回复与再结晶
一文看懂回复和再结晶

一文看懂回复和再结晶回复和再结晶一、冷变形金属在加热时的组织与性能变化金属和合金经塑性变形后,由于空位、位错等结构缺陷密度的增加,以及畸变能(晶体缺陷所储存的能量)的升高将使其处于热力学不稳定的高自由能状态,具有自发恢复到变形前低自由能状态的趋势,但在室温下,因温度低,原子活动能力小,恢复很慢,一旦受热,温度较高时,原子扩散能力提高,组织、性能会发生一系列变化。
这一变化过程随加热温度的升高可表现为三个阶段:回复:指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。
在此阶段,组织:由于不发生大角度晶界的迁移,晶粒的形状和大小与变形态相同,仍为纤维状或扁平状。
性能:强度与硬度变化很小,内应力、电阻明显下降。
(回复是指冷塑性变形的金属在(较低温度下进行)加热时,在光学显微组织发生改变前(即在再结晶晶粒形成前)所产生的某些亚结构和性能的变化过程。
)再结晶:指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程。
在此阶段,组织:首先在畸变度大的区域产生新的无畸变晶粒的核心,然后逐渐消耗周围的变形基体而长大,直到变形组织完全改组为新的、无畸变的细等轴晶粒为止。
性能:强度与硬度明显下降,塑性提高,消除了加工硬化,使性能恢复到变形前的程度。
晶粒长大:指再结晶结束之后晶粒的继续长大。
在此阶段,在晶界表面能的驱动下,新晶粒相互吞食而长大,最后得到较稳定尺寸的晶粒。
显微组织的变化:回复阶段:显微组织仍为纤维状,无可见变化。
再结晶阶段:变形晶粒通过形核长大,逐渐转变为新的无畸变的等轴晶粒晶粒长大阶段:晶界移动,晶粒粗化,达到相对稳定的形状和尺寸。
性能变化:回复阶段:强度、硬度略有下降,塑性略有提高;密度变化不大,电阻明显下降。
再结晶阶段:强度、硬度明显下降,塑性明显提高;密度急剧升高。
晶粒长大阶段:强度、硬度继续下降,塑性继续提高;粗化严重时下降。
二、回复1. 回复动力学上图同一变形程度的多晶体铁在不同温度退火时,屈服强度的回复动力学曲线特点:(1)没有孕育期;(2)在一定温度下,初期的回复速率很大,随后即逐渐变慢,直至趋近于零;(3)每一温度的恢复程度有一极限值,退火温度越高,这个极限值也越高,而达到此一极限值所需的时间则越短;(4)预变形量越大,起始的回复速率也越快,晶粒尺寸减小也有利于回复过程的加快。
10回复与再结晶

§7.4.2 晶粒的异常长大 冷形变金属在初次再结晶刚完成时,晶粒是比较细小的。 如果继续保温或提高加热温度,晶粒将渐渐长大,这种 长大是大多数晶粒几乎同时长大的过程。 如将再结晶完成后的金属继续加热超过某一温度,则会 有少数几个晶粒突然长大,它们的尺寸可能达到几个厘 米,而其他晶粒仍保持细小。最后小晶粒被大晶粒吞并, 整个金属中的晶粒都变得十分粗大。这种晶粒长大叫做 异常晶粒长大或二次再结晶。
1.小变形量的晶界弓出形核机制 对于变形程度较小的金属(一般小于20%),再结晶晶核往往采 用弓出形核机制生成。 变形的两个相邻晶粒内,其位
图 晶界弓出形核
错胞的尺寸相差悬殊,晶核产 生于位错胞尺寸大的晶粒一侧, 长入到有小位错胞晶粒内,也 就是伸向畸变能较高的区域以 减少畸变能。
2.亚晶合并机制
的等轴晶粒逐渐取代变形晶粒,而使形变强化效应完全消除的过程。
第一节 形变金属及合金在退火过程中的变化 §10.1.1 显微组织的变化 在回复阶段,与冷变形状态相比,光学金相组织中几乎没有发生 变化,仍保持形变结束时的变形晶粒形貌; 在再结晶开始,首先在畸变较大的区域产生新的无畸变的晶粒核 心,然后通过逐渐消耗周围变形晶粒而长大,转变成为新的等轴 晶粒,直到冷变形晶粒完全消失; 最后,在晶界界面能的驱动下,新晶粒会发生合并长大,最终会 达到一个相对稳定的尺寸,这就是晶粒长大阶段。 §10.1.2 储存能释放与性能变化 储存能是变形金属加热时发生回复与再结晶的 驱动力。
图 再结晶全图
§10.3.6 再结晶的应用
恢复变形能力 改善显微组织 再结晶退火 消除各向异性 提高组织稳定性
再结晶退火温度:T再+100~200℃。
第四节 晶粒长大
§10.4.1 晶粒的正常长大 晶粒长大过程中,如果长大的结果是晶粒尺寸分布均匀的,那么 这种晶粒长大称为正常长大。 晶粒长大的过程实际上就是一个晶界迁移过程,从宏观上来看, 晶粒长大的驱动力是界面能的降低,而从晶粒尺度来看,驱动力 主要是由于晶界的界面曲率所造成的。 晶界移动方向总是指向曲率中心。
回复与再结晶

• 回复 • 再结晶 • 晶粒长大 • 再结晶后的组织 • 金属的热加工
引言
冷变形金属在加热时组织性能会发生变化。 冷变形时较高的弹性畸变能、高位错密度、空
位等储存能量是促使冷变形金属发生变化的驱 动力。 微观组织处于不稳定状态。一旦加热,原子具 有足够的扩散能力,将发生一系列变化,从而 导致性能的变化。 变化时从储能释放及组织结构和性能的变化来 分析,可分为回复、再结晶和晶粒长大三个阶 段。
• 3. 形核与长大
4.再结晶的转变不是相变
• 冷塑性变形后的发生再结晶,晶粒以形核和 晶核长大来进行,但再结晶过程不是相变
• 原因有:
1.变化前后的晶粒成分相同,晶体结构并未发生变化, 因此它们是属于同一个相。
2.再结晶不像相变那样,有转变的临界温度点,即没 有确定的转变温度。
3.再结晶过程是不可逆的。相变过程在外界条件变化 后可以发生可逆变化。
经验公式 工业纯金属:T再=(0.35~0.45)Tm。 合金:T再=(0.4~0.9)Tm。
注:再结晶退火温度一般比上述温度高100~200℃。
四. 影响再结晶的因素
(1)退火温度。 温度越高,再结晶速度越大。 (2)变形量。 变形量越大,再结晶温度越低 随变形量增大,再结晶温度趋于稳定 变形量低于一定值,再结晶不能进行。 (3)原始晶粒尺寸。 晶粒越小,驱动力越大;晶界越多,有利于形核。 (4)微量溶质元素。 阻碍位错和晶界的运动,不利于再结晶。 纯度越高,再结晶温度越低; (5)第二分散相。 间距和直径都较大时,提高畸变能,并可作为形核核心,促进再结晶; 直径和间距很小时,提高畸变能,但阻碍晶界迁移,阻碍再结晶。
9.2 回复
• 一 回复概念 • 回复:在加热温度较低时,仅因金属中的一些
回复与再结晶

晶粒的正常长大(normal grain growth)
正常长大:再结晶后的晶粒均匀连续的长 大。 驱动力:界面能越大,曲率半径越小,驱 动力越大。(长大方向是指向曲率中心, 而再结晶晶核的长大方向相反。) 长大方式:大晶粒吞食小晶粒,大角度晶 界向曲率中心移动。
晶粒的正常长大
晶粒的稳定形状 晶界趋于平直; 二维晶粒:二维坐标中晶粒边数趋于6, 晶界夹角趋于120°; 三维晶粒:十四面体。
7.5 金属的热塑性变形
7.4.1 热、冷塑性变形的区别 (1) 热、冷塑性变形的区别 冷加工:在再结晶温度以下的变形加工。 加工硬化。 热加工:在再结晶温度以上的变形加工。 加工硬化、软化。 热加工温度:T再<T热加工<T固-100~200℃。
金属的冷加工
性能变化是单向的: 变形前 变形后
第7章 回复与再结晶
本章主要内容
冷塑性变形金属在加热时的转变 回复阶段 再结晶
金属的热塑性变形
回复与再结晶
7.1 冷塑性变形金属在加热时的转变
机械功(塑性变形) 热量(散失) 晶体内部缺陷储存能量→金属处于不稳 定的高能状态→有向低能转变的趋势
根据冷变形金属加热时组织和性能的变 化,可分为回复、再结晶和晶粒长大三 个阶段。
导致位错密度降低
7.2.2 回复机制
(3) 高温回复(>0.5Tm) 攀移:位错垂直于滑移面的移动。 机制:原子面下端原子的扩散,位错随半 原子面的上下移动而上下运动。 分类:正攀移(原子面上移、空位加入)、 负攀移(原子面下移、原子加入)。 攀移的作用:原滑移面上运动受阻—攀 移—新滑移面—滑移继续。
7.1.1 显微组织的变化
材料科学基础4-回复、再结晶

Q Q A exp RT t1 A exp RT t2 1 2
t1 t2 exp exp 1 1 RT2 R T2 T1 e RT 1
晶粒长大--3.影响晶粒长大(即晶界迁移率)的因素
(1)温度 温度越高,晶粒长大速度越快,晶粒越粗大
G =G0exp(-QG /RT)
G:晶界迁移速度 G0:常数 QG:晶界迁移的激活能
(2)第二相 晶粒长大的极限半径 R=kr/f K:常数 r:第二相质点半径 f:第二相的体积分数 ∴ 第二相质点的数量越多,颗粒越小,则阻碍晶粒长大的能 力越强。 (3)可溶解的杂质或合金元素阻碍晶界迁移,特别是晶界偏 聚现象显著的元素,其阻碍作用更大。但当温度很高时, 晶界偏聚可能消失,其阻碍作用减弱甚至消失。
§2
一、回复动力学 1.回复动力学曲线
回复
回复动力学特点:
(1)回复过程没有孕育期,随着退火的开始进行,发 生软化。 (2)在一定温度下,初期的回复速率很大,以后逐渐 变慢,直到最后回复速率为零。
(3)每一温度的回复程度有一极限值,退火温度越高, 这个极限值也越高,而达到此极限所需时间则越短
(4)回复不能使金属性能恢复到冷变形前的水平。
TC TA TB sin A sin B sin C
当界面张力平衡时: 因 为 大 角 度 晶 界 TA=TB=TC, 而 A+B+C=360o ∴A=B=C=120o
晶粒长大--晶粒长大的方式
(3)在二维坐标中, 晶界边数少于6的晶 粒,其晶界向外凸出, 必然逐渐缩小,甚至 消失,而边数大于6 的晶粒,晶界向内凹 进,逐渐长大,当晶 粒的边数为6时,处 于稳定状态。 在三维坐标中, 晶粒长大最后稳 定的形状是正十 四面体。
第七章 回复与再结晶用

Smith W F. Foundations of Materials Science and Engineering. McGRAW.HILL.3/E
4
第一节 冷变形金属在加热时的变化
三 性能变化 1 力学性能(示意图) 回复阶段:强度、硬度略 有下降,塑性略有提高。 再结晶阶段:强度、硬度 明显下降,塑性明显提高。 晶粒长大阶段:强度、硬 度继续下降,塑性继续提高, 粗化严重时下降。 2 物理性能 密度:在回复阶段变化不大, 在再结晶阶段急剧升高; 电阻:电阻在回复阶段可 明显下降。
30
第四节 晶粒长大
三 再结晶退火的组织
1 再结晶图。退火温度、变形量与晶粒大小的关系图。 2 再结晶织构:再结晶退火后形成的织构。退火可将形变织 构消除,也可形成新织构。 择优形核(沿袭形变织构) 择优生长(特殊位向的再结晶晶核快速长大) 3 退火孪晶:再结晶退火后出现的孪晶。是由于再结晶过程 中因晶界迁移出现层错形成的。
34
第五节 金属的热变形
一 动态回复与动态再结晶
1 动态回复:在塑变过程中发生的回复。(静态…) 高层错能金属(铝及铝合金、纯铁、铁素体钢等)热 加工时,螺型位错的交滑移和刃型位错的攀移均较易进行, 位错很容易从结点和位错网中解脱出来而与异号位错相互 抵消,因此,亚晶中的位错密度低,剩余的储存能不足以 引起动态再结晶,动态回复是这类金属热加工中起主导作 用的软化机制。
20
第三节 再结晶
四 影响再结晶的因素
1 退火温度。温度越高,再结晶速 度越大。加热速度太低或太高,再 结晶温度提高。
2 变形量。变形量越大,再结晶温 度越低;随变形量增 大,再结晶 温度趋于稳定;在给定温度下发生 再结晶需要以一临界变形量,变形 量低于该值,再结晶不能进行。 3 原始晶粒尺寸。晶粒越小,变形 抗力越大,冷变形储存能越高,再 结晶驱动力越大;同时,晶界越多, 有利于形核。
第七章 回复与再结晶(新)

过程:
亚晶蚕食机制示意图
① ρ很大的小区域位错攀移重分布,使位错运动到相邻晶粒, 形成一个ρ低的小区域。 ②ρ低的区域逐渐扩大,其与周围区域的位向角增大。 ③当小区域扩大到一定体积,与周围晶粒之晶界变为大角晶界。 ④大角晶界弓出形成核心。
三种形核机制都是大角度晶界的突然迁移,所不同的是获得大角度晶界的途径不同。
超塑性
超塑性:某些材料在特定变形条件下呈现的特别大的延伸率。 条 件 : 晶 粒 细 小 、 温 度 范 围 ( 0.5~0.65Tm ) 、 应 变 速 率 小 ( 1 ~ 0.01%/s)。 本质:多数观点认为是由晶界的滑动和晶粒的转动所致。 应用:复杂零件的精密成形;难于热变形材料的加工。
晶粒的异常长大
1 异常长大: 少数再结晶晶粒的急剧长大现象 (二次再结晶) 2 基本条件:正常晶粒长大过程被(第二分散相微粒、织构)强烈阻碍。 3 驱动力:界面能变化(不是重新形核) 4 原因:晶粒内部肯定存在大量的阻止晶粒长大的因素。 1)合金元素附集晶界,阻碍晶界迁移。 2)第二相粒子阻碍晶界运动。
第七章 回复与再结晶
将冷变形后的金属加热到临界点以下 某温度区间,变形金属的组织、性能 会恢复到变形前的状态,这一过程称 为回复、再结晶。 回复:冷变形金属在低温加热时,其 显微组织无可见变化,但其物理、力 学性能却部分恢复到冷变形以前的过 程。 再结晶:冷变形金属被加热到适当温 度时,在变形组织内部生成新的无畸 变的等轴晶粒逐渐取代变形晶粒,而 使形变强化效应完全消除的过程。
动态再结晶
热加工后的组织与性能
(1)改善铸锭组织。气泡焊合、破碎碳化物、细化晶粒、降低偏析。提 高强度、塑性、韧性。 (2)形成纤维组织(流线)。 组织:枝晶、偏析、夹杂物沿变形方向呈纤维状分布。 性能:各向异性。沿流线方向塑性和韧性提高明显。 (3)形成带状组织 形成:两相合金变形或带状偏析被拉长。 影响:各向异性。类似于流线组织。 消除:避免在两相区变形、减少夹杂元素含量、采用高温扩散退火或 正火。
第七章回复与再结晶

回复、再结晶及晶粒长大阶段中性能的变 化情况
7.2 回复
回复过程3阶段(储存能在回复阶段三个峰值所对应的) 约化温度:表征加热温度的高低,用绝对温标表示的加热温度与其熔点温度之比, TH =T/Tm。
错相遇相消,位错密度下降,位错缠结内部重新排列组合,使亚晶规整化。
(3)高温回复( TH >0.5Tm) 高温回复,原子活动能力进一步增强,位错除滑移外,还可攀移。主要机制是多边化。冷变形后由
于同号刃型位错在滑移面上塞积而导致点阵弯曲,在退火过程中通过刃型位错的攀移和滑移,使同号 刃型位错沿垂直于滑移面的方向排列成小角的亚晶界,这个过程称为多边化。其驱动力来自应变能的 下降。
位错及晶界处,对位错的运动及晶界的迁移起阻碍作用,因此不利于再结晶的形核与长大,阻碍再结 晶,使再结晶温度升高。 4.原始晶粒尺寸
其他条件相同情况下,晶粒越细,变形抗力越大,冷变形后存储能越多,再结晶温度越低。相同变 形度,晶粒越细,晶界总面积越大,可供形核场所较多,生核率也增大,再结晶速度加快。
5.分散相粒子 分散相粒子直径较大,离子间距较大的情况下,再结晶被促进;而小的粒子尺寸和小的粒子间距,
储存能的释放与性能变化
1 储存能:存在于冷变形金属内部的一小部分(~10%)变形功。
弹性应变能(3~12%) 2 存在形式 位错(80~90%)
点缺陷
3 储存能的释放:原子活动能力提高,迁移至平衡位置,储存能得以释放。
(1)力学性能 回复阶段:强度、硬度略有下降,塑性略有提高。 再结晶阶段:强度、硬度明显下降,塑性明显提高。 晶粒长大阶段:强度、硬度继续下降,塑性继续提高,粗
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
理论课教案附页
编制/时间:
教学方法
主要教学内容和过程
附记
一、 回复 回复:当加热温度不太高时,原子活动能力有所增加, 原子已能作短距离的运动,此时,晶格畸变程度大为减轻, 从而使内应力有所降低,这个阶段称为回复。 1、 回复是冷塑性变形金属在较低温度下加热的阶段。 在这个温度范围内,随温度的升高,变形金属中的原子活动 能力有所增大。 2、 通过回复,变形金属的晶格畸变程度减轻,内应力 大部分消除,但金属的显微组织无明显变化,因此力学性能 变化不大。 3、 在生产实际中,常利用回复现象将冷变形金属在低 温加热,进行消除内应力的处理,适当提高塑性、韧性、弹 性,以稳定其组织和尺寸,并保留加工硬化时留下的高硬度 的性能。
教具准备
复习提问 再结晶温度如何计算?
作业布置 P 33 习题 8
教学方法
主要教学内容和过程
附记
§3-3 回复与再结晶 经冷塑性变形后的金属晶粒破碎,晶格扭曲,位错密度 增高,产生内应力,其内部能量增高,因而组织处于不稳定 的状态,并存在向稳定状态转变的趋势。在低温下,这种转 变一般不易实现。而在加热时,由于原子的动能增大,活动 能力增强,冷塑性变形后的金属组织会发生一系列的变化, 最后趋于较稳定的状态。随着加热温度的升高,变形金属的 内部相继发生回复、再结晶、晶粒长大三个阶段的变化
二、再结晶 再结晶:当冷塑性变形金属加热到较高温度时,由畸变 晶粒通过形核及晶核长大而形成新的无畸变的等轴晶粒的 过程。 1、 再结晶过程是发生在较高温度(再结晶温度以上), 其过程以形核和核长大的方式进行。(见教材 P30) 2、 再结晶后,冷变形金属的组织和性能恢复到变形前 的状态(教材 P31) 3、再结晶过程是新晶粒重新形成的过程,而晶格类型
3
并没有发生改变,所以它不是相变过程。(教材 P31)
2
编制/时间:
理论课教案附页
教学方法
主要教学内容和过程
附记
4、 金属的再结晶与熔点关系。 再结晶温度:能进行再结晶的最低温度。 实践证明:金属变形程度越大,再结晶温度越低。
T 再≈0.4T 熔(T 为绝对温度) T=t+273 5、生产上常把冷塑性变形金属加热到再结晶温度以上, 以消除形变强化,以利于进一步进行加工,这种工艺叫再结 晶退大。(教材 P31)再结晶退大温度一般比再结晶温度高 100—200℃ 三、晶粒长大 冷变形的金属经过再结晶后,一般都能得到细小均匀的 等轴晶粒,但加热温度过高或加热时间(保温)过长,晶粒 会互相兼并而长大,使金属的塑性、韧性降低,这是应该避 免的(教材 P31 页)
理Hale Waihona Puke 课教案编号:NGQD-0707-09
版本号:A/0
页 码:
编制/时间:
审核/时间:
批准/时间:
学 金属材料及 第三章
金属的塑性变形与再结晶
科 热处理 第三节
回复与再结晶
教学类型
授新课
授课时数 1 授课班级
教学目的 1、 了解加热过程中,变形金属内部组织的变化。 和要求
教学重点 1、 重点:回复、再结晶的作用。 和难点 2、 难点:再结晶温度的计算。