2017年秋季学期新版新人教版七年级数学上学期4.2、直线、射线与线段导学案31

合集下载

2017年秋季学期新版新人教版七年级数学上学期4.2、直线、射线与线段学案22

2017年秋季学期新版新人教版七年级数学上学期4.2、直线、射线与线段学案22

4.2 直线、射线、线段学习目标:1.知识与技能(1)能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,•能用几何语言描述直线性质.(2)会用字母表示直线、射线、线段,会根据语言描述图形.2.过程与方法(1)能在现实情境中,进行抽象数学思考,提高抽象概括能力.(2)经历画图的数学活动过程,提高学生动手操作与实践能力.学习难点:根据语言描述画出图形.学习过程一、学前准备一把直尺、线绳.二、自主学习: 1.展示用线绳弹出一条直线的过程.2.思考问题:为什么这样拉出线是直的?其关键是什么?三、探究新知1、认识线段、射线、直线自己画一条直线、射线、线段。

直线()射线()线段()2、线段、射线和直线三者之间的联系和区别。

3、(1)经过一个已知点定画直线,可以画多少条直线?请画图说明。

答: O ·(3)经过两个已知点画直线,可以画多少条直线?请画图试试。

A ··B猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?归纳总结:直线的基本性质:经过两点有条直线,并且只有__条直线;简述为:。

四、归纳小结五、检测与探究(一)、填空题.1.在墙上钉一根木条需_______个钉子,其根据是________.2.如下图(1)所示,点A在直线L______,点B在直线L________.或者说,直线L过____、不过_______。

3.如下图(2)所示,直线_______和直线______相交于点P;直线AB和直线EF•相交于点______;点R是直线______和直线________的交点.4.如下图(3)所示,图中共有_____条线段,它们是_____________;共有______条射线,它们是________.(二)、选择题.5.下面几种表示直线的写法中,错误的是().A.直线a B.直线Ma C.直线MN D.直线MO(三)、解答题.6.根据下列语句画出图形:(1)直线L经过A、B、C三点,点C在点A与点B之间;(2)两条直线m与n相交于点P;(3)线段a、b相交于点O,与线段c分别交于点P、Q.7.探索规律:(1)若直线L上有2个点,则射线有_____条,线段有_____条;(2)若直线L上有3个点,则射线有_____条,线段有_____条;(3)若直线L上有4个点,则射线有_____条,线段有_____条;(4)若直线L上有n个点,则射线有_____条,线段有_____条.8.变形题:往返于甲、乙两地的客车中途要停靠三个车站,有多少种不同的票价?要准备多少种不同的车票?。

2017年秋季学期新版新人教版七年级数学上学期4.2、直线、射线与线段导学案19

2017年秋季学期新版新人教版七年级数学上学期4.2、直线、射线与线段导学案19

4.2.1 直线、射线、线段【课程目标】了解直线、射线、线段的特征及其联系,掌握“两点确定一条直线”的基本事实。

【学习目标】1. 了解直线、射线、线段的特征及表示方法。

2. 掌握直线的性质。

3. 了解直线、射线、线段的相同点和不同点。

一、知识链接1、几何图形是由、、、组成的。

是构成图形的基本元素。

2、点动成,线动成,面动成。

3.填写下列表格:能否度量长度二、自主学习(阅读教材P125到P126完成下列问题:)1、直线的性质(1)经过一点可以画几条直线?经过两点可以画几条直线?试一试。

你的结论是。

(2)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看。

答:猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?直线的基本性质:经过两点有条直线,并且条直线;简述为:想一想:在挂窗帘时,只要在两边钉两颗钉子扯上线即可,这是因为2、直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示。

l直线l 图1直线AB或直线BA图23、点与直线的位置关系:点和直线的位置关系有几种?用图示怎样表示?4、相交:当两条不同的直线有一个公共点时,我们称这两条直线______,这个公共点叫做它们的________。

如图所示,可以说:直线a、b相交于点O,此时直线a、b只有一个公共点。

两条直线相交有没有可能出现两个、三个或更多的交点呢?abO说说你感觉最困难的地方:组长检查等级:组长签名:三、合作探究1、射线的表示:①用一个表示;②用两个表示。

画图举例说明(思考:如图2,射线OA与射线AB表示同一射线吗)2、线段的表示:①用一个表示;②用两个表示。

画图举例说明3、线段的延长线:画出线段AB的延长线和线段BA的延长线四、交流展示已知三个点A、B、C不在同一直线上,如图:(1)连接AB、BC、AC(2)延长线段AB、CB、A C(3)将射线CB补成直线BC(4)图中共有条直线,以A、B、C中任一点为端点的射线共有条,以A、B、C三点任意两点为端点的线段共有条。

秋人教版数学七年级上册4.2《直线射线线段》》word导学案3

秋人教版数学七年级上册4.2《直线射线线段》》word导学案3
1.小狗、小猫看到前面有食物时,都选择直着跑?这是为什么?难道它们也懂数学?
2.假如 你是工程师,要在A,B两个城市之间修一条公路,为了节省原料,避免不必要的开支,你将如何设计这条公路?想解决这些问题吗?请进入本课的学习吧!
2.出示任务,自主学习:
阅读教材128、129页的有关内容,回答下列问题:
“条条道路通北京”,现在高速公路四通八达,到北京时间缩短了,你知道关键是什么吗?如何确定太原到北京的距离呢?
四、学习小结:
1、线段的性质
两点之间,线段最短
2、连接两点间的线段的长度,叫做这两点的距离.
注意:两点的距离不是线段,而是线段的长度
五、达标检测:
1、把弯曲的河道改直后,缩短了河道的长度,这是因为 ;
2、已知,如图,AB=16㎝,C是BC的中点,且AC=10㎝,D是AC的中点,E是BC的中点,求线段DE的长。
3、情感、态度、价值观:
培养学生合作交流的意识和探索精神,感受数学的严谨性以用数学结论的确定性.
学习重点:
两点确定一条直线的性质;
线段的性质。
学习难点:
理解及应用及不同几何语言的相互转化。
导学方法:
课时:1课时
导学过程
一、课前预习:
阅读教材,回答下列问题
《导学案》教材导读1,2,3
二、课堂导学:
1.情境导入:
公园里设计了曲折迂回的桥,这样做对游人观赏湖 面风光有什么影响 ?与修直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理。
3.《导学案》教材导读》难点探究
2.在一几何体相邻两表面上各有一点,能否确定这两点表面间的最短距离?
三、展示反馈
请学生回答,并在展台展示,师生讨论交流

2017年秋季学期新版新人教版七年级数学上学期4.2、直线、射线与线段导学案47

2017年秋季学期新版新人教版七年级数学上学期4.2、直线、射线与线段导学案47

4.2 直线、射线、线段学习目标:1.理解并掌握直线的性质,能用几何语言描述直线的性质.2.能很好的辨认直线、射线、线段,会用字母表示直线、射线、线段,会根据语言描述画出相应的图形.学习重点:认识直线、射线、线段的联系和区别,会根据语言描述画出相应的图形.学习难点:能够把几何图形与语句表示、符号书写很好的联系起来.【学前准备】【导入】【自主学习,合作交流】看课本128页的“探究”并完成下列问题.1.完成探究中提出的问题2.过一点能画出多少条直线?过两点能画多少条直线?过同一平面上的三点呢?3.直线的性质公理:直线的性质: 简称:生活中我们常常用到两点确定一条直线,你能举几个例子吗?阅读课本128页-129页的内容,填空:二、直线、射线、线段的表示方法1.直线的表示方法:①②2.线段的表示方法:①②3.射线的表示方法:①②三、点和直线的位置关系:如上图中,点P1、P2、P3和直线a有着怎样的位置关系呢?归纳:点和直线的位置关系:点在直线 ,也可以说成_______________________;点在直线____,也可以说成________________________.四、直线和直线的位置关系称这两条直线相交,这个公共点叫做______. 【精讲点拔】1、直线、射线、线段的联系与区别:2、根据语言描述画出相应的图形(1)直线EF经过点C;(2) 点A在直线l外(3)经过点O的三条线段a、b、c;(4)线段AB、CD相交于点B(5)反向延长射线AB、延长线段AB.3.图中有条直线,有条射线,有条线段.【小结】(谈谈本节课你有什么收获?还有什么困惑?)【当堂测试】1.用成语,打一线的名称。

有始有终()无始无终()有始无终()2.手电筒发出的光线可以看作是一条。

3.下列图形中有条直线,有条射线,有条线段.4.根据语言描述画出相应的图形(1)画直线AB经过O点且点O在直线CD外,直线AB和直线CD相交于点A..O【课后作业】必做题1.下列说法正确的是()A、延长射线ABB、作直线CD的延长线C、直线、射线、线段上都有无数个点D、射线AB与射线BA是同一条射线2.如图,已知三点A、B、C,(1)画直线AB(2)画射线AC(3)连接BC.A B..C3.下图中,直线l、射线OA、线段m可以相交的是()llm m②④ml m⑤⑥A 、①②③ B、③⑤⑥ C 、③④⑤ D、②⑤⑥4.一条直线可把平面分成部分,两条直线最多可把平面分成部分,三条直线最多可把平面分成部分。

最新人教版初中七年级数学上册《直线、射线、线段》导学案

最新人教版初中七年级数学上册《直线、射线、线段》导学案

4.2 直线、射线、线段第1课时直线、射线、线段一、新课导入1.导入课题:我们在小学就已经学过线段、射线和直线,你能形象地说出它们的意义吗?你还能说说它们的联系与区别吗?这节课我们就开始进一步对它们的意义、表示法及联系进行研究.(板书课题)2.三维目标:(1)知识与技能①进一步认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.②结合实例,了解两点确定一条直线的性质,并能初步应用.③会画一条线段等于已知线段.(2)过程与方法能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.(3)情感态度初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.3.学习重、难点:重点:知道并领会直线的性质,直线、射线、线段的表示方法.难点:直线、射线、线段的表示方法及符号语言、文字语言、图形语言之间的转换.二、分层学习1.自学指导:(1)自学内容:教材第125页至倒数第4行止.(2)自学时间:8分钟.(3)自学要求:认真看课本,并结合下面的提纲积极思考、动手操作.(4)自学参考提纲:①探究并回答下面的问题:a.如图,经过点O画直线,能画几条?经过两点A,B呢?动手试一试.·BO··A经过点O能画出无数条直线,经过两点A、B只能画一条直线.b.经过两点画直线有什么规律?怎样用简洁的语言概括呢?经过两点有一条直线,并且只有一条直线.两点确定一条直线.c.怎样理解“确定”一词的含义?d.想一想,生产生活中还有哪些应用“两点确定一条直线”原理的例子,与同学交流一下.做家具时弹墨线.②a.为了便于说明和研究,几何图形一般都要用字母来表示,通过以往的学习,我们知道“点”用大写字母表示,那么,“直线”又该如何表示?b.用不同的方法表示下图中的直线:直线GH(HG),直线m.c.判断下列语句是否正确,并把错误的语句改正过来:Ⅰ.一条直线可以表示为“直线A”.Ⅱ.一条直线可以表示为“直线ab”.Ⅲ.一条直线既可以记为“直线AB”,又可以记为“直线BA”,还可以记为“直线m”.Ⅰ.×;直线a;Ⅱ. ×;直线AB;Ⅲ.√.③a.观察右图,然后选择恰当的词语填空:Ⅰ.点O在直线l上(填“上”或“外”);直线l经过(填“经过”或“不经过”)点O.Ⅱ.点P在直线l外(填“上”或“外”);直线l不经过(填“经过”或“不经过”)点P.b.由a总结点与直线的位置关系,与同学交流一下.c.根据下列语句画出图形:Ⅰ.直线EF经过点C Ⅱ.点A在直线l外Ⅰ.Ⅱ.④a.如图,请描述直线a和直线b的位置关系.直线a和直线b相交于点O.b.根据下列语句画出图形:Ⅰ.直线AB与直线CD相交于点P.Ⅱ.三条直线m、n、l相交于点E.Ⅰ.Ⅱ.2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂巡视,了解学生的自学进度和对相关知识的理解掌握情况,收集学生自学中存在的问题.②差异指导:教师对学生在自学过程中存在的问题进行点拨.(2)生助生:各小组学生相互交流学习成果帮助解决存在的疑点问题.4.强化:(1)直线的性质及其表示方法;点和直线的位置关系;相交线的意义.(2)练习:用适当的语句描述图中点与直线的关系.解:①点B在直线l上,点P、A在直线外不同的两侧.②点A在直线b、c交点上,点B在直线a、b交点上,点C在直线a、c交点上.1.自学指导:(1)自学内容:教材第125页最后一行至第126页练习之前的内容.(2)自学时间:3分钟.(3)自学要求:认真看书,弄清直线、射线、线段之间的关系;类比直线的表示方法,学会射线、线段的表示方法.(4)自学参考提纲:①射线、线段都是直线的一部分,类比直线的表示方法,想一想应怎样表示射线、线段?②判断下列说法是否正确:a.线段AB与射线AB都是直线AB的一部分.(√)b.直线AB与直线BA是同一条直线.(√)c.射线AB与射线BA是同一条射线.(×)d.端点重合的两条射线一定是同一条射线.(×)e.把线段向一个方向无限延伸可得到射线,把线段向两个方向无限延伸可得到直线.(√)③按下列语句画出图形:a.点A在线段MN上b.射线AB不经过点Pc.经过点O的三条线段a、b、cd.线段AB、CD相交于点B2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂巡视,了解学生自学进度和自学中存在的问题.②差异指导:根据学情,有针对性地进行分类点拨和指导.(2)生助生:各小组学生相互交流学习帮助,纠错.4.强化:(1)直线、射线、线段的关系:射线、线段都是直线的一部分;把线段向一个方向无限延伸可得到射线,把线段向两个方向无限延伸可得到直线.(2)射线、线段的表示方法.三、评价1.学生的自我评价:各小组学生代表交流自己在本节课学习中的态度,学习方法和成果,并自查学习中存在的不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中的态度、情感、学法和成效进行总结.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时主要介绍直线、射线、线段的概念、表示方法以及它们的区别与联系,是典型的概念教学课.教学中,教师应给学生充分探寻直线的基本知识,直线、射线、线段的表示方法的素材和动手动脑、合作交流的时间与空间,鼓励学生在活动观察时感受概念的形成过程,获得数学体验.提醒学生结合生活经验、留心周围事物,借助实物来认识图形.一、基础巩固1.(10分)经过两点有一条直线,并且只有一条直线.2.(10分)点与直线的位置关系有两种,分别是直线上和直线外.3.(10分)在锯木料时,一般先在木板上画出两点,然后过两点弹出一条墨线,其中用到的数学原理是两点确定一条直线.4.(10分)如右图所示,直线AB和直线CD相交于点P;直线AB和直线EF相交于点Q;点R是直线CD和直线EF的交点.5.(10分)下列语句准确规范的是(D)A.直线a,b相交于一点mB.延长直线ABC.延长射线AD到点B(A是端点)D.直线AB、CD相交于点M6.(10分)如图,A、B、C三点在一条直线上.(1)图中有几条直线,怎样表示它们?(2)图中有几条线段,怎样表示它们?(3)射线AB与射线AC是同一条射线吗?(4)图中共有几条射线,写出以点B为端点的射线.解:(1)1条,直线AB,直线BA,直线AC,直线CA,直线BC,直线CB.(2)3条,线段AB(BA),线段AC(CA),线段BC(CB).(3)是.(4)6条,射线BC,射线BA.二、综合应用7.(10分)读下列语句并分别画出图形.(1)直线l经过A、B、C三点,并且点C在A与B之间.(2)两条直线m与n相交于点P.(3)P是直线a外一点,过点P有一条直线b与直线a相交于点Q.解:(1);(2) ;(3)8.(20分)如图,平面上有四个点A、B、C、D,根据下列语句画图. (1)画直线AB、CD相交于点E;(2)连接线段AC、BD相交于点F;(3)连接线段AD,并将其反向延长;(4)作射线BC.解:如图.三、拓展延伸9.(10分)在同一平面内有三个点A、B、C,过其中任意两个点画直线,可以画出的直线条数是多少?若过四个点A、B、C、D呢?解:当A、B、C在同一直线上时,过其中任意两个点共可以作一条直线;当A、B、C不在同一直线上时,过其中任意两个点共可以作三条直线;当A、B、C、D在同一直线上时,过其中任意两个点共可以作一条直线;当A、B、C、D中有三个点在同一直线上时,过其中任意两个点共可以作四条直线;当A、B、C、D中均不在同一直线上时,过其中任意两个点共可以作六条直线.作者留言:非常感谢!您浏览到此文档。

2017年秋季学期新版新人教版七年级数学上学期4.2、直线、射线与线段导学案20

2017年秋季学期新版新人教版七年级数学上学期4.2、直线、射线与线段导学案20

D
语句画出相应的图形。
强 调 同 一条 射 线 应满足的条件: 端
练习:书 129 页练习, 书 132 页 4 题
点相同; 眼神方向 相同。
知识梳理: 1、基本概念:直线、射线、线段的定义、 精
抽测报告
1、组内互考
表示方法、特点及区别和联系。 (见学案) 2、纠错、强调、补充 2、举例说明直线公理在生活中的应用? 3、 怎样由一条线段得到一条射线或一条直 线? 3、精讲错点 2、组内互助 强 调 延 伸与 延 长 条直线; 条 的区别。
直线、射线、线段( 1)
1、使学生进一步认识直线、射线、线段,知道它们之间的联系和区别。结合实例,了解两点确 定 一条直线的性质,并能初步应用。 2、帮助学生学会使用字母正确表示直线、射线、线段。 导学目标 3、让学生初步体会根据几何语句画出相应的图形,会用 语句描述简单的图形,在图形的基础上发 展数学语 言。 4、引导学生识记直线公理的内容,能初步应用直线公理解释生活中的现象,研究几何图形的意义。 1、直线、射线、线段的基本概念、表示方法以及它们之间的区别与联系。 学习重点 2、根据几何语句画出相应的图形。 3、会运用直线公理解释生活中的现象。 学习难点 使学生逐步懂得几何语言的意义,并能建立几何语句与图形之间的联系。 教 教学 教学任务 环节 复 习 在小学里,关于直线、射线、线段学习了 创设情境,引入新课 哪些知识? 问题 1: 直线可以向两方无限延伸, 直线上有 个 1、抽测末位报告 2、精讲直线的表示方 法, 强调表示字母无顺 序性, 师生共同总结直 线的特点。 3、布置任 务。 4、组间巡视,指导、 解疑、释难 5、强调表示射线时端 点字母写在前, 表示线 段时端点字母无顺 序 ? 性。 6、关注学生使用字母 6、举出实例, 在 用 字 母表 示 直 并概括直线公 线、 射线、 线段时, 3、组内互助 4、组间交流 5、选派代表报 告 学 生 容 易忽 略 射 线 的 表 示字 母 有 顺序性。 1、末位报告 2、回答老师提 出的问题 回答问题 做好知识准备 学生可能对直 线 的特点总结不全, 表示方法强调不 到位, 及时补充和 强 调。 教师活动 学生活动 及对策 为 本 节 课的 学 习 学 过 程 预见性问题

新人教版七年级上册4.2直线、射线、线段(第2课时)导学案

新人教版七年级上册4.2直线、射线、线段(第2课时)导学案

新人教版七年级上册 4.2 直线、射线、线段(第 2 课时)导教案( 1)【学习目标】会比较线段的长短,理解线段的和、差以及线段中点的意义;【自主学习】知识点一:画一条线段等于已知线段1. 画一条线段等于已知线段:已知线段a,画线段 AB,使 AB=a. ( 想想,你有几种画法)( 在数学中,我们常限制用无刻度的直尺和圆规作图,这就是尺规作图)a知识点二:线段大小的比较2.比较两条线段的长短:方法一(胸怀法):用刻度尺分A BC方法二(叠合法):别丈量出线段AB、 CD的长度;操作过程:量得 AB=,CD=;(填测得的数据)因此 AB CD(填“ >”“ <”或“ =”)DA B C(A)B D点 A 与 C 重合,点 B 落在 C、 D 之间,说明线段AB线段CD,记作思虑:什么状况下线段AB 大于线段 CD?什么状况下线段AB等于线段 CD?请绘图说明。

3. 已知线段a、b,(1)画一条线段,使它等于a+b(2)画一条线段,使它等于a-ba b知识点三:线段的平分点问题 1:线段的中点A M B如右图,( 1)像这类点 M把线段 AB分红相等的两条线段AM与 MB,我们就说点M是线段 AB的 _______(也可叫做二平分点)( 2)依据( 1)你可得 AM=;AM= 1;BM=1; AB=2; AB=2。

22(中点的几何表示)2. 如图,怎样利用线段的和差表示线段AC。

A B C D例 1,如图,线段 AB=8cm,C 是 AB上一点,且 AC=3cm ,又已知 M是 CA的中点, N是 BC的中点,求M、 N两点的距离 .A M C N B问题 2:线段的平分点如图,若M、 N把线段AB分红相等的三段,你以为M、N 是线段AB的平分点?那么你可得AAM=MN=M1N;AB=3B=3=3;3( 3)思虑:你知道线段的四平分点、五平分点,,n 平分点的含义吗?请绘图说明。

【稳固新知】1. 如图:已知线段a、 b,画一条线段,使它等于2a-b.a b2、已知线段MN=7,点 P 在直线 MN上,且 MP=3,则 NP=。

(新版人教版)七年级上册数学:4.2《直线、射线、线段》导学案

(新版人教版)七年级上册数学:4.2《直线、射线、线段》导学案

课题 4.2直线、射线、线段(1)【学习目标】 : 1. 能在现真相境中,经历绘图的数学活动过程,理解并掌握直线的性质,能用几何语言描绘直线性质;2.会用字母表示直线、射线、线段,会依据语言描绘画出图形;【重点难点】:理解并掌握直线性质,会用字母表示图形和依据语言描绘画出图形;【导学指导】一、知识链接1.在小学已经学过了直线、射线、线段.请你画出一条直线、一条射线、一条线段?直线射线线段2.填写以下表格:端点个数延长方向可否胸怀线段射线直线二、自主研究1、直线的性质(1)假如你想将一根细木条固定在墙上,起码需要几个钉子?操作一下,试一试看。

答:(2)经过一个已知点的直线,能够画多少条直线?请绘图说明。

答:O ·(3) 经过两个已知点画直线,能够画多少条直线?请绘图试一试。

··答:A B猜想:假如将细木条抽象成直线,将钉子抽象为点,你能够获得什么结论?直线的基天性质:经过两点有条直线,而且 条直线;简述为:举例说明直线的性质在平时生活中的应用:(1) 在挂窗帘时,只需在两边钉两颗钉子扯上线即可,这是由于(2) 建筑工人在砌墙时拉参照线 , 木匠师傅锯木板时 , 用墨盒弹墨线 , 都是依据(3) 你还可以从生活中举出应用直线的基天性质的例子吗?试一试看:2、直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示。

a A B 直线 a· · 直线 AB平面上一个点与一条直线的地点有什么关系?①点在直线上;②点在直线外。

A B ·a·点 B 在直线外点A 在直线Ob当两条直线有一个共公点时,我们就称这两条直线 订交,这个公共点叫做它们的交点。

3、射线和线段的表示方法:如图。

明显,射线和线段都是直线的一部分。

A·a B·m·O A ①②图①中的线段记作线段AB或线段 a;图②中的射线记作射线OA或射线 m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线、射线、线段
【学习目标】
1.掌握比较线段长短的方法
2.掌握线段中点的形与数量的关系
3.掌握线段的性质及理解两点的距离的概念
【学习重难点】
重点:1.线段中点的意义及表示 2.线段的性质及线段长度的比较
难点:利用线段的和差倍分求线段的长度
【自主学习】
知识点1:线段长短的比较方法
方法1 方法2 。

知识点2:线段的和、差、倍、分
例1.如图,如何利用线段的和差表示线段AC 。

解:AC=AB+BC 或AC=AD-CD
思考:借助上图,利用线段的和差关系表示线段BD ;AC-AB 表示哪条线段?AC+CD 表示哪条线段?
知识链接:如图,
点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点。

结合图形,写出中点的三种表示方法
(1)
(2)
(3) 例2.如图,已知点C 在线段AB 上, 线段AC=6cm 、BC=4cm,点M 、N 分别是AC 、BC 的中点。

求线段MN 的长度。

知识延伸:类似地,线段的三等分点、四等分点如何表示?画出图形并写出它们的表示方法。

A B C D M A B M N 解:∵M 是AC 的中点
∴MC=12 =12× = ∵N 是BC 的中点
∴NC=12 =12× = ∵MN= + ∴MN=
知识点3:作一条线段等于已知线段(用直尺和圆规作为画图工具)
例3.如图,已知线段a 和b,画一条线段,使它等于2a-b.
解:作法:
1.用直尺画一条射线OA
2.以O 为圆心,在射线OA 上截取OB=a,
再以B 为圆心,在射线BA 上截取BC=a
3.在线段OC 上截取CD= b
则线段 就是所求作的线段,且 =2a-b.
知识点4:线段的基本事实
1.线段的基本事实是:
2. 叫做两点的距离
提示:距离是线段的长度,而不是线段本身。

距离是数量,线段是图形。

思考:
1.如果把原来弯曲的河道改直,那么河道长度的变化是 ,
数学原理是
2.如图所示,直线l 是一条平直的公路,A 、B 是某公司的两个仓库,位于公路两旁,请在公路上找一点建造货物中转站C ,使A 、B 到C 的距离和最小,请找出C 的位置并说明理由。

【小组合作】交流自主学习中的问题
【班内展示】学生展示学习成果
a b
A ·
B · l
【质疑探究】小组合作后仍无法解决的问题可以提出来,班内探究。

【自悟自得】
1.本节课我学习了哪些知识和方法?
2.本节课我学习的最好的是哪些内容?
【达标测评】(满分60分)
一.选择题(每小题3分,共6分)
1.下列说法中正确的是( )
A.若AP=12
AB ,则P 是AB 的中点 B.若AB=2PB ,则P 是AB 的中点
C.若AP=PB ,则P 是AB 的中点
D.若AP=BP=12
AB ,则P 是AB 的中点 2.如下图所示,如果延长线段AB 到C ,使BC=
14AB ,D 为AC 的中点,DC=2.5cm,则线段AB 的长度是( )
A.5cm
B.3 cm
C.13 cm
D.4 cm
二.填空题(每小题3分,共6分)
1.如下图,已知A 、B 、C 、D 四点在同一条直线上,M 是AB 的中点,N 是CD 的中点,若MN=a,BC=b,则线段AD= .(用含a,b 的式子表示)
2.如图,已知A 、B 、C 三点在同一条直线上,
则(1)AB+BC=
(2)AC-BC=
(3)AC-AB=
三.解答题(第1题12分,其余各题6分,共48分)
1.已知线段
AB=5cm,
A B C D M B N
C A B C
(1)在线段AB上画线段BC=3 cm,并求线段AC的长
(2)在直线AB上画线段BC=3 cm,并求线段AC的长
2.在一条直线上顺次取A、B、C三点,已知AB=5cm,点O是线段AC的中点,且OB=1.5cm,求线段AC的长度?
3.如图,在平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定水池M点的位置,使它与四个村庄的距离之和最小。

·D

·C
B·。

相关文档
最新文档