最新医学统计学公式总结

合集下载

中国药典统计学计算公式表

中国药典统计学计算公式表

中国药典统计学计算公式表统计学在药学领域中扮演着重要的角色,它可以帮助我们分析和解释药物的效果、副作用以及药物的质量控制等方面的问题。

中国药典作为我国药物质量标准的权威性文件,其中包含了许多统计学计算公式,用于评估药物的质量和效果。

本文将介绍一些常用的中国药典统计学计算公式。

1. 平均值(Mean):平均值是一组数据的总和除以数据的个数。

在药学中,平均值常用于评估药物的效果。

计算公式如下:平均值 = 总和 / 数据个数2. 标准差(Standard Deviation):标准差是一组数据与其平均值之间的差异的度量。

标准差越大,数据的离散程度越大。

计算公式如下:标准差= √(∑(数据 - 平均值)² / 数据个数)3. 相对标准差(Relative Standard Deviation):相对标准差是标准差与平均值的比值,用于评估数据的变异程度。

计算公式如下:相对标准差 = (标准差 / 平均值) × 100%4. 置信区间(Confidence Interval):置信区间是对总体参数的估计范围。

在药学中,置信区间常用于评估药物的效果和副作用。

计算公式如下:置信区间 = 平均值 ± (标准差× t / √数据个数)5. 方差分析(Analysis of Variance,ANOVA):方差分析用于比较多个样本之间的差异是否显著。

在药学中,方差分析常用于比较不同药物的效果。

计算公式如下:F值 = 组间平方和 / 组内平方和6. 相关系数(Correlation Coefficient):相关系数用于评估两个变量之间的关系强度和方向。

在药学中,相关系数常用于评估药物的相互作用。

计算公式如下:相关系数 = 协方差 / (标准差1 ×标准差2)7. 回归分析(Regression Analysis):回归分析用于建立变量之间的数学模型。

在药学中,回归分析常用于预测药物的效果和剂量。

医学统计学公式整理简洁版

医学统计学公式整理简洁版

医学统计学公式整理简洁版1. 平均数(Mean):一组数据的平均值,通过将所有值相加然后除以数据的个数得到。

公式:X̄=ΣX/n其中,X̄表示平均数,ΣX表示所有数据的总和,n表示数据的个数。

2. 中位数(Median):一组数据的中间值,将所有数据按升序排列,如果数据个数为奇数,则中位数是中间的值;如果数据个数为偶数,则中位数是中间两个值的平均数。

3. 众数(Mode):一组数据中出现次数最多的数值。

4. 标准差(Standard Deviation):衡量数据的离散程度,计算每个数据值与平均值的差的平方和的平均值的平方根。

公式:σ=√(Σ(X-X̄)²/n)其中,σ表示标准差,Σ(X-X̄)²表示每个数据值与平均值的差的平方和,n表示数据的个数。

5. 方差(Variance):标准差的平方。

公式:σ²=Σ(X-X̄)²/n6. 相关系数(Correlation Coefficient):度量两个变量之间的线性关系的强度和方向。

相关系数的值介于-1和1之间,接近-1表示负相关,接近1表示正相关,接近0表示无线性相关。

7. t检验(t-test):用于比较两组样本均值是否有显著差异。

8. 卡方检验(Chi-square test):用于比较观察频数与期望频数之间的差异是否显著。

9. 线性回归(Linear Regression):用于预测一个变量与另一个变量之间的关系,并且可以根据这个关系进行预测。

10. 生存分析(Survival Analysis):用于分析事件发生的概率和时间关系,常用于研究患者生存率和治疗效果。

医学统计学计算公式

医学统计学计算公式

《统计学原理》主要公式第四章:统计数据的描述一、平均数: (一)算术平均数简单算术平均数:nx x x x n +++=...21加权算术平均数:∑∑=++++++=fxf x ffffx fx f x nnn (2)12211)(∑∑∙=ffx x(二)调和平均数简单调和平均数:nx xnxh∑∑==111 加权调和平均数:∑∑∑∑∙==mm x x m m x h11(三)几何平均数简单几何平均数:nnn G x x x x x π=∙∙= (21)加权几何平均数:∑=∙∙=+++f fnGxx x xxf f f f f f nn π (21)2121...(四)中位数:下限公式:d ffs X M mm l e ∙-+=-∑12上限公式:d ffs X M mm u e ∙--=+∑12(五)众数 下限公式:d X M l o ∙++=∆∆∆211上限公式:d X M u o ∙+-=∆∆∆212(六)平均差未分组资料:nx x D A ∑-=..已分组资料:∑∑-=ff x x D A ..(七)标准差 未分组资料:nx x ∑-=)(2σ已分组资料:∑∑-=ffx x )(2σ(八)离散系数(或标准差系数)%100⨯=xV σσ第五章抽样与参数估计一、区间估计(参见教材P111) 二、样本容量确定1.总体平均数的样本容量确定 (1)重置抽样条件下)(2∆=σZ n(2)不重置抽样条件下σσ22222)1(ZZN N n +-=∆2.总体比例的样本容量确定 (1)重置抽样条件下∆-=22)1(P P Z n(2)不重置抽样条件下)1()1()1(222P P N P P N n Z Z -+--=∆练习题1.某居民小区共有500户,小区管理者准备采取一项新的供水设施,想了解居民是否赞成。

采用不重置抽样方法随机抽取了50户,其中有32户赞成,18户反对。

要求:(1)在95%的置信水平下,全体住户中赞成该项供水设施户数比例的置信区间(2)如果小区管理者预计赞成的比例能达到80%,估计的极限误差(∆)为10%,问应抽取多少住户进行调查?2.某大学共有本科学生8000人,学校想要估计每个学生一个月的生活费支出金额,准备采取不重置抽样方法。

医学统计学公式总结

医学统计学公式总结

一资料的描述性统计(一)算术均数(mean )(1)简单算术平均值定义公式为(直接法):X i X 2 X 3 ........ X n(2)利用频数表计算均数(加权法):f i X i f 2X 2 f 3X 3 f k X kfl + f2 + f3 + …+ fk方差(即标准差的平方)'(X _ X ) 2 ' X 2 X )2/ns n - 1 n-1(三)变异系数CV =■! 100%X二参数估计与参考值范围(三)T 分布(四)总体均数的区间估计X-匕能爪乂 £卩£ X +切2A A计算95%或 99%勺可信区间)(五) 总体率的区间估计 p — u :./2s p = :::p u /2s p(六) 参考值范围估计 双侧1-a 参考值范围:X-U a/2S单侧1-a 参考值范围:X脣或"X U a S(可信区间计算是用标准误,参考值范围计算用标准差,百分位数法大家自己看书)三T 检验与方差分析(一)T 检验(一) 均数的标准误(二) 样本率的标准sS X :J nS p 「P (1nP )(p 为样本率)(u 为总体均数)(一般要求(1)单样本T检验检验假设:(假设样本来自均数为H 0- 严0统计量t值的计算:t _ x一%_ x一%t = h二亦,(2)配对T检验检验假设:H 0:丄1 _」2 =」=0d —» d —卜统计量t值的计算:t :S d S d Nn的差值,Sd为差值的标准差)(3)两样本T检验检验假设:H : . | - . I统计量t值的计算:t =(Xl _ X2)_ (」1 _」2)SXi _X2' (捲一XJ2亠二(x2- x2)2n〔- 2s1两样本方差齐性检验 F 才 r 的比值)S2 m - 12= n2- 1 (即为两样本方差(二)单因素方差分析(1 )完全随机设计资料的方差分析MS合计S S T =' x2- c T = N 一1u 0的正态总体)n -1=n -1 (d为两组数据SS B '、B MS BMS Wsw总二ss组间ss组内―总组间组内SS组间T 2SS B八i-cn组内SSv 二ss■- SS B=k -1 SS B B= N-k SS M'g 2这里C =(瓦X)2/N T =瓦X jj (T即为该组数据之和)j (2)随机单位组设计资料的方差分析SS 总=SS处理+SS区组+SS误差V 总=V处理+V区组+V误差来源 SSVMS F处理组间 SSB^l-Ti^C B1 = k -■ 1 SR 仁■- B1MS B1 MS E 单位组间 SS B2 十 B 2-C • B2 二n -1SS32「B2MS B 2, MS E误差 SS E SS T 「SS B 〔「SS B 2 E="■ T ~ '■- B1 - '■- B2SS E E合计SSr 八 x 2C、、T = kn-1四列联表分析卡方检验(四)多个样本率间的多重比较每一个两两比较的检验水准::-比较的次数注意:1、有1/5以上格子的理论频数小于5;2、 一个理论频数小于 1;3、 总样本例数小于 40当有以上三种情况或之一存在时,均不适宜进行卡方检验基本公式nR*n Cv= (R-1)(C-1)(不太常用,理解)(—)四格表资料的卡方检验(1 )两样本率的比较 四格表专用公式(ad-b 。

医学统计学公式整理

医学统计学公式整理

医学统计学公式整理1. 平均数(Mean):平均数是一组数据的所有观察值之和除以观察值的个数。

用数学符号表示为:μ = (x1 + x2 + ... + xn) / n。

其中,μ表示总体均值,x1,x2,...,xn表示样本数据,n表示样本容量。

2. 中位数(Median):中位数是将一组数据按照大小排序后,位于中间位置的数值。

对于有奇数个数的数据,中位数是中间的那个数;对于有偶数个数的数据,中位数是中间两个数的平均值。

3. 众数(Mode):众数是一组数据中出现次数最多的数值,可以有一个或多个。

4. 方差(Variance):方差是一组数据与其均值之差的平方的平均值,用来衡量数据的离散程度。

用数学符号表示为:σ^2 = ( (x1-μ)^2 + (x2-μ)^2 + ... + (xn-μ)^2 ) / n。

5. 标准差(Standard Deviation):标准差是方差的平方根,用来衡量数据的离散程度。

用数学符号表示为:σ = sqrt( ( (x1-μ)^2 + (x2-μ)^2 + ... + (xn-μ)^2 ) / n )。

6. 相对风险(Relative Risk):相对风险是比较两个暴露组之间罹患其中一种疾病的风险大小的指标。

计算方式为:相对风险=(发病率在暴露组中的比例)/(发病率在非暴露组中的比例)。

相对风险大于1表示暴露组的风险大于非暴露组,相对风险小于1表示暴露组的风险小于非暴露组,相对风险等于1表示两组风险相等。

7. 绝对风险差(Absolute Risk Difference):绝对风险差是比较两个暴露组之间发病率差异的指标。

计算方式为:绝对风险差=(发病率在暴露组中的比例)-(发病率在非暴露组中的比例)。

绝对风险差大于0表示暴露组的发病率高于非暴露组,绝对风险差小于0表示暴露组的发病率低于非暴露组,绝对风险差等于0表示两组发病率相等。

8. 相对危险度(Relative Risk Ratio):相对危险度是比较两个暴露组之间发病率的相对大小的指标。

(完整word版)医学统计学公式整理

(完整word版)医学统计学公式整理

集中趋势的描述算术均数: 频数表资料(X0为各组段组中值)n fX ffX x OO∑∑∑==几何均数:n nX X X G ...21= 或)log (log 1nX G ∑-=频数表资料:⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=∑∑∑--n X f f X f G log lg log log 11 中位数:(1)*21+=n XM (2) )(21*12*2++=n n X X M百分位数⎪⎭⎫⎝⎛-⋅+=L X X f n X f i L P 100其中:L 为欲求的百分位数所在组段的下限 , i 为该组段的组距 , n 为总频数 , X f 为该组段的的频数 , L f 为该组段之前的累计频数方差: 总体方差为:式(1); 样本方差为 式(2) (1)N X 22)(μσ-∑=(2)1)(22--∑=n X X S标准差:1)(2--∑=n X X S或 1/)(22-∑-∑=n nX X S频数表资料计算标准差的公式为1/)(22-∑∑∑-∑=f f fx fx S变异系数:当两组资料单位不同或均数相差较大时,对变异大小进行比较,应计算变异系数%100⨯=X SCV常用的相对数指标 (一)率 (二)相对比(三)构成比1.直接法标准化NpN p ii∑='∑=i i p NN p )('2.间接法标准化预期人数实际人数=SMR∑=ii P n rSMRSMR P P ⨯='正态分布:密度函数:)2/()(2221)(σμπσ--=X e X f分布函数: 小于X 值的概率,即该点正态曲线下左侧面积 )()(x X P x F <=特征:(1)关于x=μ对称。

(2)在x=μ处取得该概率密度函数的最大值,在σμ±=x 处有拐点,表现为钟形曲线。

(3)曲线下面积为1。

(4)μ决定曲线在横轴上的位置,σ决定曲线的形状 .(5)曲线下面积分布有一定规律标准正态分布:对任意一个服从正态分布的随机变量,作如下标准化变换σμ-=X u ,u 服从总体均数为0、总体标准差为1的正态分布。

医学统计学公式整理 简洁版

医学统计学公式整理  简洁版

集中趋势的描述算术均数: 频数表资料(X0为各组段组中值)n fXffX x OO∑∑∑==几何均数:n nX X X G ...21= 或)log (log1nX G ∑-=频数表资料:⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=∑∑∑--n X f f X f G log lg log log 11 中位数:(1)*21+=n X M (2))(21*12*2++=n n X X M百分位数⎪⎭⎫⎝⎛-⋅+=L X X f n X f i L P 100其中:L 为欲求的百分位数所在组段的下限 , i 为该组段的组距 , n 为总频数 , X f 为该组段的的频数 ,L f 为该组段之前的累计频数方差: 总体方差为:式(1); 样本方差为 式(2)(1)N X 22)(μσ-∑=(2)1)(22--∑=n X X S标准差:1)(2--∑=n X X S 或 1/)(22-∑-∑=n nX X S 频数表资料计算标准差的公式为1/)(22-∑∑∑-∑=f ffx fx S变异系数:当两组资料单位不同或均数相差较大时,对变异大小进行比较,应计算变异系数%100⨯=X SCV常用的相对数指标 (一)率 (二)相对比(三)构成比 1.直接法标准化NpN pii∑='∑=ii p NN p )('2.间接法标准化预期人数实际人数=SMR ∑=ii P n rSMRS M R P P ⨯='正态分布:密度函数:)2/()(2221)(σμπσ--=X e X f分布函数: 小于X 值的概率,即该点正态曲线下左侧面积)()(x X P x F <=特征:(1)关于x=μ对称。

(2)在x=μ处取得该概率密度函数的最大值,在σμ±=x 处有拐点,表现为钟形曲线。

(3)曲线下面积为1。

(4)μ决定曲线在横轴上的位置,σ决定曲线的形状 。

(5)曲线下面积分布有一定规律标准正态分布:对任意一个服从正态分布的随机变量,作如下标准化变换σμ-=X u ,u 服从总体均数为0、总体标准差为1的正态分布。

最新医学统计学计算公式

最新医学统计学计算公式
3、消费“多样化”已知患病率、灵敏度和特异度计算:
上述所示的上海经济发展的数据说明:人们收入水平的增加,生活水平的提高,给上海的饰品业带来前所未有的发展空间,为造就了一个消费额巨大的饰品时尚市场提供了经济基础。使大学生对DIY手工艺品的时尚性消费,新潮性消费,体验性消费成为可能。
阳性预测值=灵敏度×患病率/[灵敏度×患病率+(1-患病率)×(1-特异度)]
检验结果验后概率计算公式阳性验前概率灵敏度1验前概率1特异度验前概率灵敏度100阴性验前概率1灵敏度100验前概率特异度验前概率1灵敏度100似然比lr计算阳性似然比灵敏度1特异度阴性似然比1灵敏度特异度精品文档精品文档贝叶斯定理灵敏度特异度及概率已知患病率灵敏度和特异度计算
验后概率计算
验后概率=验前概率×似然比/(1-验前概率+验前概率×似然比)
已知灵敏度、特异度及验前概率时:
检验结果
大学生的消费是多种多样,丰富多彩的。除食品外,很大一部分开支都用于。服饰,娱乐,小品所展现的魅力,女人因饰品而妩媚动人,亮丽。据美国商务部调查资料显示女人占据消费市场最大分额,随社会越发展,物质越丰富,女性的时尚美丽消费也越来越激烈。因此也为饰品业创造了无限的商机。 据调查统计,有50% 的同学曾经购买过DIY饰品,有90% 的同学表示若在学校附近开设一家DIY手工艺制品,会去光顾。我们认为:我校区的女生就占了80%。相信开饰品店也是个不错的创业方针。验后概率计算公式
阴性预测值=特异度×(1-患病率)/[特异度×(1-患病率)+(1-灵敏度)×患病率]
阳性似然比=灵敏度/(1-特异度)
阴性似然比=(1-灵敏度)/特异度
比值(
概率=比值/(1+比值)
阳性
图1-3 大学生偏爱的手工艺品种类分布=验前概率×灵敏度/[(1-验前概率) ×(1-特异度)+验前概率×灵敏度] ×100%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 资料的描述性统计(一)算术均数(mean)(1)简单算术平均值定义公式为(直接法):(2)利用频数表计算均数(加权法):(二)方差(即标准差的平方)(三)变异系数二 参数估计与参考值范围(一)均数的标准误 (二)样本率的标准误 (p 为样本率)(三)T 分布 (u 为总体均数)(四)总体均数的区间估计 (一般要求 计算95%或99%的可信区间)(五)总体率的区间估计 (六)参考值范围估计 双侧1-a 参考值范围:s u x a 2/±单侧1-a 参考值范围:s u x a ->或s u x a +<(可信区间计算是用标准误,参考值范围计算用标准差,百分位数法大家自己看书)三 T 检验与方差分析(一)T 检验(1)单样本T 检验nxn x x x x x n ∑=++++=321∑∑=++++++++=f fxf f f f x f x f x f x f x k k k 3213322111)(22--=∑n x x s 222()/1x x ns n -=-∑∑%100⨯=xsCV ns s x =np p s p )1(-=n s x t μ-=xx s t x s t x ναναμ,2/,2/+<<-pp s u p s u p 2/2/ααπ+<<-检验假设: (假设样本来自均数为0u 的正态总体)统计量t 值的计算:(2)配对T 检验检验假设:统计量t 值的计算:(d 为两组数据的差值,Sd 为差值的标准差) (3)两样本T 检验检验假设:统计量t 值的计算:其中两样本方差齐性检验 (即为两样本方差的比值)(二)单因素方差分析SS MS F SS MS νν==B B BW W W(1)完全随机设计资料的方差分析这里 (T 即为该组数据之和)(2)随机单位组设计资料的方差分析SS 总=SS 处理+SS 区组+SS 误差 V 总=V 处理+V 区组+V 误差μμ=:H 1,/00-=-=-=n ns x s x t x νμμ0210==-μμμ:H d d t s μ-==1-=n ν210μμ=:H 21)()(2121x x sx x t ----=μμ221-+=n n ν⎪⎪⎭⎫ ⎝⎛+=-2121121n n s s C x x 2)()(112222112-+∑-∑+-=n n x x x x s C 2221s s F =111-=n ν122-=n ν组内组间总SS SS SS +=组内组间总ννν+=2()/C x N =∑ij jT x =∑精品好文档,推荐学习交流(两种方差分析的主要区别在于:从组内变异中分解出单位组变异与误差变异。

)四 列联表分析 卡方检验基本公式 其中 ν=(R-1)(C-1)(不太常用,理解)(一)四格表资料的卡方检验(1)两样本率的比较 四格表专用公式校正公式(后面为四格表专用校正公式,注意使用条件) Fisher 确切概率法大家自己掌握(2)配对四格表 (校正公式)(二)行×列表的 卡方检验基本公式 ν=(R-1)(C-1)(三)双向无序资料的关联性检验列联系数C 取值范围在0~1之间。

0表示完全独立;1表示完全相关;愈接近于0,关系愈不密切;愈接近于1,关系愈密切。

(四) 多个样本率间的多重比较每一个两两比较的检验水准:注意:1、有1/5以上格子的理论频数小于5;2、一个理论频数小于1;3、总样本例数小于40当有以上三种情况或之一存在时,均不适宜进行卡方检验表5-7 随机单位组设计资料的方差分析表来源SS ν MSF处理组间 C T SS in B -∑=211 11-=k B ν 11B B SS ν E B MS MS 1 单位组间 C B SS j k B -∑=212 12-=n B ν 22B B SS ν E B MS MS 2 合计 C x SS T -∑= TT T A 22)(-∑=χNn n T C R RC •=))()()(()(22d b c a d c b a N bc ad ++++⋅-=χTT A 22)5.0(--∑=χ))()()(()2/(22d b c a d c b a N N bc ad ++++⋅--=χ1,)(22=+-=νχc b c b 1,)1(22=+--=νχc b c b )1(22-=•∑CR n n A N χ22χχ+=n C 比较的次数αα='()()122/1'-=-=k k k k ααα五 非参数统计 秩和检验(一)配对样本比较的秩和检验当n ≤25时,按秩和检验结果查表可得当n>25时,正态近似法做u 检验绝对值相同的数较多时,用校正公式 (j t 为第j 个差值的个数)(二)两独立样本比较的秩和检验超出附表范围时,按正太近似法计算平均秩次较多时,应进行校正(三)H 、M 检验属于理解内容六 回归与相关(一)直线回归方程的求法yy l 的分解: 222)ˆ()ˆ()(Y Y Y YY Y -+-=-∑∑∑方差分析T 检验24)12)(1(5.04)1(++-+-=n n n n n T u 48)(24)12)(1(5.04)1(3∑--++-+-=j j t t n n n n n T u 12/)1(5.02/)1(211+-+-=N n n N n T u cu u c=)()(133N N t t c jj ---=∑XXXY l lX X Y Y X X b =---=∑∑)())((Xb Y a -=XX XX XY XY l b l l bl SS 22/===回XXXY l l b /=剩回剩剩回回MS MS SS SS F ==υυ21-==n 剩回,υυbS b t 0-= , 2-=n υb S =Y X S ⋅==SY.X 为回归的剩余标准差,反映了y 在扣除x 的影响后的离散程度;Sb 为样本回归系数标准误。

(二)直线回归方程的区间估计(1)总体回归系数β的可信区间 b n S t b )2(,2/-±α(3)个体Y 值的容许区间公式中Y XS ⋅为剩余标准差,为了简化计算,当X 与X 接近且n 充分大时,可用Y XS ⋅代替ˆY Y S -。

(三)相关系数的计算这里(1)相关系数的假设检验(2)总体相关系数ρ的可信区间(2) 的估计YˆμˆY XY S S ⋅=ˆˆ/2,2/2,2ˆˆ(,)n n Y YY t S Y t S αα---+YYXX XY l l l y y x x y y x x r =----=∑∑∑22)()())((nX XX X /)()(222∑∑∑-=-nYX XY Y Y X X ∑∑∑∑-=--)()(2102--=-=n r rS r t r 2-=n υˆˆ/2,2/2,2ˆˆ(,)n n Y YY Y Y t S Y t S αα-----+ˆY XY Y S S ⋅-=1)首先对r (r 不是正态分布)作如下Z 转换 2)计算Z 的(1- α)可信区间3)对计算出的Z 的上下限作如下变换,得到r 的(1- α)可信区间(3)相关系数与回归系数的相互换算(4)等级相关系数的计算d --每对观察值Xi 、Yi 所对应的秩次Ui 、Vi 之差; n --对子数。

等级相关系数的假设检验当 查rs 界值表 当按下式计算统计量服从自由度为n-2的t 分布,查t 界值表。

刻苦学习“书山有路勤为径,学海无涯苦作舟”。

中华民族自强不息的精神,在勤奋读书方面表现得格外突出。

不论是善于治国的政治家,还是胸怀韬略的军事家;不论是思维敏捷的思想家,还是智慧超群的科学家,他们之所以在事业上不同凡响,都是与他们从小的远大抱负分不开的。

俗话说:“有志者立常志,无志者常立志”,立志,贵在少年——)1()1(ln21tanh 1r r z r z -+==-或)3/,3/(2/2/-+--n z n z ααμμ11)tanh(22+-==zz e e r z r 或r =YXXY b b r =2)1(6122--=∑n n d r s 2/12--=n r r t s sr s 50≤n 50>n sr t。

相关文档
最新文档