医学统计学分析基本思路指南
医学数据统计分析中的常见问题及正确选择分析方法的思路

f医结合人才《i合人才培养i9医学数据统计分析中的常见问题及正确选择分析方法的思路何迎春林丽美覃丽何兰湖南中医药大学,长沙410208 摘要:医学数据统计描述中常见的问题是: (1)数据资料类型不清楚,进而无法选择合适的描述指标; (2)盲目运用均数和标准差对计量资料进行统计描述; (3)小样本分类资料,用相对数来进行统计描述。
统计推断中常见的错误: (1)用点值表示总体指标大小; (2)误用t检验;(3)误用x2检验。
在考虑分析目的、资料类型、实验设计类型、研究因素与水平数、数据分布特征和样本量大小等的同时,根据专业知识与资料的实际情况,结合统计学原则,灵活地选择统计分析方法。
关键词:医学数据;统计分析;常见问题;选择思路:指标大小k舱乩H件 UU^UlI 11址i拙告分布且方i列表资料郇维行×列未 医学统计学内容结构分析——恰似黄山迎客松朱继民武松王鸣瑞汪婷婷安徽中医学院中西医结合临床学院公共卫生与全科医学教研室,合肥230038 摘要:医学统计学是医学本科生的一门重要基础课,但与其他医学学科相对直观、形象不同,本学科具有概念与理论抽象、逻辑性较强、方法多且应用条件不尽相同、实践性强等特点。
本文将统计学的内容与结构形象化为黄山迎客松,从树根部、树干部、树冠部和树形等方面,分析了医学统计学的知识结构及其相互关系,旨在将统计学的内容直观化,以利于人们更好地了解医学统计学的知识体系。
关键词:医学统计学;教学内容;教学体会医学数据统计分析中的常见问题及正确选择分析方法的思路作者:何迎春, 林丽美, 覃丽, 何兰作者单位:湖南中医药大学,长沙410208引用本文格式:何迎春.林丽美.覃丽.何兰医学数据统计分析中的常见问题及正确选择分析方法的思路[会议论文] 2012。
医学统计学的基本概念和分析方法

医学统计学的基本概念和分析方法医学统计学是一门综合性学科,通过对医学数据的收集、整理、分析和解释,为医学研究和临床实践提供科学依据。
本文将介绍医学统计学的基本概念和分析方法,帮助读者更好地理解和应用医学统计学。
第一部分:基本概念1.1 医学统计学的定义医学统计学是研究统计方法在医学领域中的应用,以获取、分析和解释医学数据并从中得出结论的学科。
它包括描述性统计学、推断性统计学和相关计量学方法。
1.2 医学统计学的重要性医学统计学的应用可以帮助医生和研究人员对疾病进行全面的评估和分析,从而提供指导临床决策的依据。
通过统计分析,可以揭示患者的疾病风险、疗效评估、生存分析等重要指标。
1.3 医学统计学的数据类型医学研究数据主要包括定量数据和定性数据。
定量数据是能够进行数值计算和比较的数据,如年龄、体重等。
定性数据是描述性的数据,如性别、人种等。
第二部分:分析方法2.1 描述性统计学描述性统计学是对收集到的医学数据进行整理和总结的方法。
常用的描述性统计学方法有频率分布、均值、中位数、标准差等。
2.2 推断性统计学推断性统计学是通过对样本数据进行分析,推断总体参数,并对推断结果进行判断的方法。
常见的推断性统计学方法有假设检验、置信区间估计等。
2.3 回归分析回归分析是通过建立数学模型,研究变量之间的因果关系。
它可以用于预测和解释变量之间的关系,广泛应用于医学数据的分析。
2.4 生存分析生存分析是研究患者存活时间或事件发生时间的方法。
常用的生存分析方法有生存曲线、生存率、风险比等,可以帮助评估患者的生存状况和预后。
2.5 因果推断因果推断是通过观察数据和基于统计模型的分析,研究某一因素对结果的影响程度。
因果推断可以帮助确定治疗方案的有效性,评估干预措施的效果。
第三部分:案例分析为了更好地说明医学统计学的应用,我们以实际案例进行分析。
3.1 随机对照试验随机对照试验是评估治疗措施疗效的重要方法。
通过将患者随机分为实验组和对照组,并进行干预措施和对照措施的比较,可以得出治疗效果的结论。
医学统计学基础知识与数据分析方法

医学统计学基础知识与数据分析方法一、引言医学统计学是指将统计学应用于医学领域,通过收集、整理、分析和解释医学数据来揭示疾病的风险因素、发病机制以及治疗效果。
在现代医学中,统计学在研究设计、数据收集和分析等方面起着重要作用。
本文将介绍医学统计学的基础知识和常用的数据分析方法。
二、基础知识1. 数据类型在医学研究中常见的数据类型包括连续型变量和分类变量。
连续型变量指的是可以取各种数值的变量,如身高、体重等;而分类变量则是指只能取有限个数值的变量,如性别、血型等。
2. 描述性统计描述性统计是对数据进行总结和描述的方法,常包括均值、标准差、百分比等指标。
均值是指一组数据的平均值,用于表示该组数据的集中趋势;标准差则反映了该组数据的离散程度;百分比则可以表示某一类别在总体中所占的比例。
三、单样本假设检验单样本假设检验是判断一个总体参数是否符合某个给定的值。
在医学研究中,常用于比较新药物或治疗方法是否显著优于标准治疗方法。
通过计算得到的检验统计量与参考值进行比较,以判断是否拒绝原假设。
四、双样本假设检验双样本假设检验用于比较两个相互独立的总体参数是否有显著差异。
其中,t 检验适用于比较两组连续型变量的均值差异;而卡方检验则适用于比较两组分类变量之间的关联性。
五、回归分析回归分析是根据自变量对因变量的影响程度进行估计和预测的一种方法。
在医学研究中,常用线性回归分析来探究各种因素对某一结果指标的影响。
通过建立回归模型,可以了解各个自变量对因变量的贡献程度,并对未来趋势进行预测。
六、生存分析生存分析是应用于考察时间到达某一事件(如死亡、复发等)发生时概念对群体进行分析的方法。
生存分析中常用的方法包括卡普兰-梅耶曲线(Kaplan-Meier curve)、对数积累风险(log-rank test)等,用于评估不同因素对生存率的影响。
七、配对数据分析在某些研究中,可能存在一组相关性极高或具有特殊关联的样本数据。
此时需要进行配对数据分析,如配对t检验和McNemar检验。
医学统计学中常用的分析方法

医学统计学中常用的分析方法医学统计学是现代医学研究中必不可少的一个领域。
医学统计学是通过数据量化来描述和分析人群的疾病发病率、死亡率等重要指标。
在医疗领域中,各种慢性病、癌症等疾病的诊断和治疗,都需要依托经验数据以及一系列科学的研究手段,从而获得越来越准确的分析结果。
下面我们就来介绍医学统计学中常用的分析方法。
一、描述统计学在医治领域中,描述统计学的作用就是通过对样本的描述来深入了解总体特征。
常见的该类统计学指标有平均数、标准差以及四分位数等。
一个样本和你常遇到的人群数据不同,但也表现出自己的普遍特征。
描述统计学可以利用样本中的数据特征,了解该群体的规律和变化趋势,有助于研究者对整个群体的认识。
例如,在研究一种癌症的发病率时,描述统计学可以看到该癌症发病人群的年龄分布、性别分布等特征。
二、参数检验参数检验是将样本得到的数据运用到总体上分别进行推断的方法,用来检验研究者的假定是否成立。
参数检验的结果常表示为 t 值或 F 值等统计指标,这些指标可以在制定检测的同时告诉我们这些检测是否显著。
其中,t 值的大小表示两个样本之间的差别是否显著;F 值的大小表示方差是否显著。
基于参数检验可以根据样本数据,对推论进行延伸并推断总体信息状态。
三、协方差分析协方差分析是用来研究自变量对因变量的影响是否显著,同时控制与自变量无关的某些变量的干扰。
举个例子:人体中身高和体重间的关系是正相关的,但如果控制年龄变量的干扰之后,协方差分析可能会发现身高和体重间的关系并不如之前想象得那么紧密。
协方差分析可以对多个变量之间的关系进行分析和推断。
在医疗领域,随着研究越来越复杂,可能会引入多个干扰因素。
通过协方差分析,可以发现自变量对因变量的影响是否显著,并且还可以刻画各个因素对研究结果的影响程度。
四、生存分析生存分析主要是针对生命活动中发生的事件,例如人类、动物生存时间等等。
在医疗领域,生存分析主要用来研究生存时间和死亡原因的相关性,预测某疾病的患者数量,以及病人存活时间的评估等。
医学统计学方法与分析

03 统计分析方法
描述性统计分析
01
02
03
数据描述
通过图表、图形和数字描 述数据的分布、集中趋势 和离散程度。
数据探索
运用可视化手段,如箱线 图、直方图等,初步了解 数据的特征和规律。
数据变换
对数据进行对数、平方根 等变换,以满足后续分析 的需要。
推论性统计分析
参数估计
利用样本数据对总体参数进行估计,包括点估计和区 间估计。
05 回归分析及相关分析
回归分析基本原理
回归方程建立
通过最小二乘法等统计方 法,建立自变量与因变量 之间的线性或非线性关系 方程。
回归系数解释
回归系数表示自变量对因 变量的影响程度,可用于 预测和解释因变量的变化 。
回归模型检验
通过F检验、t检验等方法 ,检验回归模型的显著性 和自变量对因变量的影响 是否显著。
相关分析基本原理
01
相关系数计算
通过皮尔逊相关系数、斯皮尔曼 等级相关系数等方法,计算两个 变量之间的相关程度。
02
相关系数解释
03
相关分析注意事项
相关系数表示两个变量之间的线 性关系强度和方向,可用于判断 变量之间是否存在相关关系。
需要注意样本量、异常值、非线 性关系等因素对相关分析结果的 影响。
06 生存分析与时间序列分析
生存分析基本原理
生存函数与危险函数
01
描述研究对象的生存时间和死亡风险,反映研究对象的生存规
律。
生存曲线与中位生存时间
02
通过绘制生存曲线,可以直观地展示研究对象的生存情况,同
时计算中位生存时间以评估研究对象的生存水平。
生存分析模型
03
包括参数模型、非参数模型和半参数模型,用于分析影响研究
《医学统计学》学习指南

《医学统计学》课程——学习指南第一章医学统计学概论教学要求:1.能够了解“医学统计学”的概念以及统计工作的一般步骤。
2.能够解释并举例说明医学统计学中所涉及的基本概念。
3.能够识别医学资料的类型。
教学重点、难点:重点:1.统计学中的几个基本概念。
2.医学研究中常见的资料类型。
难点:1.小概率事件与小概率原理。
第二章计量资料的统计描述教学要求:1.能够了解频数分布表的编制方法及分布图的绘制,并以此描述资料的频数分布特征。
2.能够了解正态分布的概念、特征及应用,掌握标准正态分布的基本规律。
3.能够掌握各种平均数指标的计算,特点及其适用条件。
4.能够掌握各种离散趋势指标的计算,特点及其适用条件。
教学重点、难点:重点:1. 集中趋势与离散趋势指标的特点与适用范围。
2. 正态分布的基本概念和特征。
难点:1. 95%参考值范围的计算。
第三章计数资料的统计描述教学要求:1.能够识别常用相对数指标的概念和计算方法,并能举例说明。
2.能够理解应用相对数的注意事项。
3.能够了解动态数列的作用和常用指标。
4.能够了解Simpson悖论的原理和标准化率的计算方法。
教学重点、难点:重点:1.常用相对数指标的类型与计算方法。
2.应用相对数指标的注意事项。
难点:1.应用相对数指标的注意事项。
第四章统计表与统计图教学要求:1.了解统计表的基本结构和绘制的基本要求。
2.了解统计图的基本结构、绘制的基本要求。
3.能够选用正确的统计图描述数据资料。
4.能够运用统计软件绘制常用的统计图。
教学重点、难点:重点:1.错误统计表的修改。
2.常用统计图绘制及其图形选择。
难点:1.统计图的正确选用。
第五章参数估计教学要求:1.掌握样本均数(率)抽样误差基本概念及计算。
2.掌握总体均数(率)置信区间的概念和估计方法。
3.了解t分布的分布特征和应用。
4.了解标准误和标准差的区别。
教学重点、难点:重点:1. 抽样误差的概念和计算。
2. 单个总体均数置信区间和两个总体均数差的置信区间的估计方法。
本科医学统计学学习指导.doc

医学统计学复习指导第一章医学统计中的基本概念【目的要求】 1.了解:医学统计学的定义和内容 2.熟悉:统计工作的基本步骤和资料类型 3.掌握:总体与样本、参数与统计量、同质与变异、抽样误差、概率等基本概念【教学内容】 1.医学统计学的定义和内容,学习医学统计学应注意的问题 2.统计工作的基本步骤和资料类型(设计、收集资料、整理资料及分析资料) 3.统计学中的几个基本概念(总体与样本、资料的类型及概率)第二章平均水平的统计描述【目的要求】 1.了解:计量资料的频数分布表的编制方法和分布规律 2.熟悉:频数分布的两大特征和频数分布的类型 3.掌握:描述计量资料集中趋势算术均数、几何均数、中位数的计算方法和适用条件【教学内容】 1.频数分布表与频数分布图(频数分布表,连续型变量的频数分布图) 2.频数分布的两大特征和频数分布的类型 3.集中趋势的描述(算术平均数、几何平均数、中位数)第三章离散趋势的统计描述【目的要求】 1.了解:描述计量资料离散趋势的极差、四分位数间距及方差的计算方法和适用条件 2.熟悉:正态分布的概念、图形、特征和医学参考值范围的计算 3.掌握:描述计量资料离散趋势的标准差和变异系数的计算方法和适用条件;正态曲线下面积的分布规律和正态分布的应用【教学内容】 1.计量资料离散趋势的极差、四分位数间距、方差、标准差和变异系数的计算方法及适用条件 2.正态分布的概念、图形、特征 3.医学参考值范围的计算第四章抽样误差与假设检验【目的要求】 1.了解:抽样误差与标准误的概念 2.熟悉:标准差与标准误的区别和联系,可信区间与正常值范围的区别 3.掌握:标准误的意义、计算方法和应用,总体均数点估计、区间估计的概念和计算方法,假设检验的基本原理、基本步骤和注意事项【教学内容】 1.抽样误差与标准误的概念 2.标准误的意义、计算方法和应用 3.总体均数点估计、区间估计的概念和计算方法 4.假设检验的基本原理、基本步骤和注意事项第五章 t 检验【目的要求】 1.了解:t 分布的概念及 t 分布的图形和特征 2.熟悉:Ⅰ型错误和Ⅱ型错误及 t 界值表的查法 3.掌握:t 检验的计算与应用条件【教学内容】 1.t 分布的概念、图形、特征及 t 界值表的查法 2.t 检验的计算与应用条件(单个样本 t 检验,配对样本 t 检验,两个独立样本 t 检验) 3.t 检验中的注意事项 4.Ⅰ型错误和Ⅱ型错误第六章方差分析【目的要求】 1.了解:方差分析的前提条件和方差齐性检验 2.熟悉:方差分析多个样本均数的两两比较 3.掌握:方差分析的基本思想,各种设计方案(完全随机设计、随机区组设计、析因设计等)变异和自由度的分解方法【教学内容】 1.方差分析的前提条件 2.完全随机设计资料的方差分析,随机区组设计资料的方差分析,多个样本均数的两两比较,析因设计资料的方差分析,方差齐性检验第七章相对数及其应用【目的要求】 1.了解:标准化法的计算 2.熟悉:应用相对数时应注意的问题,医学中常用的相对数指标 3.掌握:常用相对数指标的意义和计算,率的抽样误差与区间估计【教学内容】 1.常用相对数(率、构成比、相对比) 2.应用相对数时应注意的问题 3.医学中常用的相对数指标 4.率的标准化 5.率的抽样误差与区间估计第八章χ2检验【目的要求】 1.了解:行×列表的χ2 分割法 2.熟悉:χ2 检验的基本思想 3.掌握:配对资料、四格表及行×列表资料的χ2检验方法【教学内容】 1.χ2 检验的基本思想 2.χ检验的方法(行×列表χ2 检验、四格表χ2检验、配对资料χ2检验)第九章非参数检验方法【目的要求】 1.了解:非参数统计的基本思想 2.熟悉:非参数检验的原理和应用条件,参数统计与非参数统计的区别 3.掌握:几种不同类型的资料的秩和检验【教学内容】 1.非参数统计的基本思想 2.非参数检验的原理和应用条件,参数统计与非参数统计的区别 3.几种不同类型的资料的秩和检验(配对资料的符号秩和检验,两样本比较的秩和检验,多个样本比较的秩和检验)第十章线性相关与回归【目的要求】 1.了解:最小二乘法原理 2.熟悉:相关分析与回归分析中应注意的问题 3.掌握:相关与回归的概念;相关系数与回归系数的意义和计算【教学内容】 1.相关与回归的概念 2.相关系数、等级相关系数的意义和计算 3.线性回归方程及其假设检验 4.相关分析与回归分析中应注意的问题 5.线性相关和回归的区别与联系第十一章多元线性回归与多元逐步回归【目的要求】 1.了解:多元线性回归的概念及其基本原理与方法 2.熟悉:应用统计软件包求解多个自变量的线性回归方程 3.掌握:多元回归分析结果的解释【教学内容】 1.多元线性回归的概念 2.多元线性回归的基本原理 3.多元线性回归方程的假设检验 4.应用统计软件建立线性回归方程 5.多元线性回归分析的注意事项第十二章统计表与统计图【目的要求】 1.了解:统计表的种类和常用的统计图 2.熟悉:各种图形的绘制方法 3.掌握:统计表的基本结构和要求,统计图形的选择、制图原则【教学内容】 1.统计表的基本结构和要求 2.统计表的种类 3.常用的统计图及制图原则复习题及答案第一章医学统计中的基本概念一、单向选择题1. 医学统计学研究的对象是A. 医学中的小概率事件B. 各种类型的数据C. 动物和人的本质D. 疾病的预防与治疗E.有变异的医学事件2. 用样本推论总体,具有代表性的样本指的是A.总体中最容易获得的部分个体 B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体 D.用配对方法抽取的部分个体E.依照随机原则抽取总体中的部分个体3. 下列观测结果属于等级资料的是A.收缩压测量值 B.脉搏数C.住院天数 D.病情程度E.四种血型4. 随机误差指的是A. 测量不准引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 选择总体不当引起的误差E. 由偶然因素引起的误差5. 收集资料不可避免的误差是A. 随机误差B. 系统误差C. 过失误差D. 记录误差E.仪器故障误差答案: E E D E A二、简答题1.常见的三类误差是什么?应采取什么措施和方法加以控制?[参考答案]常见的三类误差是:(1)系统误差:在收集资料过程中,由于仪器初始状态未调整到零、标准试剂未经校正、医生掌握疗效标准偏高或偏低等原因,可造成观察结果倾向性的偏大或偏小,这叫系统误差。
统计学思路——医学统计资料

* 变量(variable)在搜集资料时,首先要根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量。
如“身高”、“体重”、“疗效”、“性别”、“职业”等都是变量。
变量的观察结果或测量值称为变量值,变量按其值的性质可分为数值变量(numerical variable)和分类变量(categorical variable)。
数值变量的变量值是定量的,表现为数值的大小,通常是使用仪器或某种尺度测定出来的,多有度量衡单位。
如身高(cm)、体重(kg)、心律(次/分)、住院天数(日)、血压(mmHg)等。
由数值变量的测量值组成的资料称为数值变量资料(计量资料或定量资料)。
大多数的数值变量为连续型变量,如身高、体重、血压等;而有的数值变量的测定值只是正整数。
如心率、白细胞计数等,在医学统计学中把它们也视为连续型变量。
分类变量表现为互不相容的类别或属性,亦称定性变量。
分类变量又可分为无序与有序两类。
1、无序分类变量是所分类别或属性之间无程度和顺序上的差别。
如性别(男、女);血型(O、A、B、AB)等。
无序分类变量的分析应先按类别分组,然后清点各组的观察单位数,编制分类资料的频数表,所得资料为无序分类变量资料(计数资料或定性资料)。
它又有二项分类资料和多项分类资料之分。
1)二项分类资料:仅有两种类别或属性。
如性别(男、女),化验结果(阴、阳性)等。
2)多项分类资料:两种以上的类别或属性。
如血型(O、A、B、AB),职业(工人、农民、商人、干部、军人、教师…)等。
2、有序分类变量是各类别或属性之间有程度上的差别。
如尿糖化验结果按-、±、+、++、+++分类;疗效按治愈、好转、无效、恶化分组。
有序分类变量的分析应先按等级顺序分组,然后清点各组的观察单位数,编制各等级的频数表,所得资料为有序分类变量资料(等级资料)。
除以上资料外,医学研究中还有角度(如脑电图)、季节月份、时间等周而复始的资料,在医学统计中称其为圆形分布资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学统计学分析基本思路指南
医学统计学的学习一定要以理解为主。
对于初学者,不必强记一大堆的公式,也不要死钻牛角尖,非要弄明白为什么这种方法叫“t检验”、“F检验”,为什么这个残差叫做“学生化残差”等等。
这些都是历史遗留问题,感兴趣的读者可以查阅统计学史。
对于只想应用的人来讲,你只要了解在什么情况下应该用什么方法,什么指标应该用于什么情形。
尽管多数统计教材都说了数据分析应该先做假设检验,然后选定统计量,然后怎么怎么。
但实际中我们拿到一堆数据的时候,不会坐在桌上先列出零假设和备择假设,也不会满座子地计算统计量。
更实际的分析思路是:
(1)先确定研究目的,根据研究目的选择方法。
不同研究目的采用的统计方法不同,常见的研究目的主要有三类:一是差异性研究,即比较组间均数、率等的差异,可用的方法有t检验、方差分析、χ2检验、非参数检验等。
二是相关性分析,即分析两个或多个变量之间的关系,可用的方法有相关分析。
三是影响性分析,即分析某一结局发生的影响因素,可用的方法有线性回归、logistic回归、Cox回归等。
(2)明确数据您身边的论文好秘书:您的原始资料与构思,我按您的意思整理成优秀论文论著,并安排出版发表,扣1550116010 、766085044自信我会是您人生路上不可或缺的论文好秘书类型,根据数据类型进一步确定方法。
不同数据类型采用的统计方法也不同。
定量资料可用的方法有t检验、方差分析、非参数检验、线性相关、线性回归等。
分类资料可用的方法有χ2检验、对数线性模型、logistic回归等。
图1.6简要列出了不同研究目的、不同数据类型常用的统计分析方法。
(3)选定统计方法后,需要利用统计软件具体实现统计分析过程。
SAS中,不同的统计方法对应不同的命令,只要方法选定,便可通过对应的命令辅之以相应的选项实现统计结果的输出。
(4)统计结果的输出并非数据分析的完成。
一般统计软件都会输出很多结果,需要从中选择自己需要的部分,并做出统计学结论。
但统计学结论不同于专业结论,最终还需要结合实际做出合理专业结论。
下面是本人简单总结的常用方法的选择,可供读者参考。