2018精选版医学统计学案例分析
医学统计学案例分析

案例分析—四格表确切概率法【例1—5】为比较中西药治疗急性心肌梗塞的疗效,某医师将27例急性心肌梗塞患者随机分成两组,分别给予中药和西药治疗,结果见表1-4。
经检验,得连续性校正χ2=3.134,P>0。
05,差异无统计学意义,故认为中西药治疗急性心肌梗塞的疗效基本相同。
表1-4 两种药物治疗急性心肌梗塞的疗效比较药物有效无效合计有效率(%)中药12(9。
33)2(4.67)1485。
7西药 6(8.67)7(4.33)1346。
2合计1892766。
7【问题1-5】(1) 这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?【分析】(1)该资料是按中西药的治疗结果(有效、无效)分类的计数资料。
(2) 27例患者随机分配到中药组和西药组,属于完全随机设计方案。
(3)患者总例数n=27<40,该医师用χ2检验是不正确的。
当n<40或T<1时,不宜计算χ2值,需采用四格表确切概率法(exact probabilities in 2×2 table)直接计算概率案例分析-卡方检验(一)【例1—1】某医师为比较中药和西药治疗胃炎的疗效,随机抽取140例胃炎患者分成中药组和西药组,结果中药组治疗80例,有效64例,西药组治疗60例,有效35例.该医师采用成组t检验(有效=1,无效=0)进行假设检验,结果t=2。
848,P=0.005,差异有统计学意义检验(有效=1,无效=0)进行进行假设检验,结果t=2。
848,P=0.005,差异有统计学意义,故认为中西药治疗胃炎的疗效有差别,中药疗效高于西药.【问题1—1】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?(4)该资料应该用何种统计方法?【分析】(1) 该资料是按中西药疗效(有效、无效)分类的二分类资料,即计数资料。
(2) 随机抽取140例胃炎患者分成西药组和中药组,属于完全随机设计方案。
医学统计学案例

医学统计学案例话说有个制药公司研发出了一种新的降压药,他们想知道这个药到底有没有效果。
于是找来了100个高血压患者来做试验。
这100个患者呢,就像一群等待检验的小战士。
制药公司把他们随机分成了两组,每组50个人,就像是把一群小战士分成了两个小队。
一组是实验组,吃新研发的降压药;另一组是对照组,吃那种普通的降压药,就像是给一个小队发了新武器,另一个小队还用旧武器。
经过一段时间的治疗后,开始统计大家的血压情况。
结果发现,实验组的平均血压从一开始的160/100降到了130/80,而对照组呢,从160/100降到了140/90。
这时候就用到医学统计学啦。
咱们不能光看这几个数字就说新药好啊,万一是碰巧呢?所以呢,要计算这个差异是不是真的有意义。
首先计算两组血压下降值的平均数和标准差。
就好比算每个小队的平均战斗力提升数值和这个提升数值的波动范围。
通过一系列复杂的计算(这里面用到了像t检验这种神奇的统计方法),得出一个P值。
这个P值就像是一个裁判,来判断这个新药的效果是不是真的比旧药好。
如果P值小于0.05,那就好比裁判吹响了哨子说:“新药这个效果很可能是真的比旧药好呢!”要是P值大于0.05,那就说明这个新药和旧药的效果可能没什么太大差别,也许只是这次试验中的小波动造成的。
结果算出来,这个新药的P值是0.03,小于0.05。
哈哈,这就像新药在比赛中获胜了一样。
这就表明新药在降低血压方面很可能是真的比旧药更有效,制药公司就可以拿着这个数据去申请新药上市啦,给广大高血压患者带来新的希望。
再来说一个关于癌症治疗的案例。
有一家医院有两种癌症治疗方案,一种是传统的手术加化疗方案,另一种是新研究出来的靶向治疗方案。
医生们想知道对于某种特定的癌症,哪种方案更好。
他们找来了80个患者,随机地把患者分成两组,每组40人。
这就像是把80个闯关的勇士分到了两条不同的赛道。
治疗结束后,医生们开始观察患者的生存率。
经过5年的跟踪观察,发现接受传统治疗方案的患者,5年生存率是30%,而接受靶向治疗方案的患者,5年生存率是40%。
医学统计学案例分析.

• Pearson积矩相关系数,是定量描述两个变量间线性关系密切程度和相关方向的统计 指标。
• 适用于等级资料的一些统计学方法:非参数统计的秩和检验、有序变量的Logistic回 归分析、线性趋势卡方分析等。
• (2).应该使用多组有序变量资料的秩和检验。
• (3).分析:①.建立假设检验,确定检验水准
住院日、费用。等级“很好、好、一般、差”的定义见表一,病人医 疗质量各等级频数分布见下表二。
指标
表一 很好、好、一般、差的标准
很好
好
一般
疗效
治愈
显效
好转
住院日(天)
≤15
16-20
21-25
差 无效 >25
费用(元)
≤1400 1400-1800 1800-2200
>2200
• 1.本题的研究员用卡方检验对本题做了统计推断而我们知道卡方检验 用于计数或计量资料,而本题是一个等级资料。
b c 2 10
• 以上三个值对应的p值见表,请讨论是否正确?
• 分析该资料得出本案例是配对R*R列连及资料的卡方检验,由于他组内是配对 设计,而组间是多个样本配对设计,因此我们将R*R联表分割成为多个四格表 ,即分割或配对2*2列联表资料,然后进行卡方检验。对于配对2*2列联表资 料的卡方检验,其计算公式为
释疑:原作者目的是为了观察s1a在各种疾病中的表达是否 存在差异。根据资料的类型应选用一般χ2检验进行统计分 析,但是由于理论频数<5的格子数大于总格子数的1/5,因 而并不适合直接进行χ2检验,如果直接进行fisher的精确检
•
验,由于计算量太大,程序长时间运行不能得出
•
结果来。
• 因而考虑根据专业知识,对表中的数据进行合并,CSG和CAG均属于胃 炎,经fisher的精确检验,CSG、A、IM、Dys的各基因表达构成之间的 差别无显着意义,因而将各行的数据求和。同样道理GU和DU均属于溃 疡,检验后将各行的数据也加在一起,重新整理成表,见表2。
卫生统计学案例分析

息下结论。该资料先检验差值是否服从正态分布,如果差值服从正 态分布,可用配对 t检验做统计推断。 ? 5.本题差值服从正态分布,用配对 t检验。 t=(d –0)/(Sd/ √ n) n=9 d =34.5g/l Sd=21.67g/l v=8 t=4.78,查表可得, P=0.001, 治疗前后血红蛋白差别有统计学意义,治 疗后高于治疗前。
1.这是什么资料?该资料属于何种设计方案
2.拟比较三组小鼠细胞免疫功能是否有差异,可以采用哪些统计方法?用该组 方法的条件是什么?思想是什么?请写出三组小鼠细胞免疫功能比较的分析步骤, 并下结论
3.如果想知道党参组和黄芪组小鼠细胞免疫功能是否有差异,可以采用哪些统 计方法?
4.研究者对资料采用了两样本均数的t检验进行两两比较,得结论为除党参与黄 芪两组差异没有统计学意义(P>0,05),其余两组间差异有统计学意义 (P<0.05),研究者的统计处理方法是否正确?为什么?
案例四答案
1.定量资料,完全随机设计
2.完全随机设计方差,多个独立样本的。经检验服从正态分布,方差齐, F=25.49,P=0.000
3.多个样本均数的两两比较,LSD,SNK
4.不正确,方法错误,三组均数比较用t检验,增大了犯第一类错误的概率。 正确方法要用完全随机设计的方差分析,如果分析结果拒绝HO,则可以采用 SNK法进一步做比较
某中药治疗前后患者血红蛋白含量比较(g/l)
1、该资料属于什么资料类型? 2、该资料属于何种实验设计方案?
3、比较治疗前后血红蛋白含量是否有差别可采用哪 些统计方法?用这些方法的条件是什么? 4、该医生的结论是否正确?
医学统计学案例分析.28页PPT

36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
医学统计学案例分析报告

医学统计学案例分析报告【标题】:医学统计学案例分析报告【摘要】:本报告基于一项医学研究案例,通过统计学方法对相关数据进行分析和解读,旨在探讨患者的疾病发生率、治疗效果以及与其他因素的关联。
通过对数据的整理、描述统计、推断统计等分析,得出了一系列结论和建议,为医学实践和研究提供了重要的参考。
【引言】:医学统计学是一门重要的学科,通过对医学数据进行分析,可以更好地理解和解释疾病的发生与发展规律,指导临床治疗和公共卫生政策的制定。
本报告选取了一项医学研究案例,通过统计学方法对相关数据进行分析,旨在为医学领域的决策和实践提供科学依据。
【方法】:1. 数据收集:本次研究收集了XX医院2018年至2020年的患者病历数据,包括患者的基本信息、疾病诊断、治疗方案和疗效评估等。
2. 数据整理:对收集到的数据进行清洗和整理,包括缺失值处理、异常值检测和数据格式转换等。
3. 描述统计:对数据进行描述性统计分析,包括计算平均值、中位数、标准差等指标,绘制频率分布直方图、饼图等图表。
4. 推断统计:根据研究目的,选取适当的统计方法进行推断性分析,如t检验、方差分析、相关分析等。
5. 结果解释:对统计分析结果进行解释和讨论,得出结论并提出相应的建议。
【结果】:1. 患者基本信息:根据研究数据,患者的平均年龄为XX岁,男性占XX%,女性占XX%。
2. 疾病发生率:根据数据统计,该研究期间共有XX例患者被诊断为XX疾病,发生率为XX%。
3. 治疗效果评估:通过对治疗前后数据的对比分析,发现治疗方案A的治愈率为XX%,方案B的治愈率为XX%。
4. 相关因素分析:通过相关分析,发现患者的年龄与疾病发生率存在显著相关性(r=XX,p<0.05)。
5. 建议:基于分析结果,建议在治疗中重视患者的年龄因素,采取个性化的治疗方案,以提高治愈率。
【讨论】:1. 数据可靠性:本次研究收集的数据来源于XX医院,具有一定的代表性和可靠性,但也存在一定的局限性,如样本容量较小、数据缺失等。
医学统计学描述统计案例

医学统计学描述统计案例话说有这么一家医院,那可真是热闹非凡。
医院的管理者们就像是一群精明的舵手,想要把医院这艘大船稳稳地驶向高效优质服务的港湾。
这时候,医学统计学就像他们手中神奇的航海图,而描述统计就是这航海图上的一个个重要标记。
咱们先来说说住院部的事儿。
有个医生啊,他负责管理一个科室,这个科室收了好多好多病人。
他就想知道这些病人的年龄大概是个啥情况。
于是,他就开始了自己的“数据大冒险”。
他把科室里所有病人的年龄都收集起来了,这就像是把一堆五颜六色的珠子都摆在了桌子上。
然后呢,他首先计算了一下平均年龄。
这平均年龄就像是这群病人年龄的“中心领袖”一样。
算出来一看,平均年龄是45岁。
这意味着啥呢?就是说如果把这些病人的年龄都加起来,再除以病人的总数,得到的这个数就是45。
这个数字一出来,医生心里就大概有个谱了,知道自己面对的病人群体年龄大概在这个范围左右。
但是呢,光有这个平均年龄还不够。
你想啊,这科室里的病人年龄肯定是参差不齐的,有的可能是二十多岁的年轻人不小心受伤了,有的可能是六七十岁的大爷大妈身体有点毛病。
所以呢,这个医生又开始琢磨这年龄的离散程度。
这时候,标准差就闪亮登场啦。
标准差就像是一个测量这群年龄数据分散程度的小尺子。
如果标准差比较小,那就说明这些病人的年龄都比较集中在这个平均年龄45岁附近;要是标准差比较大呢,那就表示年龄的分布比较分散。
算出来这个科室病人年龄的标准差是10岁。
这就好比是告诉医生,大部分病人的年龄在45岁上下10岁这个范围内晃悠,也就是35岁到55岁之间的病人占了不少呢。
这医生还不满足,他还想知道年龄的最小值和最大值。
这就像是找这堆珠子里最小的那一颗和最大的那一颗。
他发现年龄最小的病人是18岁,那是一个刚成年就不小心摔断腿的小伙子;年龄最大的是75岁,是一位患有多种慢性病的老爷爷。
这两个数字一确定,医生就更清楚这个科室病人年龄的整个范围了。
再说说医院的药房这边。
药房的管理员想知道最近某种常用药的用量情况。
医学统计学课后案例分析答案:第4章 参数估计

第4章 参数估计 案例辨析及参考答案案例4-1 某研究者测得某地120名正常成人尿铅含量(mg ·L -1)如下:尿铅含量 0~ 4~ 8~ 12~ 16~ 20~ 24~ 28~ 32~ 36~ 合计 例数1422291815106321120试据此资料估计正常成人平均尿铅含量的置信区间及正常成人尿铅含量的参考值范围。
由表中数据得到该例的120n =,10038.S =,67300.S X =,某作者将这些数据代入公式(4-20),即采用X X Z S α+计算得到正常成人平均尿铅含量100(1)α-%置信区间为(-∞,14.068 4);采用公式X Z S α+计算得到正常成人尿铅含量100(1)α-%参考值范围为(-∞,26.030 6)。
请问这样做是否合适?为什么?应当怎么做?案例辨析 该定量资料呈偏峰分布,不适合用正态分布法计算100(1)%α-参考值范围。
正确做法 可以用百分位数法求正常成人尿铅含量100(1)α-%参考值范围的单侧上限。
例如,当α=0.05时,可直接求95P 分位数,(0,95P )就是所求的正常成人尿铅含量的95%正常值范围。
欲求正常成人尿铅含量总体均数的置信区间,当样本含量n 较大(比如说,n 大于30或50)时,样本均数就较好地接近正态分布(根据数理统计上的中心极限定理)。
本例, 因为120n =较大,不必对原始数据作对数变换就可以用X X Z S α+估计总体均数的置信区间。
案例4-2 在BiPAP 呼吸机治疗慢性阻塞性肺病的疗效研究中,某论文作者为了描述试验前的某些因素是否均衡,在教材表4-5中列出了试验前患者血气分析结果。
由于作者觉得自己数据的标准差较大,几乎和均数一样大,将标准差放在文中显得不雅观,于是他采用“均数±标准误”(X X S ±),而不是“均数±标准差”(X S ±)来对数据进行描述。
问在研究论文中以教材表4-5方式报告结果正确吗?为什么?教材表4-5 试验组和对照组治疗前血气分析结果(X X S ±)组别 例数 年龄/岁 pH p a (CO 2)/kPa p a (O 2)/kPa S a (O 2)/% 试验组1263.00±4.337.36±0.0563.00±4.339.25±0.5585.12±1.73对照组 1062.50±3.95 7.38±0.0663.00±4.33 9.16±0.62 86.45±2.25案例辨析 描述数据的基本特征不能采用X X S ±,因为X S 为反映抽样误差大小的指标,只表示样本均数的可靠性,而不能反映个体的离散程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
疗效
住院日(天) 费用(元)
治愈
≤15 ≤1400
显效
16-20 1400-1800
好转
21-25 1800-2200
无效
>25 >2200
表二 两年病人按医疗质量等级的频数分配 指标 年份 2001 2002 2001 2002 2001 2002 很好 160 170 180 200 130 110 好 380 410 250 310 270 320 一般 20 10 130 120 130 120 差 40 60 40 20 70 100
卫生统计学
——案例分析二
案例分析一 案例分析二 案例分析三 案例分析四 5 案例分析五
案 例 讨 论 一
案 例 讨 论 二
案 例 讨 论 三
案 例 讨 论 四
案 例 讨 论 五
案例分析一
某地对区县级医院2001-2002年医疗质量进行总体的评价与比较,按分 层抽样方法抽取两年内某病患者1250例,2001年和2002年两年间患者 年龄构成与病情的差别没有统计学意义,三项评价指标分别为疗效、 住院日、费用。等级“很好、好、一般、差”的定义见表一,病人医 疗质量各等级频数分布见下表二。
对于计量资料 (1)分布不明的的小样本资料。 (2)开口资料. (3)等级资料。 (4)不满足正态分布和方差齐性条件的小样本。 注意事项:对于等级资料,若选行X列表,不宜 用卡方检验比较两组效应,若做卡方检验能证明 各处理组的效应在构成比上有差异。而选秩转 换
的非参数检验,可推断等级强度差异。
案例分析二
案例分析三
• 某研究者与研究熊去氧胆酸对脂肪肝的发生有无预防作用,将十只雄 性大鼠随机分为两组,一组有正常饲料喂养,另一组用正常饲料+熊 去氧胆酸喂养,经一段时间后,测肝脏脂类总量,数据见表,问两组 大鼠肝脏脂类总量有无差别?
正常饲养组 正常饲养组+熊去氧胆 酸 8.9 8.91 8.96 8.85 8.98 8.82 8.97 8 8.95 8.89
• 小结
• 卡方检验的用途: • (1)比较两个或多个独立样本频率或独立样本频率分布。 (2)比较配对设计两样本频率分布。 (3)单样本分布的拟合优度。、 注意事项:单项有序的行X列表,不宜用卡方检验比较两组效应,若做卡 方检验能证明各处理组的效应在构成比上有差异。即此种资料采用秩 和检验。
秩和检验本题做了统计推断而我们知道卡方检验 用于计数或计量资料,而本题是一个等级资料。 • 2.单项有序的行X列表,不宜用卡方检验比较两组效应,若做卡方检验 能证明各处理组的效应在构成比上有差异。 • 因此不能上述检验方法不正确!应该用等级资料的处理方法,本题是 用两组有序分类变量资料的秩和检验步骤如下:首先对疗效进行统计 分析: • • • • • • • • 1)建立假设检验,确定检验水准 H0:两年的疗效相等 H1:两年的疗效不相等 α=0.05 2)编秩:首先将两年的疗效按等级强度由小到大编秩 3)计算统计量 由spss系统得 Z=1.489 p=0.137 p> α, 在α=0.05的 水平上不拒绝H0,尚不能认为两年的疗效有差异。
• 某研究对140名乙肝患者和HBsAg携带者的唾液中 前S1抗原分别为HBsAg、HBeAg和前S2抗原检出率 进行差别分析。
指标 + 前S1 + 31 0 55 54 53.02 P <0.005
HBsAg
HBeAg
+ + -
20 11
21 10
3 106
2 107
4.57
<0.050
前S2
5.33
对于住院日和费用的步骤如上述;由SPSS系统得住院日的数据 Z=2.775 P=0.006 P< α 在α=0.05的水平上拒绝H0,尚不能认为两年的住院日没有差 异。由SPSS系统得费用的数据 Z=2.589 P=0.010 P< α 在α=0.05的水平上 拒绝H0,尚不能认为两年的没有差异。
疗效
住院日(天)
费用(元)
用 x 2 检验分别对疗效、住院日、费用三项指标的分布做两年之间的比较,结果为 2 疗效 x 6.786 P=0.079 住院日 x 2 12.568 P=0.006 2 费用 x 9.613 P=0.020 故不能认为两年疗效不同,而两年的住院日和费用的差别均 有统计学意义,更具调查所得的平均住院日与平均费用,可以认 为平均住院日2001年比2002年长,而费用2001年低于2002年。 请讨论以上检验方法是否正确?如不正确,问题出在什么地方?
校正公式
x2
( b c 1) bc
,v 1
•
• • • • • •
而本题中前S1抗原与HBsAg比较:B=C=55,55>40不需要校正
前S1抗原与HBeAg比较:B=C=14,14<40需校正 前S1抗原与前S2抗原比较:B=C=12,12<40需校正 通过卡方检验,我们得出结论,前S1抗原与HBsAg:P>x,不 拒绝H 0,可以认为两者检出率相同;前S1抗原与HBeAg:P>x, 不拒绝H 0 ,可以认为两者检出率相同;前S1抗原与前S2抗原: P<x,拒绝 H 0 ,可以认为两者检出率有差别;
•
分析该资料得出本案例是配对R*R列连及资料的卡方检验,由于他组内是配对
设计,而组间是多个样本配对设计,因此我们将R*R联表分割成为多个四格表 ,即分割或配对2*2列联表资料,然后进行卡方检验。对于配对2*2列联表资 料的卡方检验,其计算公式为
• •
(b c) 2 x ,v 1 bc
2
<0.050
• 其中,前S1抗原与HBsAg比较:
x2 ( b c 1) bc 55 0
55 0 1 53.02
• 前S1抗原与HBeAg比较:
2 3 11 4.57 ( b c ) x2 bc 3 11
• 前S1抗原与前S2抗原比较: 2 ( b c ) 2 10 2 x 5.33 bc 2 10 • 以上三个值对应的p值见表,请讨论是否正确?