《简单随机抽样》示范课教学设计【高中数学教案】
简单随机抽样教学设计-高一下学期数学人教A版(2019)必修第二册

9.1.1简单随机抽样一、内容和内容解析内容:简单随机抽样的概念以及如何实施简单随机抽样.内容解析:本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第九章第1节第1课时的内容.本节内容是统计的初步内容——简单随机抽样,是其他抽样方法的基础,也是估计总体结果的前提,同时也是初中频率知识的延伸.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.二、目标和目标解析目标:(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤.(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本.(3)通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性.目标解析:(1)简单随机抽样是一种简单且基本的抽样方法,是很多抽样方法的基础,在抽样理论中占有重要低位..(2)抽签法和随机数表法是实现简单随机抽样的两种方法,两种抽样都可以归纳为编号,抽取,成样三个步骤,明确两种方法的优劣,选择合适的方法进行抽取.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.简单随机抽样的教学中,利用利用抽样方法解决实际问题是进行数学建模教学的好机会.基于上述分析,本节课的教学重点定为:普查与抽查、简单随机抽样、总体平均数与样本平均数.三、教学问题诊断分析1.教学问题一:用样本估计总体或多或少会存在误差,从对总体估计的角度看,误差小的样本是“好”样本,误差大的样本是“坏”样本.如何获得一个好样本是学生理解的一个难点。
高一数学 简单随机抽样教案

芯衣州星海市涌泉学校师范大学附属中学高一数学教案:2.1.1简单随机抽样一、教学目的1.理解简单随机抽样的概念;2.会用简单随机抽样〔抽签法,随机数表法〕从总体中抽取样本.二、教学重点:简单随机抽样及施行方法.教学难点:抽样的必要性,“逐个抽取时各个个体被抽取的概率相等〞与“整个抽样过程中各个个体被抽取的概率相等〞的区别.三、教学用具:信息技术四、教学过程:1.出示实例在一次考试中,考生有2万名,假设为了得到这些考生的数学平均成绩,将他们的成绩全部相加再除以考生总数,那将是非常费事的.怎样才能理解到这些考生的数学平均成绩呢?今有某灯泡厂消费的灯泡10000只,怎样才能理解到这批灯泡的使用寿命呢?2.提出问题,导入新课〔1〕结合实例说明什么是总体、个体、样本、样本容量.〔2〕统计的根本思想是什么?〔3〕为什么要用样本的情况估计总体的相应情况?分析解答后,自然提出如下问题:如何抽取样本?怎样使抽取的样本充分地反映总体的情况?出示课题:抽样方法〔1〕——简单随机抽样.3.阅读书第17~18页内容,并答复以下问题〔1〕什么是简单随机抽样?〔2〕今用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本.问:由问题〔1〕的解答,出示简单随机抽样的定义.问题〔2〕是本节难点,教师应利用概率知识适当予以点拨.而后归纳如下结论:①用简单随机抽样,从含有N 个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为N 1;在整个抽样过程中各个个体被抽到的概率为N n .②基于此,简单随机抽样表达了抽样的客观性与公平性.③简单随机抽样的特点:它是不放回抽样;它是逐个地进展抽取;它是一种等概率抽样.4.简单随机抽样的施行方法阅读教材科书第18~19页内容,答复以下问题:〔1〕用抽签法抽样如何操作?它有何优点?〔2〕具备何种特征的总体适宜用简单随机抽样?〔3〕制作的随机数表有什么要求?〔4〕要从40件产品中抽取10件进展检查,如何用随机数表获取这个样本?〔5〕为什么利用随机数表抽取样本是公平的?说明:①对于问题〔3〕〔4〕〔5〕的解答,教师应出示随机数表予以点拨.②教师应讲清楚随机数表抽样“三步曲〞中应注意的问题.5.课堂练习书第47页练习2.6.归纳总结通过本节课的学习,我们理解了统计的根本思想,知道什么是简单随机抽样,什么样的总体适宜用简单随机抽样,知道如何用抽签法或者者随机数表法获取样本.五、布置作业:〔1〕书习题第2、3题.〔2〕课外考虑:从含有N个个体的总体中一次性地抽取容量为n的样本时,在假定每个个体被抽到的概率相等的前提下,总体中任一个体a被抽到的概率是多少?。
人教版数学必修三2.1.1《简单随机抽样》教案

2.1.1简单随机抽样(教案)教学目标:二、教学目标:【知识与技能】(1)理解什么是简单随机抽样;会用简单随机抽样从总体中抽取样本。
(2)通过学习本小节知识,提高学生对统计的认识,提高学生应用教材知识解决实际问题的能力。
【过程与方法】(1)通过探索、研究、归纳、总结形成本章较为科学的知识网,并掌握知识之间的联系。
(2)进行辨证唯物主义思想教育,数学应用意识教育和数学审美教育、提高学习数学的积极性。
【情感、态度与价值观】(1)结合教学内容培养学生学习数学的兴趣以及“用数学”的意识,激励学生勇于创新。
(2)强化学生的注意力及新旧知识的联系,树立学生求真的勇气和自信心。
(3)通过安排学生游戏试验、分组讨论、,提升学生合作交流、互助提高的团队意识。
课型:新课。
教具与学具:多媒体、学生课前做好的签。
教学设计:一、新课导入课堂从辽沈战役中林彪通过收集数据生擒廖耀湘说起,历史是如此,那么我们现在生活在一个数字化时代(马云说当今的时代已经从IT(信息科技)时代变革为DT(数据科技)时代,我们时刻都在和数据打交道,引出统计学相关概念。
通过预习案展示验收学生预习效果1、统计学是干什么的?统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。
2、统计的两个核心内容是什么?(1)、收集数据(普查、抽样调查)(2)、用样本估计总体3、统计的基本思想方法是什么?用样本估计总体。
4、什么是总体、个体、样本、样本容量?总体:在进行统计分析时,研究对象的全部;个体:组成总体的每个研究对象;样本:从总体中按一定的规则抽出的个体的全部;样本容量:样本中所含个体的个数,用 n 表示。
例如:为了了解全国高中生的视力情况,从中抽取15000名学生进行调查。
其中,全国高中生的视力是总体;每一个学生的视力是个体;抽取的15000名学生的视力是样本;15000 是样本容量。
通过几个实例让学生对普查与抽查进行区分与优缺点总结。
高中数学简单随机抽样教案

高中数学简单随机抽样教案
教学目标:
1. 了解简单随机抽样的原理和方法。
2. 学会使用数学方法进行简单随机抽样。
3. 掌握简单随机抽样的应用场景和意义。
教学内容:
1. 简单随机抽样的概念和特点。
2. 简单随机抽样的步骤和方法。
3. 简单随机抽样的应用案例。
教学步骤:
1. 引入:介绍简单随机抽样的概念和重要性。
2. 讲解:讲解简单随机抽样的步骤和方法。
3. 演示:进行简单随机抽样的实际操作演示。
4. 练习:让学生进行简单随机抽样的练习。
5. 总结:总结本节课学习的内容,并强调简单随机抽样的应用意义。
教学资源:
1. 教学课件。
2. 抽样器具。
3. 实际数据样本。
教学评价:
1. 口头回答问题。
2. 练习题答题。
3. 实际操作抽样。
教学延伸:
1. 学生可根据所学内容,设计简单随机抽样实验,并分析结果。
2. 学生可在现实生活中应用简单随机抽样方法,进行一些实际调查或研究。
教学反思:
本节课主要讲解了简单随机抽样的原理和方法,通过实际操作演示,帮助学生掌握了简单随机抽样的应用技巧。
在教学中应注重理论与实践相结合,激发学生的学习兴趣,提高学习效果。
人教版高中数学必修三2.1.1《简单随机抽样》教学设计

2.1.1简单随机抽样(1课时)一、教学目标:1、正确理解简单随机抽样概念,会用抽签法、随机数表法从总体中抽取样本。
2、让学生经历简单随机抽样的过程,培养学生对数据的处理能力。
3、通过对现实生活和其他学科中统计问题的提出,体会教学知识与现实世界及各学科之间的联系,认识数学的重要性。
重点:简单随机抽样的概念,抽签法几随机数表法的特点和操作步骤。
难点:灵活应用简单随机抽样法从总体中抽取样本。
二、教学过程一、随机抽样1、新课引入教师:问如何将老师手里的糖果分给班级里的同学?设计意图:通过实例让学生感受到抽样的合理性很重要,激发学生学习的热情.学生:像某些舞台效果一样,直接抓一大把扔下来,谁接到就是谁的。
教师:演示并提出问题,每个同学得到糖的机会相等吗?学生:不相等。
教师:那就意味着这种方法不合理。
若老师手里只有6块糖如何分配让每个人心里都舒服呢?这就是本节课要研究的问题。
首先阅读教材49页前4段,并回答屏幕上的问题。
2、引例1:某校高中学生900人,校医务室想对全校学生身高情况作一次调查,为了不影响正常的教学活动,如何调查?准备抽出50人作为调查对象,你能帮医务室设计一个抽取方案吗?设计意图:通过实例重温统计学中的几个相关概念。
3、重温统计学中的几个概念:总体、个体、样本、样本容量4、抽样的必要性:教师提问1 :为了了解全校高中生的身高情况,需要将全校所有高中生逐一进行检查吗?教师提问2 :要测试灯泡的寿命,需要将所有的灯泡逐一检查吗?设计意图:通过两个问题说明当样本容量非常大,或具有破坏性时有必要用样本估计总体,从而引出统计学基本思想。
5、抽样原则:教师提问:在教材开始的问题中能否从高一年级选出50名学生的身高作为样本来估计全校高中学生的身高呢?设计意图:通过学生回答引出抽样原则和随机抽样的概念。
教师:与学生一起总结并板书。
随机抽样:抽样时每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样条件的抽样是随机抽样。
人教版高二年级数学必修三第二章第一节《简单随机抽样》优质教案

简单随机抽样教案简单随机抽样一、教学内容及其解析1.教学内容:统计,简单随机抽样,抽签法,随机数表法.2.内容解析:本节内容是新课标实验教材(人教版A版)必修三第二章统计的第一课时:简单随机抽样。
其主要内容是介绍简单随机抽样的概念以及简单随机抽样的两种方法:抽签法和随机数表法。
抽样方法是数理统计学中的重要内容,简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位。
因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用,因此它起到了承上启下的作用,在教材中占有重要的地位。
本节内容是在学生初中已学习了简单初步的统计知识以及掌握了算法的基本思想后安排的,使学生对统计知识的理解与掌握呈螺旋性上升一个台阶。
本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法。
这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯。
教材通过实例引出抽样的必要性,抽样时所应考虑到问题,样本的质量(代表性)和所推断的结论之间的关系,然后介绍最常用、最基础的随机抽样-简单随机抽样,具体介绍抽签法与随机数表法。
从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点。
丰富的生活实例为学生用数学的眼光看待问题,体验生活即数学的概念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识。
二、教学目标与目标解析1.教学目标(1)了解随机抽样的必要性,理解并掌握随机抽样的概念的学习,体现了数学抽象的核心素养.(2)借助简单随机抽样的两种方法(抽签法和随机数表法)的一般步骤的设计,提升数学建模的核心素养。
(3)通过互动探究等,让学生在解决统计问题的过程中,学会用简单随机抽样中的抽签法和随机数表法从总体中抽出样本。
《8.4.1简单随机抽样》教学设计教学反思-2023-2024学年中职数学高教版21基础模块下册

《简单随机抽样》教学设计方案(第一课时)一、教学目标1. 理解简单随机抽样的概念及特点。
2. 掌握简单随机抽样的随机数表法。
3. 能够运用简单随机抽样方法解决实际问题。
二、教学重难点1. 教学重点:简单随机抽样的随机数表法。
2. 教学难点:如何设计抽样方案,并合理选择抽样方法。
三、教学准备1. 准备教学用具:黑板、白板、笔、随机数表。
2. 准备案例或实际问题,以便学生实践操作。
3. 提前布置学生预习相关内容,以便更好地理解新知识。
4. 准备与简单随机抽样相关的其他教学资源,如视频、图片等。
四、教学过程:(一)导入新课1. 回顾初中所学抽签法,引出简单随机抽样。
2. 强调本节课的重要性,简单随机抽样是统计学中最基本的抽取方法之一。
(二)目标展示1. 知识目标:掌握简单随机抽样的含义,理解随机数表的使用方法。
2. 能力目标:能够根据实际情况,设计抽样方案,并能够运用随机抽样方法。
3. 情感目标:培养学生实事求是、尊重客观事实的科学态度。
(三)重点难点1. 重点:随机抽样的概念及抽取方法。
2. 难点:抽签法中的顺序问题及随机数表的正确使用。
(四)新课讲解1. 简单随机抽样概念讲解,举例说明(如学号、学生身高、成绩等)。
2. 抽签法讲解及实例操作。
3. 随机数表的使用方法及实例。
4. 讨论:如何从超市货架上快速选取不同商品作为样本?5. 学生代表发言,总结简单随机抽样应用。
6. 教师总结并强调注意事项。
(五)课堂互动1. 提问:生活中有哪些简单随机抽样的例子?2. 学生分组讨论,每组设计一个简单的抽样方案,并进行实际操作。
3. 小组代表发言,展示本组抽样方案及操作过程,教师给予评价和指导。
4. 教师提问,引导学生思考如何保证抽样的随机性及公正性。
(六)实际应用1. 请学生以小组为单位,对校园内某一植物种类进行调查,并选取具有代表性的样本进行测量和记录。
2. 每组提交调查报告,并进行汇报和交流。
3. 教师对各组的调查报告和汇报进行评价和反馈。
高一数学人教A版简单随机抽样1教案

教案样调查的方式,抽取100名同学进行了问卷调查.总体:___________________________个体:___________________________样本:___________________________样本量:___________________________引入例如:2020年3月5日,华商报新闻《西安抽样采集80辆出租车核酸样本结果均为新冠病毒阴性》3月3日,西安市疾控中心派出四组专业技术人员,分别前往西安市四个地点进行监测采样。
对多家运营商出租车内外物表面进行监测,采样部位包括内外车门把手,后尾箱门把手、方向盘、升降玻璃按钮,座椅及靠背、后备箱把手等乘客容易高频接触的部位,共采集80辆出租车238份标本,经西安市疾控中心实验室检测,结果均为新冠病毒核酸检测阴性。
从对总体估计的角度来看,误差小的样本是“好”样本,而误差大的样本是“坏”样本。
因此,为了获得“好”样本或者有代表性的样本,需要研究抽样方法,这是研究抽样方法发一个出发点。
新课1.探究:假设口袋中有红色和白色共1000个小球,除颜色外,小球的大小、质地完全相同。
你能通过抽样调查的方法估计袋中红球所占的比例吗?【方案一】有放回地从袋中摸球,摸出记录颜色后放回,摇匀后再摸出一个球如此重复。
根据初中概率的知识,随着摸球次数的增加,摸到红球的频率会逐渐稳定于摸到红球的概率,因此我们可以用频率估计红球的比例。
例如:摸球20次,红球出现15次,我们就可以估计红球的比例为:153204同一个小球有可能被摸中多次,极端情况是每次摸到同一个小球,而被重复摸中的小球只能提供同一个小球的颜色信息.初中对于简单随机抽样的概念要求结合实进入样本.如果随机数有重复,剔除重复的编号并重新产生随机数,重复(2)过程,直到抽足样本所需要的人数.4.生成随机数的方法(1)用随机试验生成随机数准备10个大小质地一样的小球,小球上分别写上数字0,1,2,…,9,把它们放入一个不透明的袋中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《简单随机抽样》教学设计1.以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
2.正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
3.通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法。
1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。
2.能够从现实生活或其他学科中提出具有一定价值的统计问题;3.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
4.通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
【教学重点】简单随机抽样的概念,抽签法及随机数法的操作步骤。
【教学难点】对样本随机性的理解。
抽签纸,图表等。
(一)知识回顾统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。
统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。
数理统计所要解决的问题是如何根据样本来推断总体?总体、个体、样本、样本容量的概念:总体:所要考察对象的全体。
个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这个总体的一个样本。
样本容量:样本中个体的数目。
(二)新课导入在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意测验,调查兰顿和罗斯福中谁将当选下一届总统。
为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(在1936年电话和汽车只有少数富人拥有),通过分析收回的调查表,显示兰顿非常受欢迎。
于是此杂志预测兰顿将在选举中获胜。
实际选举结果正好相反,最后罗斯福在选举中获胜。
其数据如下:①预测结果出错的原因是什么?抽取的样本不具有代表性,调查结果只能代表富人的意见。
②如何科学地抽取样本?怎样使抽取的样本充分地反映总体的情况?合理、公平、有代表性(三)新课讲授简单随机抽样:一般地,设一个总体含有N(N为正整数)个个体,从中逐个抽取n(1≤n<N)个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样;如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样(simple random sampling).通过简单随机抽样获得的样本称为简单随机样本.从总体中,逐个不放回地随机抽取n个个体作为样本,一次性批量随机抽取n个个体作为样本,两种方法是等价的.与放回简单随机抽样比较,不放回简单随机抽样的效率更高,因此实践中人们更多采用不放回简单随机抽样.除非特殊声明,本章所称的简单随机抽样指不放回简单随机抽样.注意以下点:(1)简单随机抽样要求被抽取样本的总体的个体数N是有限的;(2)简单随机样本数n小于或等于样本总体的个数N;(3)简单随机样本是从总体中逐个抽取的;(4)简单随机抽样是一种不放回的抽样;(5)简单随机抽样的每个个体入样的可能性均为n/N。
问题1一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高一年级学生的平均身高,以便设定可调节课桌椅的标准高度.已知树人中学高一年级有712名学生,如果要通过简单随机抽样的方法调查高一年级学生的平均身高,应该怎么抽取样本?为什么要给学生编号?编号用学号可以吗?比较随机数法与抽签法,它们各有什么优点和缺点?1、抽签法(抓阄法)先给712名学生编号,例如按1~712进行编号.然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的学生进入样本,直到抽足样本所需要的人数.抽签法简单易行,但当总体较大时,操作起来比较麻烦.因此,抽签法一般适用于总体中个体数不多的情形.抽签法的一般步骤:(总体个数N,样本容量n)(1)将总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,连续抽出n次;(5)将总体中与抽到的号签编号一致的n个个体取出。
抽签法的操作步骤概括为:个体编号,搅拌均匀,逐个抽取。
抽签法有哪些优点和缺点?优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性。
缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大。
2、用随机数表法进行抽取先给712名学生编号,例如按1~712进行编号.用随机数工具产生1~712范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本.重复上述过程,直到抽足样本所需要的人数.(1)用随机试验生成随机数准备10个大小、质地一样的小球,小球上分别写上数字0,1,2,…,9,把它们放入一个不透明的袋中.从袋中有放回摸取3次,每次摸取前充分搅拌,并把第一、二、三次摸到的数字分别作为百、十、个位数,这样就生成了一个三位随机数.如果这个三位数在1~712范围内,就代表对应编号的学生被抽中,否则舍弃编号.这样产生的随机数可能会有重复.(2)用信息技术生成随机数①用计算器生成随机数进入计算器的计算模式(不同的计算器型号可能会有不同),调出生成随机数的函数并设置参数,例如RandInt#(1,712),按“=”键即可生成1~712范围内的整数随机数.重复按“=”键,可以生成多个随机数.这样产生的随机数可能会有重复.②用电子表格软件生成随机数在电子表格软件的任一单元格中,输入“=RANDBETWEEN(1,712)”,即可生成一个1~712范围内的整数随机数.再利用电子表格软件的自动填充功能,可以快速生成大量的随机数(图9.1-1).这样产生的随机数可能会有重复.图9.1-1③用R统计软件生成随机数在R软件的控制台中,输入“sample(1:712,50,replace=F)”,按回车键,就可以得到50个1~712范围内的不重复的整数随机数(图9.1-2).图9.1-2思考用简单随机抽样方法抽取样本,样本量是否越大越好?在简单随机抽样调查中,当样本量和总体一样大时,就是全面调查了.3.∑为求和符号,读音为/s ιgm ə/,主要用于多项式求和..N N i i Y Y Y Y+++=∑= 211一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称∑==+++=N i i N YN N Y Y Y Y 1211为总体均值(population mean ),又称总体平均数.如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式∑==k i i i Yf N Y 11.如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称∑==+++=n i i n yn n y y y y 1211为样本均值(sample mean ),又称样本平均数.在简单随机抽样中,我们常用样本平均数y 去估计总体平均数Y .探究小明想考察一下简单随机抽样的估计效果.他从树人中学医务室得到了高一年级学生身高的所有数据,计算出整个年级学生的平均身高为165.0 cm .然后,小明用简单随机抽样的方法,从这些数据中抽取了样本量为50和100的样本各10个,分别计算出样本平均数,如表9.1-1所示.从小明多次抽样所得的结果中,你有什么发现?表9.1-1为了更方便地观察数据,以便我们分析样本平均数的特点以及与总体平均数的关系,我们把这20次试验的平均数用图形表示出来,如图9.1-3所示.图中的红线表示树人中学高一年级全体学生身高的平均数.图9.1-3从试验结果看,不管样本量为50,还是为100,不同样本的平均数往往是不同的.由于样本的选取是随机的,因此样本平均数也具有随机性,这与总体平均数是一个确定的数不同.虽然在所有20个样本平均数中,与总体平均数完全一致的很少,但除了样本量为50的第2个样本外,样本平均数偏离总体平均数都不超过1 cm,即大部分样本平均数离总体平均数不远,在总体平均数附近波动.比较样本量为50和样本量为100的样本平均数,还可以发现样本量为100的波动幅度明显小于样本量为50的,这与我们对增加样本量可以提高估计效果的认识是一致的.问题2眼睛是心灵的窗口,保护好视力非常重要.树人中学在“全国爱眼日”前,想通过简单随机抽样的方法,了解一下全校2 174名学生中视力不低于5.0的学生所占的比例,你觉得该怎么做?在这个问题中,全校学生构成调查的总体,每一位学生是个体,学生的视力是考察的变量.为了便于问题的描述,我们记“视力不低于5.0”为1,“视力低于5.0”为0,则第i个(i=1,2,…,2 174)学生的视力变量值为⎩⎨⎧=.,视力低于,,视力不低于0.500.51i Y 于是,在全校学生中,“视力不低于5.0”的人数就是Y 1+Y 2+…+Y 2174.可以发现,在总体中,“视力不低于5.0”的人数所占的比例P 就是学生视力变量的总体平均数.Y Y Y Y P =++=1742174221类似地,若抽取容量为n 的样本,把它们的视力变量值分别记为y 1,y 2,…,y n ,则在样本中,“视力不低于5.0”的人数所占的比例p 就是学生视力变量的样本平均数.y ny y y p n =++= 21 我们可以用样本平均数y 估计总体平均数Y ,用样本中的比例p 估计总体中的比例P . 现在,我们从树人中学所有学生中抽取一个容量为50的简单随机样本,其视力变量取值如下:1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0 1 11 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0由样本观测数据,我们可以计算出样本平均数为y =0.54.据此,我们估计在树人中学全体学生中,“视力不低于5.0”的比例约为0.54.简单随机抽样方法简单、直观,用样本平均数估计总体平均数也比较方便.简单随机抽样是一种基本抽样方法,是其他抽样方法的基础.但在实际应用中,简单随机抽样有一定的局限性.例如,当总体很大时,简单随机抽样给所有个体编号等准备工作非常费事,甚至难以做到;抽中的个体往往很分散,要找到样本中的个体并实施调查会遇到很多困难;简单随机抽样没有利用其他辅助信息,估计效率不是很高;等等.因此,在规模较大的调查中,直接采用简单随机抽样的并不多,一般是把简单随机抽样和其他抽样方法组合使用.例:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?[分析] 简单随机抽样一般采用两种方法:抽签法和随机数表法。