 19²=36120²=400第七单元解决问题的策略1、运用转化的策略可以把不规则的图形转化成规则的图形,转化前后图形变化了,但大小不变.2、计算小数的除法时,可以把小数转化成整数来计算.3、在计算异分母分数加、减时,可以把异分母分数装化成同分母分数来计算.4、在进行面积公式推导时,可以把图形转化成已经学过的图形面积来计算.5、运用转化的策略,从不同的角度灵活的分析问题,可以使复杂的问题简单化.割补法倒推法找规律。
最新苏教版五年级下册数学知识点总结归纳
最新苏教版五年级下册数学知识点总结归纳[时限:60分钟满分:100分]班级姓名学号成绩温馨提示:同学们,经过本学期的学习,你一定积累了很多知识,现在请认真、仔细地复习知识点吧。
加油!第一单元:方程1、表示相等关系的式子叫做等式。
2、含有未知数的等式叫方程。
3、方程一定是等式;等式不一定是方程.4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
这也是等式的性质。
5、使方程左右两边相等的未知数的值叫做方程的解。
6、求方程中未知数的过程,叫做解方程。
注意:解完方程,要养成检验的好习惯。
7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。
五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
8、列方程解应用题的思路:①、审题并弄懂题目的已知条件和所求问题。
②、理清题目的数量关系。
③、设未知数,一般是把问题中的量用X表示。
④、根据数量关系列出方程。
⑤、解方程。
⑥、检验。
⑦、答。
第二单元:折线统计图9.折线统计图的特点:能够反映物体的变化趋势情况。
作图时要注意描点、写数据、连线。
第三单元:因数与倍数10、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
11、是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
12、2的倍数特征:末尾是0、2、4、6、8;5的倍数特征:末尾是0或5;3的倍数特征:各个数位上数字之和是3的倍数。
13、只有1和它本身两个因数的数叫作质数(素数);除了1和它本身还有别的因数的数叫作合数。
如果一个数的因数是质数,这个因数就是它的质因数;把一个合数用质因数相乘的形式表示出来,叫作分解质因数。
14、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新苏教版五年级(下册)数学知识点总结第一单元:方程1、表示相等关系的式子叫做等式。
2、含有未知数的等式叫方程。
3、方程一定是等式;等式不一定是方程.4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
这也是等式的性质。
5、使方程左右两边相等的未知数的值叫做方程的解。
6、求方程中未知数的过程,叫做解方程。
注意:解完方程,要养成检验的好习惯。
7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。
五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
8、列方程解应用题的思路:①、审题并弄懂题目的已知条件和所求问题。
②、理清题目的数量关系。
③、设未知数,一般是把问题中的量用X表示。
④、根据数量关系列出方程。
⑤、解方程。
⑥、检验。
⑦、答。
第二单元:折线统计图9.折线统计图的特点:能够反映物体的变化趋势情况。
作图时要注意描点、写数据、连线。
第三单元:因数与倍数10、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
11、是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
12、2的倍数特征:末尾是0、2、4、6、8;5的倍数特征:末尾是0或5;3的倍数特征:各个数位上数字之和是3的倍数。
13、只有1和它本身两个因数的数叫作质数(素数);除了1和它本身还有别的因数的数叫作合数。
如果一个数的因数是质数,这个因数就是它的质因数;把一个合数用质因数相乘的形式表示出来,叫作分解质因数。
14、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。
两个数的公因数也是有限的。
15、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
几个数的公倍数也是无限的。
16、两个质数(素数)的积一定是合数。
17、两个数的最小公倍数一定是它们的最大公因数的倍数。
两个数的最大公因数与最小公倍数的乘积等于这两个数的乘积。
18、求最大公因数和最小公倍数的方法:倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用小数列举法或短除法,求最小公倍数用大数翻倍法或短除法。
19、奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数第四单元:分数的意义和性质20、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数,叫做分数单位。
一个分数的分母是几,它的分数单位就是几分之一。
21、分母越大,分数单位越小,分数单位是由分母决定的。
22、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
23、真分数小于1。
假分数大于或等于1。
真分数总是小于假分数。
能化成整数的假分数,它们的分子都是分母的倍数。
反过来,分子是分母倍数的假分数,都能化成整数。
分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。
带分数是假分数的另一种形式。
带分数都大于真分数,同时也都大于1。
24、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。
被除数÷除数=被除数/除数,如果用a表示被除数,b表示除数,可以写成a÷b=a/b(b≠0)利用分数与除法的关系还可以把分数化成小数的方法:用分数的分子除以分母。
25、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……26、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
把带分数转化成假分数的方法:分母不变,整数部分乘分母再加上分子,作为假分数的分子。
27、分数大小比较方法:通分法、化成小数比较法、二分之一比较法、1的比较法。
分数小数大小比较方法:把其中的分数化成小数比较或把其中的小数化成分数比较。
28、分数的基本性质:分数的分子和分母同时乘或除以一个相同的数(0除外),分数的大小不变。
29、把一个分数化成同它相等,但分子、分母都比较小的分数,叫作约分;分子、分母只有公因数1的分数叫作最简分数。
约分时,通常要约成最简分数。
约分方法:直接除以分子、分母的最大公因数。
30、把几个分母不同的分数(也叫作异分母分数)分别化成和原来分数相等的同分母分数,叫作通分;相同的分母叫作这几个分数的公分母。
通分时,一般用原来几个分母的最小公倍数作公分母。
第五单元:分数加法和减法231、异分母分数加减法计算方法:先把几个分数化成分母相同的分数,再按照同分母分数加减法计算。
(通分—分母不变,分子相加或相减,得数能化简的要化简)32、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。
分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差。
33、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近1/2;分子分母越接近,分数就越接近1。
34、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。
没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。
35、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。
第六单元:圆36、圆是由一条曲线围成的平面图形。
(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)37、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。
在同一个圆里,有无数条半径和直径。
在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
38、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。
画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。
39、在同一个圆里,半径是直径的一半,直径是半径的2倍。
(d=2r, r=d÷2)40、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
41、圆心决定圆的位置,半径决定圆的大小。
所以要比较两圆的大小,就是比较两个圆的直径或半径。
42、正方形里最大的圆。
两者联系:边长=直径画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
43、长方形里最大的圆。
两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
44、同一个圆内的所有线段中,圆的直径是最长的。
45、车轮滚动一周前进的路程就是车轮的周长。
每分前进米数(速度)=车轮的周长×转数46、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。
用字母π(读pài)表示。
π是一个无限不循环小数。
π=3.141592653……我们在计算时,一般保留两位小数,取它的近似值3.14。
47、如果用C表示圆的周长,那么C=πd或C = 2πr48、求圆的半径或直径的方法:d = C圆÷π r= C圆÷π÷249、半圆的周长等于圆周长的一半加一条直径。
C半圆= πr+2rC半圆= πd÷2+d50、常用的3.14的倍数:1π=3.14 2π=6.28 3π=9.424π=12.56 5π=15.7 6π=18.847π=21.98 8π=25.12 9π=28.2651、圆的面积公式:S圆=πr2。
圆的面积是半径平方的π倍。
52、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a==πr)。
即:S长方形= a × b↓↓S圆=πr × r=πr2S圆=πr2注意:切拼后的长方形的周长比圆的周长多了两条半径。
C长方形=2πr+2r=C圆+d53、半圆的面积是圆面积的一半。
S半圆=πr2÷254、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径的倍数255、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。
56、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。
S圆环=πR2-πr2 S圆环=π( R2- r2)第七单元解决问题的策略57、割补法58、倒推法59、找规律第八单元整理与复习60、数的世界61、图形王国62、统计天地63、综合实践。