苏科版七年级上册数学第6章 平面图形的认识(一)检测卷
最新七年级数学上册苏科版《第六章平面图形的认识》测试卷一及答案(精品试卷).docx

第六章平面图形的认识测试卷(一)(满分:100分时间:60分)一、选择题(20分)1.下列各图中,画出了直线PQ、射线AB和线段MN,其中能相交的是( )2.如果∠α=40°,那么∠α的余角等于( ) A.60°B.50°C.140°D.90°3.如图,图中画出了以点O为端点的四条射线OA、OB、OC、OD,其中,方向为北偏西30°的射线是( )A.射线OA B.射线OB C.射线OC D.射线OD第3题第4题第5题4.如图,在正方体中,与棱AB平行的棱有( ) A.1条B.2条C.3条D.4条5.如图,CD⊥EF于点D,且∠EDA=∠FDB,下列说法中,错误的是( ) A.∠EDA与∠BDC互余B.∠EDA与∠FDA互补C.∠EDA与∠FDB是对顶角D.∠ADC=∠BDC6.下列说法中,正确的是 ( )A .一根拉紧的细线就是直线B .直线上的一点将直线分成两条相等的射线C .经过两点有且只有一条直线D .端点相同的两条射线就是同一条射线7.如图,C 是AB 的中点,D 是BC 的中点.下列等式中,错误的有 ( ) ①CD =AC -DB ②CD =AD -BC③CD =12AB -12AC ④CD =13AB A .1个 B .2个 C .3个 D .4个8.下列说法中,正确的是 ( ) A .互补的两个角若相等,则这两个角都是直角 B .直线是平角C .不相交的两条直线互相平行D .和为180°的两个角是邻补角9.在同一平面内,四条直线的交点个数不可能是 ( ) A .2个 B .3个 C .4个 D .5个10.如图,在正方形网格中,∠1、∠2、∠3的大小关系是 ( )A .∠1=∠2=∠3B .∠1=∠2>∠3C .∠1<∠2=∠3D .∠1>∠2>∠3 二、填空题(20分)11.两点之间的所有连线中,最短.12.2时30分时,钟面上的时针和分针的夹角度数是.13.如图,当∠1和∠2满足条件时,OA⊥OB.(填一个适当的条件)第13题第14题14.如图,∠AOD和∠BOC都是直角,如果∠DOC=38°,那么∠ADB的度数是.15.计算:28°32′+15°46′°,180°-32°47′12″=,32°5′42″×4=,37°43′27″÷3=.16.已知A、B、C三点在同一条直线上,AB=10,BC=8,则AC=.17.用一副三角尺可以画出的度数有.(请写出所有能画出的度数)三、计算题(18分)18.一个角的补角是它的余角的3倍,求这个角的度数.19.如图,AB=8cm,点C是AB上一点,AC=3.2cm,M是AB的中点,N是AC的中点,求线段MN的长.20.如图,直线AB、CD相交于点O,OD平分∠BOF,OE⊥CD,∠BOE=50°,求∠AOC、∠EOF、∠AOF的度数。
苏科版七年级上册数学第6章 平面图形的认识(一)含答案(含解析)

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、∠1=45゜24′,∠2=45.3゜,∠3=45゜18′,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对2、如图,OA⊥OC,OB⊥OD,四位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有6个.其中观点正确的有()A.甲、乙、丙B.甲、丙、丁C.乙、丙、丁D.甲、乙、丁3、12点15分,时针与分针所夹的小于平角的角为()A.90°B.67.5°C.82.5°D.60°4、已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,∠A+∠2=90°.求证:AB∥CD.证明:如图,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)______________∴∠AFC+∠2=90°(等式性质)∵∠A+∠2=90°(已知)∴∠AFC=∠A(同角或等角的余角相等)∴AB∥CD(内错角相等,两直线平行)请你仔细观察下列序号所代表的内容:①∴∠AOE=90°(垂直的定义)②∴∠AFB=90°(等量代换)③∵AF⊥CE(已知)④∵∠AFC+∠AFB+∠2=180°(平角的定义)⑤∴∠AOE=∠AFB(两直线平行,同位角相等)横线处应填写的过程,顺序正确的是()A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④5、如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BDB.CD= AB﹣BDC.AC+BD=BC+CDD.CD= AB6、如图,∠DOB=140°,OA⊥OB,则∠AOC=()A.40°B.45°C.50°D.55°7、如图,射线 AB,DC 交于点O,射线OM平分∠AOC,若∠BOD=80°,则∠COM的度数为()A.30°B.40°C.50°D.60°8、如图,直线AC和直线BD相交于点0,若∠1+∠2=90°,则∠BOC的度数是()A.100°B.115°C.135°D.145°9、如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能符合题意解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短 D.经过两点,有且仅有一条直线10、如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A.2B.3C.4D.511、下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.3个B.4个C.5个D.6个12、下列结论中,不正确的是()A.两点确定一条直线B.两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行13、下列说法:①如果∠1+ ∠2+∠3=180°,那么∠1,∠2,∠3三个角互为补角;②如果∠A+ ∠B=90°,那么∠A与∠B互为余角;③“对顶角相等”成立,反之“相等的角是对顶角”也成立;④两条直线被第三条直线所截,同位角相等;⑤两点之间,线段最短. 正确的个数是()A.2个B.3个C.4个D.5个14、在墙壁上固定一根横放的木条,则至少需要()枚钉子A.lB.2C.3D.随便多少枚15、修建高速公路时,经常将弯曲的道路改直,从而缩短路程,这样做的数学根据是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.同位角相等,两直线平行二、填空题(共10题,共计30分)16、请补充完成以下解答过程,并在括号内填写该步骤的理由.已知:如图,, , 平分,若,求的度数.解:因为,所以________ .因为________ ,所以.所以.(________)因为,所以.因为平分,所以________ ________°所以________°.17、如图所示:直线AB与CD相交于O,已知∠1=30°,OE是∠BOC的平分线,则∠2=________°,∠3=________°.18、数轴上到表示数4的点的距离为5个单位长度的点表示的数是________.19、如图,已知从甲地到乙地共有四条路可走,你应选择第________ 路,所用的数学原理为:________20、如图,射线表示西北方向,若射线表示南偏西的方向,则锐角的大小是________度.21、下午3点30分时,钟面上时针与分针所成的角等于________°.22、若∠1+∠2=180°,∠1+∠3=180°,则∠2与∠3的关系是________.23、火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票,共有________种不同的车票.24、以下说法:①两点确定一条直线;②两点之间直线最短;③若x=y,则= ;④若|a|=﹣a,则a<0;⑤若a,b互为相反数,那么a,b的商必定等于﹣1.其中正确的是________.(请填序号)25、如图,已知AE//CD,BC⊥CD于C,若∠A=28°,则∠ABC=________三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则∠A的度数为多少?28、已知A、B、C.三点在同一直线上,DE⊥AB, ∠DBE=2∠EBC,求∠DBE的度数。
苏科版七年级数学上册 第六章 平面图形的认识(一) 单元检测试题(有答案)

A.①②B.①③C.②④D.③④
4.如图,要把小河里的水引到田地 处,则作 ,垂足为点 ,沿 挖水沟,水沟最短,理由是()
A.两点之间线段最短B.两点确定一条直线
C.垂线段最短D.过一点可以作无数条直线
5.下列说法正确的是()
A.延长直线
B.线段 和线段 不是同一条线段
第六章平面图形的认识(一)单元检测试题
(满分120分;时间:120分钟)
一、选择题(本题共计10小题,每题3分,共计30分,)
1.如图,已知 于 ,直线 经过点 与 的夹角 ,则 的度数是()
A. B. C. D.
2.下列说法正确的是
A.经过一点有且只有一条直线垂直于已知直线
B.互相垂直的两条直线一定相交
三、解答题(本题共计6小题,共计60分,)
21.一副三角板如图所示摆放,以 为一边,在 外作 = ,边 交 的延长线于点 ,求 的度数.
22.某轮船上午 时在 处测得灯塔 在北偏东 的方向上,向东行驶至上午 时,该轮船在 处,测得灯塔 在北偏西 的方向上,
(1)在图中画出灯塔 的位置;
(2)量一量, 等于多少度?线段 与 有何关系?
所以选项 错误;
因为一点可以确定无数条直线,两点确定一条直线,
所以选项 正确;
因为连接两点间的线段的长度叫两点间的距离,
所以选项 错误.
故选: .
6.
【答案】
A
【解答】
解:∵ 是 的中点, 是 的中点, , ,
∴ ,
∴ .
故选: .
7.
【答案】
D
【解答】
解: ,在同一平面内,过一点有且只有一条直线垂直于已知直线,这是垂线的性质,故本选项不符合题意;
苏科版七年级数学上册第6章平面图形的认识(一)达标测试卷【含答案】

9.如果线段 AB=5cm,BC=4cm,且 A,B,C 在同一条直线上,那么 A、C 两点的距离是( )
A. 1cm
B. 9cm
D. 以上答案都不正确
10.同一平面内,三条不同直线的交点个数可能是( )个.
C. 1cm 或 9cm
A. 1 或 3
B. 0、1 或 3
C. 0、1 或
2
D. 0、1、2 或 3
A.①④
B.②③
C.①②④
D.①③④
6.下列说法①一个角的补角大于这个角②小于平角的角是钝角③同角或等角的余角相等④若 1 2 3 180 ,
则 1 、 2 、 3 互为补角.其中正确的说法有( )
A.4 个
B.3 个
C.2 个
D.1 个
7.如图,AM 为∠BAC 的平分线,下列等式错误的是( )
A.两点确定一条直线
B.两点之间,线段最短
C.垂线段最短
D.同一平面内垂直于同一条直线的两直线平行
5.下列日常现象:
①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;
③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.
其中,可以用“两点确定一条直线”来解释的现象是( )
【考点】角平分线的定义. 【答案】见试题解答内容 【分析】根据角平分线的定义求解. 【解答】解:∵∠AOC=25°,OC 平分∠AOB, ∴∠AOB=2∠AOC=50°, 故答案为 50°. 15 如图,点 A 位于点 O 的 方向上.
【考点】方向角. 【答案】见试题解答内容 【分析】根据方位角的概念直接解答即可. 【解答】解:点 A 位于点 O 的北偏西 30°方向上.
苏科版七年级上册数学第6章 平面图形的认识(一)含答案(完整版)

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图所示,∠α的度数是()A.10°B.20°C.30°D.40°2、下列说法正确的是()A.相等的两个角是对顶角B.同位角相等C.图形平移后的大小可以发生改变 D.两条直线相交所成的四个角都相等,则这两条直线互相垂直3、如图,∠AOC 和∠BOD都是直角,如果∠AOB=140◦则∠DOC的度数是( )A.30 ◦B.40 ◦C.50 ◦D. 60 ◦4、某街道分布示意图如图所示,一个居民从A处前往B处,若规定只能走从左到右或从上到下的方向,这样该居民共有可选择的不同路线条数是()A.5B.6C.7D.85、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.把弯曲的公路改直,就能缩短路程B.用两个钉子就可以把木条固定在墙上C.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线 D.利用圆规可以比较两条线段的大小关系6、下列哪种情况下,直线a与b不一定是平行线()A.a与b是不相交的两条直线B.a与b被直线c所截,且内错角互补 C.a与b都平行于直线c D.a与b被直线c所截,且同位角相等7、如果从甲船看乙船,乙船在甲船的南偏东40°方向,那么从乙船看甲船,甲船在乙船的()A.北偏东50°B.北偏西50C.北偏东40°D.北偏西40°8、下列定理中没有逆定理的是()A.内错角相等,两直线平行B.直角三角形中,两锐角互余C.等腰三角形两底角相等D.相反数的绝对值相等9、下列说法中,正确的是( )A.两条不相交的直线叫平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥cD.两条直线不相交就平行10、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.点动成线;B.两点确定一条直线;C.垂线段最短;D.两点之间,线段最短;11、如图,直线l与直线a、b相交,且a b,∠1=80°,则∠2的度数是()A.60°B.80°C.100°D.120°12、下列说法正确是()A.相等的两个角是对顶角;B.过一点有且只有一条直线与已知直线平行; C.直线外一点与直线上各点连接的所有线中,垂线最短; D.平面内,过一点有且只有一条直线与已知直线垂直13、若数轴上点A表示的数是,则与它相距2个单位的点B表示的数是()A.±5B.-7或-3C.7D.-8或314、下列说法中正确的是A.过一点有且仅有一条直线与已知直线平行B.若,则点C是线段AB的中点C.两点之间的所有连线中,线段最短D.相等的角是对顶角15、下面4个图形中,∠1与∠2是对顶角的是( )A. B. C. D.二、填空题(共10题,共计30分)16、己知在纸面上有一数轴(如图所示)一般地,数轴上表示数m和数n的两点间距离可用|m﹣n|表示,|x﹣4|+|x﹣5|的最小值是________17、如图,∠AOD=135°,∠AOC=75°,∠DOB=105°,则∠BOC=________.18、已知∠A=55°,则∠A的余角等于________度.19、如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是________.20、如图,已知平分平分,,则________°.21、探究:如图①,,试说明.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.解: ∵ .(已知)∴ .(________)同理可证,.∵ ,∴ .(________)应用:如图②,,点F在之间,与交于点M,与交于点N.若,,则的大小为________度.拓展:如图③,直线在直线之间,且,点分别在直线上,点Q是直线上的一个动点,且不在直线上,连结.若,则=________度.22、如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示138°的点在直线b上,则∠1=________°.23、已知一个角的余角为28°40′,则这个角的度数为________.24、直角三角形的一锐角为60°,则另一锐角为________25、如果一个角的补角是150°,那么这个角的余角的度数是________三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,AB、CD交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.28、如图,AB交CD于O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.29、如图,是平角,,,,分别是,的平分线,求的度数.30、下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的不符合题意指出,并给出你认为正确的解法.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、D6、B7、D8、D9、C10、B11、B12、D13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、30、。
【完整版】苏科版七年级上册数学第6章 平面图形的认识(一)含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是()A. B. C. D.2、如图,已知OC平分∠AOB,CD//OB,若OD=3cm,则CD等于()A.1.5cmB.2cmC.3cmD.4cm3、如图,图中可以只用一个大写字母表示的角有()A.1个B.2个C.3个D.4个4、下面说法错误的是()A.过一点有且只有一条直线与已知直线垂直.B.在同一个平面内,任意三条直线相交,交点的个数最多有3个C.平行于同一直线的两条直线平行.D.两条平行线被第三条直线所截,一对内错角的平分线互相平行.5、如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于()A.26°B.32°C.25°D.36°6、如图,这是健健同学的小测试卷,他应该得到的分数是()A.40B.60C.80D.1007、已知数轴上三点A、B、C分别表示有理数x、1、﹣1,那么|x﹣1|表示()A.A、B两点的距离B.A、C两点的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和8、平行四边形中,若,则的度数为()A. B. C. D.9、一个角的余角比它的补角的一半少,则这个角的度数为()A. B. C. D.10、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为()A.0.5B.2.5C.D.111、如图,点O在直线AB上,射线OC平分∠DOB,若∠DOC=35°,则∠AOD等于()A.35°B.70°C.110°D.145°12、下列说法错误的是().A.两个互余的角都是锐角;B.一个角的补角大于这个角本身;C.互为补角的两个角不可能都是锐角;D.互为补角的两个角不可能都是钝角13、点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm、PB=5cm、PC=2cm,则点P到直线l的距离()A.等于4cmB.等于2cmC.小于2cmD.不大于2cm14、如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°15、如图,已知OP平分∠AOB,∠AOB=, CP=,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A. B. C. D.二、填空题(共10题,共计30分)16、一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=________°.17、一个角的余角等于这个角的补角的,则这个角为________.18、已知∠A的补角是它的余角的3倍还多10°,则∠A=________度.19、如图是一把剪刀,若∠AOB+∠COD=60°,则∠BOD=________°.20、如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为________ .21、如图,Rt△ABC中,∠C=90°,AC=2,BC=1,以斜边为一边向右上方作正方形ABDE,连接CD,则CD的长为________.22、如图,∠PQR=138° ,SQ QR,QT PQ,则SQT=________23、如图,由泰山到青岛的往返列车,运行途中停靠的车站依次是:泰山﹣﹣济南﹣﹣淄博﹣﹣潍坊﹣﹣青岛,那么要为这次列车制作的火车票有________种,票价有________种24、如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是________.25、如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠AOE=55°,则∠BOD的度数为________.三、解答题(共5题,共计25分)26、计算:180°﹣34°54′﹣21°33′.27、如图,已知△ABC,用直尺和圆规画出一条线段a,使a=AC+BC,然后比较a与AB的长短.28、如图,在中,,,线段CD和CE分别为的角平分线和高线.求、的大小.29、推理计算:已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF,求∠BEG 和∠DEG的度数.30、如图,∠COD=45°,∠BOD= ∠COD,OC是∠AOB的平分线,求∠AOD的度数.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、A5、A6、B7、A8、B9、C10、B11、C13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。
第6章平面图形的认识(一)(提优卷)学生版

20232024学年苏科版数学七年级上册章节真题汇编检测卷(提优)第6章平面图形的认识(一)考试时间:120分钟试卷满分:100分难度系数:0.56姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•海门市期末)如图,将一副三角板的直角顶点重合放置于A处(两块三角板可以在同一平面内自由转动),则下列结论一定成立的是()A.∠BAD≠∠EAC B.∠DAC﹣∠BAE=45°C.∠DAC+∠BAE=180°D.∠DAC﹣∠BAE=90°2.(2分)(2022秋•惠山区校级期末)下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,只能画一条直线3.(2分)(2022秋•连云港期末)如图,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D在点C的右侧,图中所有线段的和等于60cm,且AB=3CD,则CD的长度是()A.6cm B.8cm C.10cm D.12cm4.(2分)(2022秋•海安市期末)将一副三角尺按不同位置摆放.下列摆放方式中α与β互补的是()A.B.C.D.5.(2分)(2022秋•常州期末)已知线段AB=15cm,C是线段AB上的一点.若在射线AB上取一点D,使得C是AD的中点,且,则线段AC的长度是()A.5cm B.3,5cm C.9cm D.5,9cm6.(2分)(2022秋•鼓楼区期末)如图,∠BOC在∠AOD的内部,且∠BOC=x°,∠AOD=y°,则图中所有角的度数之和为(注:图中所有角均指小于180°的角)()A.x+3y B.2x+2y C.3x+y D.3y﹣x7.(2分)(2022秋•姑苏区校级期末)下列说法正确的是()A.若AC=BC,则点C为线段AB中点B.把弯曲的公路改直,就能缩短路程,数学原理是“两点确定一条直线”C.已知A,B,C三点在一条直线上,若AB=2,BC=4,则AC=6D.已知C,D为线段AB上两点,若AC=BD,则AD=BC8.(2分)(2021秋•秦淮区期末)如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:①MN=HC;②MH=(AH﹣HB);③MN=(AC+HB);④HN=(HC+HB),其中正确的是()A.①②B.①②④C.②③④D.①②③④9.(2分)(2022秋•姑苏区校级期末)将一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=16°,则∠EAF的度数为()A.40°B.45°C.56°D.37°10.(2分)(2019秋•扬州期末)下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•惠山区校级期末)钟面角是指时钟的时针和分针所成的角.例如:六点钟的时候,时针与分针所成钟面角为180°;七点钟的时候,时针与分针所成钟面角为150°.那么从六点钟到七点钟这一个小时内,哪些时刻时针与分针所成钟面角为100°?请写出具体时刻:.(结果形如6点分)12.(2分)(2022秋•秦淮区期末)如图,C为线段AB上一点,点E、F分别是线段AC、CB的中点,AB=8,则线段EF的长为.13.(2分)(2017秋•滨海县期末)如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,甲同学认为是两点确定一条直线,乙同学认为是两点之间线段最短.你认为同学的说法是正确的.14.(2分)(2020秋•邗江区校级月考)3:30时钟表上的时针与分针的夹角是度.15.(2分)(2022秋•高新区期末)如图,有公共端点P的两条线段MP,NP组成一条折线M﹣P﹣N,若该折线M﹣P﹣N上一点Q把这条折线分成相等的两部分,我们把这个点Q叫做这条折线的“折中点”,已知D 是折线A﹣C﹣B的“折中点”,E为线AC的中点,CD=1,CE=3,则线段BC的长为.16.(2分)(2022秋•兴化市校级期末)若一个角的补角等于它的余角4倍,则这个角的度数是度.17.(2分)(2022秋•句容市校级期末)如图,在∠AOB内部作OC⊥OB,OD平分∠AOB,若∠AOB=130°,则∠COD=.18.(2分)(2022秋•秦淮区期末)如图,A、B是河l两侧的两个村庄,现要在河l上修建一个抽水站,使它到A、B两村庄的距离之和最小.数学老师说:连接AB,则线段AB与l的交点C即为抽水站的位置.其理由是:.19.(2分)(2021秋•鼓楼区校级期末)如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=时,AB所在直线与CD所在直线互相垂直.20.(2分)(2021秋•秦淮区期末)一副三角板AOB与COD如图1摆放,且∠A=∠C=90°,∠AOB=60°,∠COD=45°,ON平分∠COB,OM平分∠AOD.当三角板COD绕O点顺时针旋转(从图1到图2).设图1、图2中的∠NOM的度数分别为α,β,α+β=度.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2022秋•姑苏区校级期末)如图,直线AB,CD相交于点O,OM⊥AB.(1)若∠1=40°,∠2=30°,求∠NOD的度数;(2)如果ON与CD互相垂直,那么∠1=∠2吗?请说明理由.22.(6分)(2022秋•惠山区校级期末)如图,已知点C是线段AB上一点,点D是线段AB的中点,若AB =10cm,BC=3cm.(1)求线段CD的长;(2)若点E是直线AB上一点,且BE=2cm,点F是BE的中点,求线段DF的长.23.(8分)(2022秋•赣榆区校级月考)如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使PA+PC的值最小.24.(8分)(2022秋•惠山区校级期末)解答题:(1)如图,若∠AOB=120°,∠AOC=40°,OD、OE分别平分∠AOB、∠AOC,求∠DOE的度数;(2)若∠AOB,∠AOC是平面内两个角,∠AOB=m°,∠AOC=n°(n<m<180°),OD、OE分别平分∠AOB、∠AOC,求∠DOE的度数.(用含m、n的代数式表示):25.(8分)(2022秋•南通期末)定义:从∠MPN的顶点P引一条射线PQ(不与PM重合),若∠QPN+∠MPN =180°,则称射线PQ为∠MPN关于边PN的补线.(1)下列说法:①一个角关于某边的补线一定在这个角的外部;②一个角关于某边的补线一定有2条;③一个角关于某边的补线有1条或2条,其中正确的是;(填序号)(2)如图,O是直线AB上一点,射线OC,OD在AB同侧,OD是∠BOC的平分线,则OC是∠AOD关于边OD的补线吗?为什么?(3)已知射线OC为∠AOB关于边OB的补线,OP是∠BOC的平分线.若∠AOB=α,试用含α的式子表示∠AOP(直接写出结果).26.(8分)(2021秋•东台市期末)对于数轴上的点M,线段AB,给出如下定义:P为线段AB上任意一点,我们把M、P两点间距离的最小值称为点M关于线段AB的“靠近距离”,记作d1(点M,线段AB);把M、P两点间的距离的最大值称为点M关于线段AB的“远离距离”,记作d2(点M,线段AB).特别的,若点M与点P重合,则M,P两点间的距离为0.已知点A表示的数为﹣5,点B表示的数为2.如图,若点C表示的数为3,则d1(点C,线段AB)=1,d2(点C,线段AB)=8.(1)若点D表示的数为﹣7,则d1(点D,线段AB)=,d2(点D,线段AB)=;(2)若点M表示的数为m,d1(点M,线段AB)=3,则m的值为;若点N表示的数为n,d2(点N,线段AB)=12,则n的值为.(3)若点E表示的数为x,点F表示的数为x+2,d2(点F,线段AB)是d1(点E,线段AB)的3倍.求x的值.27.(8分)(2022秋•海门市期末)已知∠AOB=120°,∠COD在∠AOB内部,∠COD=60°.(1)如图1,若∠BOD=30°,求∠AOC的度数;(2)如图2,若OE平分∠BOC,请说明:∠AOC=2∠DOE;(3)如图3,若在∠AOB的外部分别作∠AOC,∠BOD的余角∠AOP,∠BOQ,试探究∠AOP,∠BOQ,∠COD 三者之间的数量关系,并说明理由.28.(8分)(2018秋•盱眙县期末)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t=(直接写结果)(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC平分∠MON?请说明理由;(3)在(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.。
苏科版七年级上册第六章《平面图形的认识(一)》经典试卷

第六章平面图形的认识(一)检测1、下列四个生活、生产现象:(1)用两个钉子就可以把木条固定在墙上;(2)植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;(3)从A地到B地架设电线,总是尽可能沿着线段AB架设;(4)把弯曲的公路改直,就能缩短路程;其中可用事实“两点之间,线段最短”来解释的现象有().A 、(1)(2)B 、(1)(3)C 、(2)(4)D 、(3)(4)2、平面上有任意三点,过其中两点画直线,共可以画()A.1条B.3条C.1条或3条D.无数条3、若A、B、C在同一条直线上,且线段AB=10cm,BC=6cm,那么A、C两点间的距离是()A.4cmB.16cmC.4cm或16cmD.以上都不对4、下列说法错误的是()A两点确定一条直线B.线段是直线的一部分C.一条直线是一个平角D.把线段向两边延长即是直线5、不在同一直线上的三点可以确定条直线6、如图,长度为12cm的线段AB的中点为M, C点将线段MB分成MC:CB=1:2,则AC的长度为cm。
7、下列关于作图的语句:①画直线AB=10厘米②.画射线AB=10厘米③已知A、B、C三点,过这三点画一条直线④.过直线AB外一点画一条直线和直线AB平行,其中正确的是(填序号)8、已知点B在直线AC上,线段AB=8cm,AC=18cm,p、Q分别是线段AB、AC的中点,则线段PQ=9、为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手.(1)一条直线把平面分成2部分;(2)两条直线最多可把平面分成4部分;(3)三条直线最多可把平面分成7部分…;把上述探究的结果进行整理,列表分析:直线条数把平面分成部分数写成和形式1 2 1+12 4 1+1+23 7 1+1+2+34 11 1+1+2+3+4………(1)当直线条数为5时,把平面最多分成________部分,写成和的形式________;(2)当直线为10条时,把平面最多分成________部分;(3)当直线为n条时,把平面最多分成________部分.(不必说明理由)10、平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线.则n的值为11、如图,点A、B、C是直线l上的三个点,图中共有线段条数是条12、如图所示,以O为端点画六条射线OA,OB,OC,OD,OE,OF,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线上.13、如图,下列叙述正确的是()A.射线OA表示西北方向B.射线OB表示北偏东60°C.射线OC表示西偏南30°D.射线OD表示南偏东60°14、下列说法中正确的个数是()①由两条射线组成的图形叫做角;②角的大小与边的长短无关,只与两条边张开的程度有关;③角的两边是两条射线;④把一个角放到一个放大10倍的放大镜下观看,角的度数也扩大10倍.A.1个B.2个C.3个D.4个15、如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°16、下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′17、2008年冬季,某校初三年级每天上午8:30开展“阳光长跑”活动,上午8:30这一时刻,时钟上分针与时针的夹角为________度.18、如图,平角AOB被分成的三个角∠AOC、∠COD、∠DOB的比为2:3:4,则其中最大的角是________度19、如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若∠AOB′=70°,则∠B′OG的度数为________.20、借助一副三角尺,你能画出下面哪个度数的角()A.65°B.75°C.85°D.95°21、如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,求∠2的度数22、把15°30′化成度的形式,则15°30′=________度.把33.28°化成度、分、秒的形式得________度________分________秒.23、下列说法错误的是()A.同角或等角的余角相等B.一个角的余角必是锐角C、两个相等的角不可能互补 D.一个角的补角与这个角的余角的差是90度24、如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③180°-∠α;④(∠α-∠β).正确的是:()A.①②③④B.①②④C.①②③D.①②25、如图所示,点A,O,B在一条直线上,∠AOE=∠DOF,若∠1=∠2,则图中互余的角共有A.5对B.4对C.3对D.2对26、如图,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=________度27、若∠α与∠β互为余角,∠β是∠α的2倍,则∠α为()A.20°B.30°C.40°D.60°28、已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值等于()A.45°B.60°C.90°D.180°29、如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥CD,∠AOC=55°,∠BOE的度数是()A.125°B.135°C.145°D.155°30、如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE=________.31、如图,将两块直角三角尺的直角顶点O叠放在一起.(1)若∠BOC=40°,试求∠AOD的度数.(2)若∠AOD=135°,试求∠BOC的度数.(3)若∠BOC=α、∠AOD=β,请写出α与β的大小关系式,并说明理由32、如图,在长方体ABCD-A1B1C1D1中,和棱AB平行的棱有()条.A.1B.2C.3D.433.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:________.34、在同一平面内,三条互不重合的直线的交点个数可能是35、三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A.a⊥bB.a∥bC.a⊥b或a∥bD.无法确定36、下列说法正确的是()A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.同一平面内,过一点有且只有一条直线与已知直线垂直D.与同一条直线垂直的两条直线也垂直37、下列图形中,线段PQ的长表示点P到直线MN的距离是()A. B. C. D.38、如图,OD⊥AB于O,OC⊥OE,图中与∠AOC互补的角有()A.1个B.2个C.3个D.4个39、如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP长不可能是()A.2.5B.3C.4D.540、如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离41、如图,直线AB、CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD=________,∠AOD=________.42、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,D为垂足.在不添加辅助线的情况下,请写出图中相等的锐角:.43、如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.(1)若∠BOC=60°,如图①,猜想∠AOD的度数;(2)若∠BOC=70°,如图②,猜想∠AOD的度数;(3)猜想∠AOD和∠BOC的关系,并写出理由.44、如图,是一个时钟,过它的中心点O可以画两条相互垂直的直线,使得这两条直线经过钟面上表示时间的四个数字.(1)请你在图中画出符合条件的两条相互垂直的直线即可.(2)若这四个数字的和是22,求出这四个数字中最小的一个数字.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 平面图形的认识(一)检测卷
(时间:90分钟 满分:100分)
一、选择题(每小题3分,共30分) 1.下列说法中正确的是 ( ) A .直线有无数个端点 B .线段有2个端点 C .射线没有端点 D .以上都不对 2.如图,下列说法中错误的是 ( )
A .点A ,
B 都在直线a 上 B .A ,B 两点确定一条直线AB
C .直线a 经过点A ,B
D .点A 是直线a 的一个端点 3.如图,下列表示已知角的方法中错误的是 ( )
A .∠A
B .∠1
C .∠O
D .∠AOB 4.平行线是指 ( ) A .两条不相交的直线
B .两条延长后仍不相交的直线
C .同一平面内两条不相交的直线
D .以上都不对
5.若∠1=35°,则它的余角和补角分别为 ( ) A .55°,145° B .135°,55° C .65°,85° D .25°,115° 6.测量跳远的成绩是要得到 ( ) A .两点之间的距离 B .点到直线的距离 C .两条直线之间的距离 D .空中飞行的距离
7.如图,点M 是线段AB 的中点,下列表达中错误的是 ( )
A .AM =BM
B .AM =
12
AB C .BM =
12
D .AB =2BM
8.下列说法:①对顶角相等;②等角的补角相等;③两点之间,线段最短;④过直线∠外一点P ,只能画一条直线与l 平行.其中,正确的有 ( ) A .1个 B .2个 C .3个 D .4个 9.从上午7时55分到8时4分,时钟的分针转过的角度为 ( ) A .36° B .45° C .54° D .72°
10.下列说法:①在同一平面内,两条直线要么相交,要么平行;②经过直线外一点,有且只有一条直线与已知直线平行;③经过一点有且只有一条直线与已知直线垂直;④经过两点有且只有一条直线.其中,错误的有( )
A.0个B.1个C.2个D.3个
二、填空题(每小题3分,共24分)
11.下图中以点A为端点的线段有______条,分别是______________.
12.如图,OC是∠AOB的平分线,若∠AOC=45°,则∠AOB=_______°,其中OA,OB之间的位置关系是_______(用符号表示).
13.把15°30'化成度的形式,则15°30'=_______.
14.用一副三角板可以直接得到30°,45°,60°,90°四种角,利用一副三角板可以拼出另外一些特殊角,如75°,120°等,请你拼一拼,使用一副三角板还能拼出哪些小于平角的角,这些角的度数是:______.
15.若∠1、∠2都是∠3的余角,则∠1______∠2(填“>”“<”或“=”),理由是_______.16.如图,射线OP表示的方向可以表示为_______.
17.经过三点A,B,C中的任意两点,可以画直线______条.
18.如图,直线BC与直线DE相交于点O,OA⊥BC于点O.若∠COE=47°,则∠BOE =______°,∠AOD=_______°.
三、解答题(共46分)
19.(6分)计算:(1)26°23'+32°37';(2)125°-75°28'.
20.(6分)如图,已知线段AB=80 cm.C是AB上任意一点,M是AC的中点,N为BC的中点,求MN的长.
21.(6分)如图,点P 是∠AOB 内任意一点. (1)过点P 画直线PM ∥OB ; (2)过点P 画直线PN ⊥OA .
22.(5分)如图,直线AB ,CD ,EF 都经过点O ,且AB ⊥CD ,OG 平分∠BOE ,如果∠EOG =
2
5
∠AOE ,求∠EOG ,∠DOF 和∠AOE 的度数.
23.(8分)如果∠1与∠2互为余角,∠2与∠3互为补角,且∠1=75°. 求:(1)∠3的度数:
(2)写出当∠1=n °时,∠3的度数.(不必写过程) 24.(8分)如图,O 是直线AB 上一点,OE ,OC ,OF 是射线,OE ⊥OF ,若∠BOC =2∠COE ,∠AOF 的度数比∠COE 的度数的4倍小8°.求∠COE 的度数.
25.(8分)如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,求∠CON的度数。
26.(8分)如图,将矩形纸片ABCD折叠,使边AB、CD均落在对角线BD上,得折痕
BE、BF,求∠EBF的度数.
参考答案
一、1.B 2.D 3.A 4.C 5.A 6.B 7.C 8.D 9.C 10.A
二、11.4 AB,AC,AD,AE 12.90 OA⊥OB 13.15.5°14.15°,105°,135°,150°,165°15.=同角的余角相等16.南偏东60°17.1或3
18.133 43 三、19.(1)59°(2)49°32' 20.40(cm).
21.如图:
22.40°,10°,100°
23.(1)165°.(2) ∠3=( 90+n)°.
24.14°.
25.55°
26.45°。