matlab瑞利衰落信道仿真
西南交通大学_通信工程实验_MATLAB实验_OFDM误码率仿真(衰落)

一、实验目的:
1、 了解瑞利信道产生的原因及其特征。 。 2、 用 MATLAB 进行 OFDM 系统在瑞利信道下误码率分析。
二、实验原理: 1、OFDM 基本原理
OFDM ( Orthogonal Frequency Division Multiplexing )正交频分复用,它是由多载波 调制技术发展而来 。其基本思想是把一路高速的数据流串并变换为 N 路的低速数据流再 并行传输, 因此数据流速度降为原来的 1/N, 具有很强的抗多径衰落和抗脉冲干扰的能力 , 特别适合高速无线数据传输。OFDM 是一种子载波相混叠的多载波技术,但由于 OFDM 选择 时域相互正交的子载波 , 他们在频域虽然相互混叠 , 却能在接收端被分离出来 。 OFDM 信 号频谱实际满足奈奎斯特准则即多个子载波之间不存在相互干扰。 OFDM 信号的基带形式
Ts=Tsym/N
x(t ) X [k ]exp j 2 f k (t Tsym
k 0
Nபைடு நூலகம்1
由于 OFDM 子载波之间满足正交性,因此可以采用离散傅立叶变换(DFT)表示信号。直接进 行 IDFT/DFT 变换,算法复杂度为 O(N2) ,计算量非常大,但如果采用 IFFT/FFT 来实现, 则算法复杂度降低为 O(N/2) (基 2 算法),极大降低了 OFDM 系统的实现难度。 图 1 为基带 OFDM 系统框图。
四、实验报告要求
1. 所有程序完整的源代码(.m 文件)以及注释。 2. 仿真结果。对于所有的图形结果(包括波形与仿真曲线等) ,将图形保存成.tif 或者.emf 的格式并插入 word 文档。
二进制 信息
映射
s/p
基于MATLAB的移动衰落信道仿真

摘要:本文基于MATLAB对移动衰落信道进行仿真。
重点利用JAKES法对瑞利信道进行了确定性模型仿真,对其功率谱密度和自相关函数进行了讨论。
通过比较仿真模型与参考模型,说明了仿真模型的正确性。
同时,仿真结果表明,仿真结果的特性主要取决于最大多普勒频移与谐波个数这两个参数。
关键词:瑞利信道;功率谱密度;自相关函数;JAKES法;最大多普勒频移Mobile Fading Channel Simulation Based on MATLABAbstract:In this thesis, mobile fading channel is simulated based on MATLAB. It mainly focuses on the deterministic model simulation of Rayleigh channel using JAKES method, and its power spectral density and autocorrelation function are discussed. By comparing the simulation model with the reference model, it demonstrates the correctness of simulation models. At the same time, the simulation results indicate that the results are mainly depending on following two parameters: the maximum Doppler frequency shifts and the number of harmonic waves.Keywords: Rayleigh channel;power spectral density;autocorrelation function;Jakes method;maximum Doppler shift目录前言 (1)第一章绪论 (2)1.1 研究背景及意义 (2)1.2 研究内容 (2)第二章无线信道的概念与特性 (3)2.1 移动无线信道的概念 (3)2.2 移动无线信道基本理论 (3)2.3 移动无线信道的类型 (4)2.3.1 传播路径损耗模型 (4)2.3.2 大尺度传播模型 (4)2.3.3 小尺度传播模型 (4)2.4 移动无线信道的衰落 (5)2.5 瑞利衰落信道模型的实现 (5)第三章确定性信道过程的理论导论 (8)3.1 确定性信道建模的原理 (8)3.1.1成形波器法 (8)3.2.2正弦波叠加法 (9)3.2 确定性过程的基本性质 (11)第四章确定性过程模型参数的计算方法 (12)4.1 离散多普勒频率和多普勒系数的计算方法 (12)4.2 多普勒相位的计算方法 (15)4.3 确定性瑞利过程的衰落时间间隔 (16)第五章JAKES功率谱密度与自相关函数的性能分析 (18)第六章结束语 (23)参考文献 (24)致谢 (25)附录 (26)前言现代移动通信的发展涉及通信信号与信道、分集接收机与最佳接收机、信源编码与信道编码、数字调制与解调等多方面技术,而无线信道及信道建模构成了移动通信传输技术的理论基础。
Rayleigh无线衰落信道的MATLAB仿真

通信原理课程设计汇报书课题名称Rayleigh 无线衰落信道的MATLAB 仿真姓 名学 号 学 院 专 业 通信工程指导教师年 月 日※※※※※※※※※ ※※ ※※ ※※ ※※※※※※※※※通信工程专业 通信原理课程设计Rayleigh无线衰落信道的MATLAB仿真1 设计目的〔1〕对瑞利信道的数学分析,得出瑞利信道的数学模型。
〔2〕利用MATLAB对瑞利无线衰落信道进行编程。
〔3〕针对服从瑞利分布的多径信道进行模拟仿真,加深对多径信道特性的了解。
〔4〕对仿真后的结果进行分析,得出瑞利无线衰落信道的特性。
2 设计思路无线衰落信道的MATLAB仿真:〔1〕分析出无线信道符合瑞利概率密度分布函数,写出数学表达式。
〔2〕建立多径衰落信道的根本模型。
〔3〕对符合瑞利信道的路径衰落进行分析,并利用MATLAB进行仿真。
3 设计过程3.1 方案论证3.1.1.瑞利信道环境与数学模型瑞利衰落信道〔Rayleigh fading channel〕是一种无线电信号传播环境的统计模型。
这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落〞,并且其包含服从瑞利分布。
瑞利衰落属于小尺寸的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。
信道衰落的快慢与开展端和接收端的相对运动速度的大小有关,相对运动对导致接受信号的多普勒频移,一固定信号通过单径的瑞利衰落信道后,在1秒内的能量波动,这一瑞利衰落信道的多普勒频移最大分别为10Hz和100Hz,在GSM1800MHz的载波频率上,其相应的移动速度分别为约6千米每小时和60千米每小时。
特别需要注意的事信号“深衰落〞现象,此时信号能量的衰减到达数千倍,即30到40分贝。
瑞利衰落模型适用于描述建筑物密集的城镇中心地带的无线信道。
密集的建筑和其他物体使得无线设备的发射机和接收机之间没有直射路径,而且使得无线信号被衰减、反射、折射、衍射。
在曼哈顿的实验证明,当地的无线信道环境实在接近于瑞利衰落。
Rayleigh无线衰落信道的MATLAB仿真

通信原理课程设计报告书课题名称 Rayleigh 无线衰落 信道的MATLAB 仿真姓 名学 号 学 院 专 业 通信工程指导教师※※※※※※※※※ ※※ ※※ ※※通信工程专业 通信原理课程设计年月日Rayleigh无线衰落信道的MATLAB仿真1 设计目的(1)对瑞利信道的数学分析,得出瑞利信道的数学模型。
(2)利用MATLAB对瑞利无线衰落信道进行编程。
(3)针对服从瑞利分布的多径信道进行模拟仿真,加深对多径信道特性的了解。
(4)对仿真后的结果进行分析,得出瑞利无线衰落信道的特性。
2 设计思路无线衰落信道的MATLAB仿真:(1)分析出无线信道符合瑞利概率密度分布函数,写出数学表达式。
(2)建立多径衰落信道的基本模型。
(3)对符合瑞利信道的路径衰落进行分析,并利用MATLAB进行仿真。
3 设计过程3.1 方案论证3.1.1.瑞利信道环境与数学模型瑞利衰落信道(Rayleigh fading channel)是一种无线电信号传播环境的统计模型。
这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包括服从瑞利分布。
瑞利衰落属于小尺寸的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。
信道衰落的快慢与发展端和接收端的相对运动速度的大小有关,相对运动对导致接受信号的多普勒频移,一固定信号通过单径的瑞利衰落信道后,在1秒内的能量波动,这一瑞利衰落信道的多普勒频移最大分别为10Hz和100Hz,在GSM1800MHz的载波频率上,其相应的移动速度分别为约6千米每小时和60千米每小时。
特别需要注意的事信号“深衰落”现象,此时信号能量的衰减达到数千倍,即30到40分贝。
瑞利衰落模型适用于描述建筑物密集的城镇中心地带的无线信道。
密集的建筑和其他物体使得无线设备的发射机和接收机之间没有直射路径,而且使得无线信号被衰减、反射、折射、衍射。
在曼哈顿的实验证明,当地的无线信道环境确实接近于瑞利衰落。
QPSK通过Rayleigh信道多径衰落的Matlab仿真

QPSK通过Rayleigh信道多径衰落的Matlab仿真参照《通信系统仿真原理与无线应用》351页例14-1在这个例子里,我们对有3条固定路径的AWGN多径信道中的QPSK系统进行BER性能仿真,并与在理想的AWGN信道(没有多径)中同样系统地BER性能进行比较……书上有比较详细的数学推导,不抄了。
这个例子似乎没有考虑多普勒频移。
待我继续学习下一个例子,这个也没太看懂。
下面是该例子的源程序,P0、P1、P2分别是LOS路径和两条延迟瑞利分量的相对功率级。
当p0=0且delay!=0时为瑞利频率选择性衰落,delay==0时为瑞利平坦衰落。
主程序scriptfile:% 两径瑞利衰落信道仿真% 设定默认参数NN=256; % 传输符号个数tb=0.5; % 一比特时间fs=10; % 每符号采样数ebn0db=[1:2:15]; % 设定Eb/N0% 建立QPSK信号x=random_binary(NN,fs)+i*random_binary(NN,fs); % x为QPSK信号% 输入功率和延迟p0=0; % 视距LOS分量p1=20; % 第一路径分量p2=1; % 第二路径分量delay=1; % 按照每符号采样数决定的延迟delay0=0;delay1=0;delay2=delay;% 设定复高斯(瑞利)衰减gain1=sqrt(p1)*abs(randn(1,NN)+i*randn(1,NN));gain2=sqrt(p2)*abs(randn(1,NN)+i*randn(1,NN));for k=1:NNfor kk=1:fsindex=(k-1)*fs+kk;ggain1(1,index)=gain1(1,k);ggain2(1,index)=gain2(1,k);endendy1=x;for k=1:delay2y2(1,k)=y1(1,k)*sqrt(p0);endfor k=(delay2+1):(NN*fs)y2(1,k)=y1(1,k)*sqrt(p0)+y1(1,k-delay1)*ggain1(1,k)+y1(1,k-delay2)*ggain2(1,k);end% 匹配滤波器b=-ones(1,fs);b=b/fs;a=1;y=filter(b,a,y2);% 仿真结束% Use the semianalytic BER estimator . The following sets up the semi% analytic estimator . Find the maximun magnitude of the cross correlation % and the corresponding lag .[cor lags]=vxcorr(x,y);cmax=max(max(abs(cor)));nmax=find(abs(cor)==cmax);timelag=lags(nmax);corrmag=cmax;theta=angle(cor(nmax));y=y*exp(-i*theta); % derotate% Noise BW calibrationhh=impz(b,a);ts=1/16;nbw=(fs/2)*sum(hh.^2);% Delay the input ,and do BER estimation on the last 128 bits . Use middle % sample .Make sure the index does not exceed number of input points .Eb % should be computed at the receiver input .index=(10*fs+8:fs:(NN-10)*fs+8);xx=x(index);yy=y(index-timelag+1);[n1 n2]=size(y2);ny2=n1*n2;eb=tb*sum(sum(abs(y2).^2))/ny2;eb=eb/2;[peideal,pesystem]=qpsk_berest(xx,yy,ebn0db,eb,tb,nbw);figuresemilogy(ebn0db,peideal,'b*-',ebn0db,pesystem,'r+-')xlabel('Eb/N0 (db)');ylabel('Probability of Error');grid onaxis([0 14 10^(-10) 1]);% End of script file.相关的一些调用程序(4个):[1] vxcorr.mfunction [c,lags]=vxcorr(a,b)% This function calculates the unscaled cross-correlation of 2 vectors of% the same length . The output length(c) is length(a)+length(b)-1. It is a% simplified function of xcorr function in matlabR12 using the definition: % c(m)=E[a(n+m)*conj(b(n))]=E[a(n)*conj(b(n-m))] a=a(:); % convert a to column vectorb=b(:); % convert b to column vectorM=length(a); % same as length(b)maxlag=M-1; % maximum value of laglags=[-maxlag:maxlag]';A=fft(a,2^nextpow2(2*M-1)); % fft of AB=fft(b,2^nextpow2(2*M-1)); % fft of Bc=ifft(A.*conj(B)); % corsscorrelation% Move negative lags before positive lags.c=[c(end-maxlag+1:end,1);c(1:maxlag+1,1)];% Return row vector if a,b are row vectors.[nr nc]=size(a);if(nr>nc)c=c.';lags=lags.';end% End of function file.[2] random_binary.mfunction [x,bits]=random_binary(nbits,nsamples)% This function generates a random binary waveform of length nbits% sampled at a rate of nsamples/bit.x=zeros(1,nbits*nsamples);bits=round(rand(1,nbits));for m=1:nbitsfor n=1:nsamplesindex=(m-1)*nsamples+n;x(1,index)=(-1)^bits(m);endend% End of function file.[3] qpsk_berest.m% File: psk_berest.mfunction[peideal,pesystem]=psk_berest(xx,yy,ebn0db,eb,tb,nbw) % ebn0db is an array of Eb/No values in db (specified at the receiver%input); tb is the bit duration and nbw is the noise BW% xx is the reference (ideal) input; yy is the filtered output;nx=length(xx);% For comparision purposes , set the noise BW of the ideal receiver% (integrate and dump) to be equal to rs/2.nbwideal=1/(2*tb); % noise bandwidthfor m=1:length(ebn0db)peideal(m)=0.0; pesystem(m)=0.0; %initialize% find n0 and the variance of the noise.ebn0(m)=10^(ebn0db(m)/10); % dB to linearn0=eb/ebn0(m); % noise powersigma=sqrt(n0*nbw*2); %variancesigma1=sqrt(n0*nbwideal*2);%% Multiply the input constellation/signal by a scale factor so that input% constellation and the constellations/signal at the input to receive % filter have the same ave power a=sqrt(2*eb/(2*tb)).b=sqrt(2*eb/tb)/sqrt(sum(abs(xx).^2)/nx);d1=b*abs(xx);d3=abs(yy);peideal(m)=sum(q(d1/sigma1));pesystem(m)=sum(q(d3/sigma));endpeideal=peideal/nx;pesystem=pesystem/nx; % End of function file.[4] q.m% File: q.mfunction out=q(x)out=0.5*erfc(x/sqrt(2)); % End of function file。
瑞利衰落信道的matlab仿真【开题报告】

开题报告通信工程瑞利衰落信道的matlab仿真一、课题研究意义及现状随着科学技术的不断提高,无线通信系统不断更新还代,无线通信走入各家各户,它带来的便利深入人心。
无线移动通信自诞生以来,其发展速度令人惊叹。
经历第二代和第三代移动通信的快速发展,下一代即后三代(Beyond 3G)或第四代移动通信系统(4G)的研究工作已经开始展开。
移动信道的研究与应用为移动通信开辟更为广阔的前景,认识移动信道本身的特性是解决移动通信中关键技术的前提.瑞利衰落信道是一种无线电信号传播环境的统计模型。
这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。
在无线通信中,信号通过无线信道后,由于基站周围反光物体或者其它障碍物的阻塞,经过多种路径的反射、折射,导致信号幅度随机化,使信号的干扰增大,给接受信号带来很大不便。
而第四代移动通信技术要普及,就要研发出瑞利衰落信道的解决方法,所以研究瑞利衰落信道具有很大的意义。
在MIMO中,传统的多天线被用来增加分集度从而克服信道衰落。
具有相同信息的信号通过不同的路径被发送出去,在接收机端可以获得数据符号多个独立衰落的复制品,从而获得更高的接收可靠性。
要克服瑞利衰落信道带来的不便,就要先研究它的特性。
当在实际电子通信系统中进行试验研究比较困难或更本无法实现时,仿真技术就成为必然选择。
我的研究课题就是利用Matlab仿真对瑞利衰落信道进行模拟仿真,对产生的各种符合瑞利分布的信道系数画出曲线图,并进行分析研究。
二、课题研究的主要内容和预期目标课题研究的主要内容1.先掌握matlab程序设计;2.通过资料了解瑞利衰落信道的原理;3.通过m语言编程建立瑞利衰落信道模型;4.在完善的信道模型基础上进行Matlab仿真;课题的预期目标:1.要求根据瑞利衰落信道模型,能产生符合瑞利分布的信道系数;2.再根据这些信道系数画出相应的曲线图;3.课题的验收成果包括瑞利衰落信道仿真的matlab源程序以及相应的说明书。
matlab实现频域瑞利(Rayleigh)信道仿真

plot(GaussN2);
title('频域复数高斯信号2');
xlabel('实部');
ylabel('虚部');
grid;
figure(5)
subplot(2,1,1)
plot(sqrt(SEf).*GaussN1);
title('高斯噪声与多普勒功率谱相乘1');
plot(Gauss_time2);
title('时域高斯信号2');
xlabel('N');
ylabel('V');
grid;
subplot(2,2,3)
plot(GaussN1);
title('频域复数高斯信号1');
xlabel('实部');
ylabel('虚部');
grid;
GaussN2=fft(Gauss_time2);
% 产生瑞利衰落信道
x = ifft(sqrt(SEf).*GaussN1);
y = ifft(sqrt(SEf).*GaussN2);
rayleigh_amp = sqrt(abs(x).^2+abs(y).^2);
rayleigh_db = 20*log10(rayleigh_amp); %用dB表示瑞利信号
figure(2);
plot(rayleigh_db);
% axis([0 140 -100 20]);
title('瑞利信号衰落');
matlab瑞利衰落信道仿真

瑞利分布信道MATLAB仿真1、引言由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。
根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。
在此专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。
2、仿真原理(1)瑞利分布分析环境条件:通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径(如视距传播路径),且存在大量反射波,到达接收天线的方向角随机的((0~2π)均匀分布),各反射波的幅度和相位都统计独立。
幅度与相位的分布特性:包络r服从瑞利分布,θ在0~2π内服从均匀分布。
瑞利分布的概率分布密度如图1所示:图1瑞利分布的概率分布密度(2)多径衰落信道基本模型离散多径衰落信道模型为()1()()()N t k k k yt r t x t τ==-∑ (1)其中,()k r t 复路径衰落,服从瑞利分布;k τ是多径时延。
多径衰落信道模型框图如图2所示:图2多径衰落信道模型框图(3)产生服从瑞利分布的路径衰落r(t)利用窄带高斯过程的特性,其振幅服从瑞利分布,即()r t =(2)上式中()()c s n t n t 、,分别为窄带高斯过程的同相和正交支路的基带信号。
3、仿真框架根据多径衰落信道模型(见图2),利用瑞利分布的路径衰落r(t)和多径延时参数k τ,我们可以得到多径信道的仿真框图,如图3所示;图3多径信道的仿真框图4、仿真结果(1)(1)多普勒滤波器的频响图4多普勒滤波器的频响(2)多普勒滤波器的统计特性图5多普勒滤波器的统计特性(3)信道的时域输入/输出波形图6信道的时域输入/输出波形5、仿真结果(2)(1)当终端移动速度为30km/h时,瑞利分布的包络如下图所示(2)当终端移动速度为100km/h时,瑞利分布的包络如下图所示三、仿真代码%main.mclc;LengthOfSignal=10240;%信号长度(最好大于两倍fc)fm=512;%最大多普勒频移fc=5120;%载波频率t=1:LengthOfSignal;%SignalInput=sin(t/100);SignalInput=sin(t/100)+cos(t/65);%信号输入delay=[03171109173251];power=[0-1-9-10-15-20];%dBy_in=[zeros(1,delay(6))SignalInput];%为时移补零y_out=zeros(1,LengthOfSignal);%用于信号输出for i=1:6Rayl;y_out=y_out+r.*y_in(delay(6)+1-delay(i):delay(6)+LengthOfSignal-delay (i))*10^(power(i)/20);end;figure(1);subplot(2,1,1);plot(SignalInput(delay(6)+1:LengthOfSignal));%去除时延造成的空白信号title('Signal Input');subplot(2,1,2);plot(y_out(delay(6)+1:LengthOfSignal));%去除时延造成的空白信号title('Signal Output');figure(2);subplot(2,1,1);hist(r,256);title('Amplitude Distribution Of Rayleigh Signal')subplot(2,1,2);hist(angle(r0));title('Angle Distribution Of Rayleigh Signal');figure(3);plot(Sf1);title('The Frequency Response of Doppler Filter');%Rayl.mf=1:2*fm-1;%通频带长度y=0.5./((1-((f-fm)/fm).^2).^(1/2))/pi;%多普勒功率谱(基带)Sf=zeros(1,LengthOfSignal);Sf1=y;%多普勒滤波器的频响Sf(fc-fm+1:fc+fm-1)=y;%(把基带映射到载波频率)x1=randn(1,LengthOfSignal);x2=randn(1,LengthOfSignal);nc=ifft(fft(x1+i*x2).*sqrt(Sf));%同相分量x3=randn(1,LengthOfSignal);x4=randn(1,LengthOfSignal);ns=ifft(fft(x3+i*x4).*sqrt(Sf));%正交分量r0=(real(nc)+j*real(ns));%瑞利信号r=abs(r0);%瑞利信号幅值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m a t l a b瑞利衰落信道仿真 Prepared on 24 November 2020
引言
由于多径和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,如时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着至关重要的影响,而多径信道的包络统计特性成为我们研究的焦点。
根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布和Nakagami-m 分布。
在本文中,专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。
仿真原理
1、瑞利分布简介 环境条件:
通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径,存在大量反射波;到达接收天线的方向角随机且在(0~2π)均匀分布;各反射波的幅度和相位都统计独立。
幅度、相位的分布特性:
包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。
瑞利分布的概率分布密度如图1所示:
图1 瑞利分布的概率分布密度
2、多径衰落信道基本模型
根据标准,离散多径衰落信道模型为
()
1
()()()
N t k k k y t r t x t τ==-∑ (1)
其中,()k r t 复路径衰落,服从瑞利分布; k τ是多径时延。
多径衰落信道模型框图如图2所示:
图2 多径衰落信道模型框图
3、产生服从瑞利分布的路径衰落r(t)
利用窄带高斯过程的特性,其振幅服从瑞利分布,即
()r t = (2)
上式中,()c n t 、()s n t 分别为窄带高斯过程的同相和正交支路的基带信号。
首先产生独立的复高斯噪声的样本,并经过FFT 后形成频域的样本,然后与S (f )开方后的值相乘,以获得满足多普勒频谱特性要求的信号,经IFFT 后变换成时域波形,再经过平方,将两路的信号相加并进行开方运算后,形成瑞利衰落的信号r(t)。
如下图3所示:
图3 瑞利衰落的产生示意图
其中,
()S f =
(3) 4、
产生多径延时k τ
多径/延时参数如表1所示:
表1 多径延时参数
仿真框架
根据多径衰落信道模型(见图2),利用瑞利分布的路径衰落r(t)(见图
(见表1),我们可以得到多径信道的仿真框图,如图4 3)和多径延时参数k
所示;
图4 多径信道的仿真框图
仿真结果
1、多普勒滤波器的频响
图5多普勒滤波器的频响
2、多普勒滤波器的统计特性
图6 多普勒滤波器的统计特性
3、信道的时域输入/输出波形
图7信道的时域输入/输出波形
小组分工
程序编写:吴溢升
报告撰写:谭世恒
仿真代码
%
clc;
LengthOfSignal=10240; %信号长度(最好大于两倍fc)
fm=512; %最大多普勒频移
fc=5120; %载波频率
t=1:LengthOfSignal; % SignalInput=sin(t/100);
SignalInput=sin(t/100)+cos(t/65); %信号输入
delay=[0 31 71 109 173 251];
power=[0 -1 -9 -10 -15 -20]; %dB
y_in=[zeros(1,delay(6)) SignalInput]; %为时移补零
y_out=zeros(1,LengthOfSignal); %用于信号输出
for i=1:6
Rayl;
y_out=y_out+r.*y_in(delay(6)+1-delay(i):delay(6)+LengthOfSignal-delay(i))*10^(power(i)/20);
end;
figure(1);
subplot(2,1,1);
plot(SignalInput(delay(6)+1:LengthOfSignal)); %去除时延造成的空白信号title('Signal Input');
subplot(2,1,2);
plot(y_out(delay(6)+1:LengthOfSignal)); %去除时延造成的空白信号
title('Signal Output');
figure(2);
subplot(2,1,1);
hist(r,256);
title('Amplitude Distribution Of Rayleigh Signal')
subplot(2,1,2);
hist(angle(r0));
title('Angle Distribution Of Rayleigh Signal');
figure(3);
plot(Sf1);
title('The Frequency Response of Doppler Filter');
%
f=1:2*fm-1; %通频带长度
y=./((1-((f-fm)/fm).^2).^(1/2))/pi; %多普勒功率谱(基带)
Sf=zeros(1,LengthOfSignal);
Sf1=y;%多普勒滤波器的频响
Sf(fc-fm+1:fc+fm-1)=y; %(把基带映射到载波频率)
x1=randn(1,LengthOfSignal);
x2=randn(1,LengthOfSignal);
nc=ifft(fft(x1+i*x2).*sqrt(Sf)); %同相分量
x3=randn(1,LengthOfSignal);
x4=randn(1,LengthOfSignal);
ns=ifft(fft(x3+i*x4).*sqrt(Sf)); %正交分量
r0=(real(nc)+j*real(ns)); %瑞利信号
r=abs(r0); %瑞利信号幅值。