回复与再结晶名词解释

合集下载

回复与再结晶

回复与再结晶

(1)温度 随T↑,晶粒长大 温度一定,晶粒达到一定尺寸后不再长大。 (2)杂质与合金元素 异类原子吸附晶界处,降低晶界能,减少驱动力,阻碍晶粒长大。
第八章: 回复与再结晶
8.4晶粒长大
8.4.1晶粒的正常长大 3.影响晶粒长大的因素 晶粒长大,是通过晶界处的原子扩散迁移实现
(3)分散相粒子 第二相粒子越细小,数量越多,则阻碍晶粒长大能力越强。
8.1.1 显微组织的变化
冷变形金属随加热温度升高组织变化示意图
再结晶后组织恢复到变形前的程度,性能也恢复到变形前的程度 晶粒长大:新晶粒逐渐相互合并长大.
第八章: 回复与再结晶
8.1 冷变形金属及合金在退火过程中的变化
8.1.2 储存能与内应力变化
随T↑,储存能逐渐释放. 再结晶后,形变储存能全部释放.
第八章: 回复与再结晶
8.5 金属的热加工(变形)
8.5.2热加工后的组织与性能
热加工对组织和性能有如下影响: 3.产生带状组织
未热轧的20钢组织:F+P
热轧后的20钢组织:F+P 带状分布
带状组织常在热轧板材、管材中 出现,性能上产生各向异性
第八章: 回复与再结晶
8.3再结晶(recrystallization)
8.3.2 再结晶动力学
第八章: 回复与再结晶
8.3再结晶(recrystallization)
8.3.3 再结晶温度及其影响因素 再结晶温度:经过严重冷变形的金属,在一个小时的退火保温时间内,能完成再结 晶的最低温度(T再).对纯金属T再=0.4T熔 再结晶速度:V再 若T再低,V再快,则再结晶易进行. 影响再结晶的因素如下: 1.加热温度(退火温度) : 退火温度越高,原子扩散越容易进行,V再↑,完成再结晶时间越短. 2.预先变形量 变形度越大,则T再越低 ∵储存能大,再结晶驱动力大.

一文看懂回复和再结晶

一文看懂回复和再结晶

一文看懂回复和再结晶回复和再结晶一、冷变形金属在加热时的组织与性能变化金属和合金经塑性变形后,由于空位、位错等结构缺陷密度的增加,以及畸变能(晶体缺陷所储存的能量)的升高将使其处于热力学不稳定的高自由能状态,具有自发恢复到变形前低自由能状态的趋势,但在室温下,因温度低,原子活动能力小,恢复很慢,一旦受热,温度较高时,原子扩散能力提高,组织、性能会发生一系列变化。

这一变化过程随加热温度的升高可表现为三个阶段:回复:指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。

在此阶段,组织:由于不发生大角度晶界的迁移,晶粒的形状和大小与变形态相同,仍为纤维状或扁平状。

性能:强度与硬度变化很小,内应力、电阻明显下降。

(回复是指冷塑性变形的金属在(较低温度下进行)加热时,在光学显微组织发生改变前(即在再结晶晶粒形成前)所产生的某些亚结构和性能的变化过程。

)再结晶:指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程。

在此阶段,组织:首先在畸变度大的区域产生新的无畸变晶粒的核心,然后逐渐消耗周围的变形基体而长大,直到变形组织完全改组为新的、无畸变的细等轴晶粒为止。

性能:强度与硬度明显下降,塑性提高,消除了加工硬化,使性能恢复到变形前的程度。

晶粒长大:指再结晶结束之后晶粒的继续长大。

在此阶段,在晶界表面能的驱动下,新晶粒相互吞食而长大,最后得到较稳定尺寸的晶粒。

显微组织的变化:回复阶段:显微组织仍为纤维状,无可见变化。

再结晶阶段:变形晶粒通过形核长大,逐渐转变为新的无畸变的等轴晶粒晶粒长大阶段:晶界移动,晶粒粗化,达到相对稳定的形状和尺寸。

性能变化:回复阶段:强度、硬度略有下降,塑性略有提高;密度变化不大,电阻明显下降。

再结晶阶段:强度、硬度明显下降,塑性明显提高;密度急剧升高。

晶粒长大阶段:强度、硬度继续下降,塑性继续提高;粗化严重时下降。

二、回复1. 回复动力学上图同一变形程度的多晶体铁在不同温度退火时,屈服强度的回复动力学曲线特点:(1)没有孕育期;(2)在一定温度下,初期的回复速率很大,随后即逐渐变慢,直至趋近于零;(3)每一温度的恢复程度有一极限值,退火温度越高,这个极限值也越高,而达到此一极限值所需的时间则越短;(4)预变形量越大,起始的回复速率也越快,晶粒尺寸减小也有利于回复过程的加快。

冷变形金属的回复、再结晶与长大

冷变形金属的回复、再结晶与长大

根据加热温度不同,发生回复、再结晶及晶粒长大过程,经塑性变形后的金的过程称之为“退火”.回复阶段,从光学显微镜下观察的组织几乎没有变化,晶粒仍是冷变形之后的纤维状;在再结晶阶段,首先是出现新的无畸变的核心,然后逐渐消耗周围的变形基体而长大,直到变形组织完全改组为新的、无畸变的细等轴晶粒为止;晶粒长大阶段,是在界面能的驱动下,再结晶的新晶粒相互吞并而长大,以获得该温度下更为稳定的晶粒尺寸回复和再结晶的驱动力是内部储存的畸变能(内应力),在回复和再结晶过程中全部释放出来,不同的金属类型,再结晶以前释放的储能不同,从纯金属→不纯金属→合金,储能的释放增加;由于杂质和溶质原子阻碍再结晶的形核和长大,推迟再结晶过程.三个阶段金属的性能变化如图所示:①电阻率在回复阶段就已明显下降,到再结晶时下降更快,最后恢复到变形前的电阻;②强度和硬度在回复阶段下降不多,再结晶开始后硬度急剧下降,降低的规律因金属的种类不同而不同;③内应力在回复阶段明显下降,宏观内应力在回复时可以全部或大部分被消除,微观内应力部分消除;在再结温度以上,微观内应力被全部消除.④材料的密度随退火温度升高而增加.所谓回复是指冷变形金属在加热时,在新的无畸变晶粒出现之前,所产生的亚结构与性能的变化过程.回复动力学研究材料的性能向变形前回复的速率问题:①回复过程没有孕育期;②在一定的温度下,初期的回复速率很高,以后逐渐减慢,直到最后回复的速率为零.③每一个温度的回复过程都有一个极限值,退火温度越高,这个极限值越高,需要时间越短.R为回复时已恢复的加工硬化,σm σr σ0分别为变形后、回复后以及完全退火的屈服应力,R越大,(1-R)越小,表示回复阶段性能恢复程度越大.回复过程的组织变化与回复机制多边形化:金属塑性变形后,滑移面上塞积的同号刃型位错沿原滑移面水平排列,高温时通过滑移和攀移使位错变成沿垂直滑移面的排列,形成所谓的位错墙,每组角度晶界分割晶粒成亚晶,这一过程称为位错的多边形化.只在产生単滑移的晶体中,多边形化过程最典型,多滑移情况下可能存在,更易形成胞状组织.胞状组织的规整化:过剩空位消失,变形胞状组织内的位错被吸引到胞壁,并与胞壁中的异号位错互相抵消位错密度降低,位错变得平直较规整,当回复继续时,胞胞壁中的位错缠结逐渐形成能量较低的位错网,胞壁变薄,单胞有所长大,构成亚晶粒.亚晶粒的合并:可能通过位错的攀移和位错壁的消失,从而导致亚晶转动来完成.去应力退火:冷变形金属经回复后使内应力得到很大程度的消除,同时又能够保持效果,因此回复退火又称为去应力退火.工件中内应力的降低可以避免工件的变形或开裂,②异号位错在热激活作用下相互吸引而抵消③亚晶粒长大;①位错攀移和位错环缩小;②亚晶粒合并;③多边形化;中温回复(0.3-0.5T m )高温回复(≧0.5T m )不同温度下对应的回复机制(T 表示熔点)温度回复机制低温回复(0.1-0.3T m )①点缺陷移至晶界或位错处消失;②点缺陷①缠结中的位错重新排列而构成亚晶;.冷加工”塑性变形后的金属再进行加热仍是冷变形之后的纤维状;在周围的变形基体而长大,直到阶段,是在界面能的驱动粒尺寸的过程.回复和再结晶过程中全部释放金属→不纯金属→合金,储能,推迟再结晶过程.这个极限值越高,需要时间越短.后以及完全越大.沿原滑移面水平排列,高温时,每组位错墙均以小可能存在,更易形成胞状组织.被吸引到胞壁,并与胞壁中的时,胞内几乎无位错,单胞有所长大,构成亚晶粒.导致亚晶转动来完成.够保持冷变形的硬化开裂,并提高其耐腐蚀性.而抵消,位错密度下降;熔点)点缺陷合并;;0σσσσ--=m r m R质原子被吸附在晶界,织;②加工温度范围在速率敏感系数.状;抛光表面没有显示滑移线;,晶粒长大越明显;。

回复与再结晶ppt

回复与再结晶ppt
金属材料的回复与再结晶
金属材料在高温或高压下发生塑性变形,随后在较低的温度 或压力下发生再结晶,改变晶格结构和相变,提高材料的强 度和韧性。
半导体材料的回复与再结晶
半导体材料在高温或高压下的回复过程中,通过晶格结构的 变化和缺陷的修复,材料的电学性能得到改善。
THANKS
谢谢您的观看
汇报的目的和背景
汇报目的
本次汇报旨在探讨回复与再结晶对金属材料性能的影响以及应用方面的研究 进展。
背景
随着工业和科技的发展,金属材料在各个领域的应用越来越广泛,而回复与 再结晶作为金属材料热处理过程中的重要环节,对于提高金属材料的综合性 能具有重要意义。
02
回复
回复的定义和特点
回复是指一种物质在受到外部刺激(如温度、压力、电磁波 等)后,产生的某种反应或变化。
对回复与再结晶未来发展的展望
探索新的回复与再结晶技术,提高材料的综合 性能和可靠性,以满足现代科技和工业发展的 需求。
加强回复与再结晶基础理论的研究,深入探讨 材料在回复与再结晶过程中微观结构和物理性 质的演变规律。
研究新型材料在回复与再结晶过程中的行为和 特性,拓展回复与再结晶理论的应用范围。
对回复与再结晶具体案例的分析
升温
将金属加热到一定温度,使其发生再结晶 。
形核
在金属中形成新的晶核。
晶粒细化
通过控制温度和变形量,细化晶粒,提高 金属性能。
长大
新晶核逐渐长大,形成新的晶粒组织。
04
回复与再结晶的关系
回复与再结晶的联系
两种现象都与材料在高温下发生的物理性质变化有关。 两种现象都受到材料内部结构的影响。
回复与再结晶的区别
回复的特点是具有滞后性和不完全性。即,回复是在外部刺 激作用下的一个过程,需要一定的时间和能量,且回复的程 度往往不能完全恢复到初始状态。

回复与再结晶

回复与再结晶

第一节 冷变形金属在加热时的 组织与性能变化
一、 回复与再结晶的概念 回复:冷变形金属在低温加热时,其光学显微组织无可见变化,但其物 理、力学性能却部分恢复到冷变形以前的过程。 再结晶:冷变形金属被加热到适当温度时,在变形组织内部新的无畸变 的等轴晶粒逐渐取代变形晶粒,而使形变强化效应完全消除的过程。 二 、显微组织变化(示意图) 回复阶段:显微组织仍为变形晶粒(纤维状),形态无可见变化; 再结晶阶段:变形晶粒通过形核长大,逐渐转变为新的无畸变等轴晶粒。 晶粒长大阶段:晶界移动、晶粒粗化,达到相对稳定的形状和尺寸。
二、 回复机制
1.低温回复(T=0.1-0.3Tm) 点缺陷运动:空位迁移至晶界、位错处而消失;空位与间隙原子 结合而消失; 空位聚集(空位群),然后崩塌成位错环而消失。 2.中温回复 (T=0.3-0.35Tm) 位错滑移:异号位错相遇而抵销、缠结位错重新排列,位错密度 降低。 3.高温回复(T>0.35Tm) 位错攀移(+滑移)→位错垂直排列(亚晶界)→多边化(亚晶 粒)→弹性畸变能降低。 多边化的条件:塑性变形使晶体点阵弯曲、滑移面上有塞积的同 号刃型位错、较高的加热温度使刃型位错产生攀移运动。
六、再结晶后晶粒大小及其控制
晶粒大小-变形量关系图
1.变形量:存在临界变形量(一般约为2%-10%);在临界变形量以下, 不发生再结晶,晶粒尺寸不变;在临界变形量处,再结晶后晶粒 特别粗大(峰值),生产中应避免临界变形量;在临界变形量以 上,随变形量增大,再结晶后晶粒逐渐细化。(d∝(G/N)1/2) 2. 退火温度:退火温度提高,晶粒粗化;退火温度越高,临界变 形度越小,晶粒粗大。 3. 原始晶粒尺寸:原始晶粒越细小,再结晶驱动力越大,再结晶 温度越低,且形核位臵越多,使再结晶后晶粒细化。 七、再结晶的应用-再结晶退火 恢复变形能力、改善显微组织、消除各向异性、提高组织稳定性。

机械工程材料.答案

机械工程材料.答案

11.经过大量塑性变形后,由于位错密度增大和发生交互作用, 位错分布不均,并使晶粒分化成许多位向略有差异的亚晶块, 称为( )。 (a)小晶粒 (b)亚晶粒 (c)晶粒 (d)位错晶粒 12.在塑性变形量很大时,伴随着晶粒的转动,各个晶粒的滑移 面和滑移方向都会逐渐与形变方向趋于一致,从而使多晶体中 原来取向互不相同的各个晶粒在空间位向上呈现—定程度的一 致性,这种现象称为择优取向,这种组织称为( )。 (a)择优组织(b)变形组织 (c)形变织构 (d)拉长组织 13.加工硬化使金属( )。 (a)强度升高、塑性降低 (b)强度降低、塑性降低 (c)强度升高、塑性升高 (d)强度降低、塑性升高 14.经冷塑性变形的金属在加热时,在光学显微组织发生改变前 (即在再结晶晶粒形成前)所产生的某些亚结构和性能的变化 过程称为( )。 (a)恢复 (b)回复 (c)再结晶 (d)结晶
1. 点
(1) 组织发生变化。 变形晶粒由无畸变新晶粒代替。 (2)消除加工硬化现象。 (3)变形储存能充分释放。
§2-3 回复与再结晶 2.再结晶的过程 实质:新晶粒重新形核和长大的过程。
变 形 晶 粒
新 等 轴 晶 粒
再结晶过程示意图
§2-3 回复与再结晶
3. 再结晶温度及再结晶退火
再结晶温度 T再≈0.4T熔 (绝对温度)
作业 5、6、9
1.金属变形的三个阶段分别是( )。
(a)弹性变形、粘流变形和断裂 (b)弹性变形、弹塑性变形和断裂 (c)弹性变形、高弹变形和断裂 (d)高弹变形、弹塑性变形和断裂
2.发生明显塑性变形后而发生的断裂称为( )。 (a)韧性断裂 (b)脆性断裂 (c)疲劳断裂 (d)延时断裂 3.断裂前无明显塑性变形的断裂称为( )。 (a)韧性断裂 (b)脆性断裂 (c)疲劳断裂 (d)延时断裂 4.( )是晶体的一部分沿着一定的晶面和晶向相对于另一部分 作相对的滑动,是晶体发生塑性变形的主要方式。 (a)攀移 (b)滑移 (c)位错 (d)剪切 5.单晶体塑性变形的基本方式有( )。 (a)滑移和孪晶 (b)滑移和孪生 (c)滑动和孪生 (d)错 动和孪生

材料科学基础4-回复、再结晶

材料科学基础4-回复、再结晶

Q Q A exp RT t1 A exp RT t2 1 2
t1 t2 exp exp 1 1 RT2 R T2 T1 e RT 1
晶粒长大--3.影响晶粒长大(即晶界迁移率)的因素
(1)温度 温度越高,晶粒长大速度越快,晶粒越粗大
G =G0exp(-QG /RT)
G:晶界迁移速度 G0:常数 QG:晶界迁移的激活能
(2)第二相 晶粒长大的极限半径 R=kr/f K:常数 r:第二相质点半径 f:第二相的体积分数 ∴ 第二相质点的数量越多,颗粒越小,则阻碍晶粒长大的能 力越强。 (3)可溶解的杂质或合金元素阻碍晶界迁移,特别是晶界偏 聚现象显著的元素,其阻碍作用更大。但当温度很高时, 晶界偏聚可能消失,其阻碍作用减弱甚至消失。
§2
一、回复动力学 1.回复动力学曲线
回复
回复动力学特点:
(1)回复过程没有孕育期,随着退火的开始进行,发 生软化。 (2)在一定温度下,初期的回复速率很大,以后逐渐 变慢,直到最后回复速率为零。
(3)每一温度的回复程度有一极限值,退火温度越高, 这个极限值也越高,而达到此极限所需时间则越短
(4)回复不能使金属性能恢复到冷变形前的水平。
TC TA TB sin A sin B sin C
当界面张力平衡时: 因 为 大 角 度 晶 界 TA=TB=TC, 而 A+B+C=360o ∴A=B=C=120o
晶粒长大--晶粒长大的方式
(3)在二维坐标中, 晶界边数少于6的晶 粒,其晶界向外凸出, 必然逐渐缩小,甚至 消失,而边数大于6 的晶粒,晶界向内凹 进,逐渐长大,当晶 粒的边数为6时,处 于稳定状态。 在三维坐标中, 晶粒长大最后稳 定的形状是正十 四面体。

第七章 回复与再结晶(新)

第七章  回复与再结晶(新)

过程:
亚晶蚕食机制示意图
① ρ很大的小区域位错攀移重分布,使位错运动到相邻晶粒, 形成一个ρ低的小区域。 ②ρ低的区域逐渐扩大,其与周围区域的位向角增大。 ③当小区域扩大到一定体积,与周围晶粒之晶界变为大角晶界。 ④大角晶界弓出形成核心。
三种形核机制都是大角度晶界的突然迁移,所不同的是获得大角度晶界的途径不同。
超塑性
超塑性:某些材料在特定变形条件下呈现的特别大的延伸率。 条 件 : 晶 粒 细 小 、 温 度 范 围 ( 0.5~0.65Tm ) 、 应 变 速 率 小 ( 1 ~ 0.01%/s)。 本质:多数观点认为是由晶界的滑动和晶粒的转动所致。 应用:复杂零件的精密成形;难于热变形材料的加工。
晶粒的异常长大
1 异常长大: 少数再结晶晶粒的急剧长大现象 (二次再结晶) 2 基本条件:正常晶粒长大过程被(第二分散相微粒、织构)强烈阻碍。 3 驱动力:界面能变化(不是重新形核) 4 原因:晶粒内部肯定存在大量的阻止晶粒长大的因素。 1)合金元素附集晶界,阻碍晶界迁移。 2)第二相粒子阻碍晶界运动。
第七章 回复与再结晶

将冷变形后的金属加热到临界点以下 某温度区间,变形金属的组织、性能 会恢复到变形前的状态,这一过程称 为回复、再结晶。 回复:冷变形金属在低温加热时,其 显微组织无可见变化,但其物理、力 学性能却部分恢复到冷变形以前的过 程。 再结晶:冷变形金属被加热到适当温 度时,在变形组织内部生成新的无畸 变的等轴晶粒逐渐取代变形晶粒,而 使形变强化效应完全消除的过程。
动态再结晶
热加工后的组织与性能
(1)改善铸锭组织。气泡焊合、破碎碳化物、细化晶粒、降低偏析。提 高强度、塑性、韧性。 (2)形成纤维组织(流线)。 组织:枝晶、偏析、夹杂物沿变形方向呈纤维状分布。 性能:各向异性。沿流线方向塑性和韧性提高明显。 (3)形成带状组织 形成:两相合金变形或带状偏析被拉长。 影响:各向异性。类似于流线组织。 消除:避免在两相区变形、减少夹杂元素含量、采用高温扩散退火或 正火。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档