飞思卡尔智能车大赛技术报告

合集下载

飞思卡尔智能车大赛技术报告

飞思卡尔智能车大赛技术报告

第九届“飞思卡尔”杯全国大学生智能车竞赛光电组技术报告学校:中北大学伍名称:ARES赛队员:贺彦兴王志强雷鸿队教师:闫晓燕甄国涌关于技术报告和研究论文使用授权的说明书本人完全了解第八届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。

参赛队员签名:带队教师签名:日期:2014-09-15日摘要本文介绍了第九届“飞思卡尔杯全国大学生智能车大赛光电组中北大学参赛队伍整个系统核心采用飞思卡尔单片机MC9S12XS128MAA ,利用TSL1401线性CCD 对赛道的行扫描采集信息来引导智能小车的前进方向。

机械系统设计包括前轮定位、方向转角调整,重心设计器件布局设计等。

硬件系统设计包括线性CCD传感器安装调整,电机驱动电路,电源管理等模块的设计。

软件上以经典的PID算法为主,辅以小规Bang-Bang算法来控制智能车的转向和速度。

在智能车系统设计开发过程中使用Altium Designer设计制作pcb电路板,CodeWarriorIDE作为软件开发平台,Nokia5110屏用来显示各实时参数信息并利用蓝牙通信模块和串口模块辅助调试。

关键字:智能车摄像头控制器算法。

目录1绪论 (1)1.1 竞赛背景 (1)1.2国内外智能车辆发展状况 (1)1.3 智能车大赛简介 (2)1.4 第九届比赛规则简介 (2)2智能车系统设计总述 (2)2.1机械系统概述 (3)2.2硬件系统概述 (5)2.3软件系统概述 (6)3智能车机械系统设计 (7)3.1智能车的整体结构 (7)3.2前轮定位 (7)3.3智能车后轮减速齿轮机构调整 (8)3.4传感器的安装 (8)4智能车硬件系统设计 (8)4.1XS128芯片介绍 (8)4.2传感器板设计 (8)4.2.1电磁传感器方案选择 (8)4.2.2电源管理模 (9)4.2.3电机驱动模块 (10)4.2.4编码器 (11)5智能车软件系统设 (11)5.1程序概述 (11)5.2采集传感器信息及处理 (11)5.3计算赛道信息 (13)5.4转向控制策略 (17)5.5速度控制策略 (19)6总结 (19)6.1效果 (20)6.2遇到的问题以及解决办法 (20)6.3队员之间的合作很重要 (21)附录 (22)源程序 (23)1绪论1.1 竞赛背景随着经济发展,道路交通面临新的问题和新的挑战。

飞思卡尔智能车大赛杭州电子科技大学杭电二队智能车技术报告

飞思卡尔智能车大赛杭州电子科技大学杭电二队智能车技术报告

本设计采用单片机(MC9S12DG128)作为智能小车的检测和控制核心。

路径识别采用CMOS 摄像头,车速检测采用红外对管和编码盘,由MOS管组成H桥来控制驱动电机正反转的快速切换,利用PWM技术控制小车的运动速度及运动方向。

基于这些完备而可靠的硬件设计,还设计了一套PID优化算法,编写了全闭环运动控制程序,经反复测试,取得了较好的效果。

第一章引言.1 智能车系统研究内容智能车系统要求以MC9S12DG128为核心,能够自主识别路线,在专门设计的跑道上自动识别道路行驶,以最快的速度跑完全程。

其主要研究内容包括以下几个部分:电源、路径识别、直流电动机驱动及运动控制等。

1.1.1 电源根据智能车系统各部件正常工作的需要,对配发的标准车模用7.2V 1800mAh Ni-cd电池进行电压调节。

其中,单片机系统、车速传感器电路需要5V电压,摄像头的12V工作电压由DC-DC升压回路提供,伺服电机工作电压范围4.8V到6V,直流电机经过H桥路由7.2V 1800mAh Ni-cd蓄电池直接供电。

1.1.2 路径识别路径识别模块是智能车系统的关键模块之一,路径识别方案的好坏,直接关系到最终性能的优劣。

在高速度和预先判断算法的前提下,摄像头可能是寻找路径规迹的最好选择。

因为MC9S12DG128的运算处理和AD采样速度有限,因此确定合理的采样次数和合理的处理摄像头的数据是十分重要的。

舍弃非关键数据进行数据简化和制定高效率的路径规划也是一个难题。

1.1.3 直流电动机驱动直流电机的控制一般由单片机产生的PWM信号配以H桥路来完成。

为了得到更大的驱动电流和较好的刹车效果,选用低内阻的MOS管和适当的反向驱动也是必需的。

MOS管我们选取了IRF4905和IRFZ48N,在MOS管子的驱动方面我们直接使用IR公司的IR4427双道驱动芯片。

具体的H桥电路见图1.1 。

1.2 智能车制作情况整个智能车控制系统分为4部分电路板,分别为路径识别模块,单片机模块,直流电机驱动模块和速度检测模块,还有串口通讯及调试接口。

飞思卡尔智能车技术报告

飞思卡尔智能车技术报告

第六届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告学校:队伍名称:参赛队员:带队教师:关于技术报告和研究论文使用授权的说明本人完全了解第六届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。

参赛队员签名:带队教师签名:日期:摘要随着现代科技的飞速发展,人们对智能化的要求已越来越高,而智能化在汽车相关产业上的应用最典型的例子就是汽车电子行业,汽车的电子化程度则被看作是衡量现代汽车水平的重要标志。

同时,汽车生产商推出越来越智能的汽车,来满足各种各样的市场需求。

本文以第六届全国大学生智能车竞赛为背景,主要介绍了智能车控制系统的机械及硬软件结构和开发流程。

机械硬件方面,采用组委会规定的标准 A 车模,以飞思卡尔半导体公司生产的80管脚16 位单片机MC9S12XS128MAA 为控制核心,其他功能模块进行辅助,包括:摄像头数据采集模块、电源管理模块、电机驱动模块、测速模块以及无线调试模块等,来完成智能车的硬件设计。

软件方面,我们在CodeWarrior IDE 开发环境中进行系统编程,使用增量式PD 算法控制舵机,使用位置式PID 算法控制电机,从而达到控制小车自主行驶的目的。

另外文章对滤波去噪算法,黑线提取算法,起止线识别等也进行了介绍。

关键字:智能车摄像头图像处理简单算法闭环控制无线调试第一章引言飞思卡尔公司作为全球最大的汽车电子半导体供应商,一直致力于为汽车电子系统提供全范围应用的单片机、模拟器件和传感器等器件产品和解决方案。

飞思卡尔公司在汽车电子的半导体器件市场拥有领先的地位并不断赢得客户的认可和信任。

其中在8 位、16 位及32 位汽车微控制器的市场占有率居于全球第一。

飞思卡尔公司生产的S12 是一个非常成功的芯片系列,在全球以及中国范围内被广泛应用于各种汽车电子应用中。

2024年飞思卡尔智能车总结(四篇)

2024年飞思卡尔智能车总结(四篇)

2024年飞思卡尔智能车总结关于飞思____智能车轨迹追踪竞赛飞思____智能车竞赛,由飞思____公司赞助,是一项全国本科院校共同参与的科技竞赛活动。

今年,安徽省有幸成为第____届省级赛区,我们专科院校也有幸参与其中。

基于专业的匹配,我们系在本专业中选拔了一些同学,我非常荣幸能与我的团队并肩合作。

由于我们学校初次参加,缺乏经验,指导老师正与我们一起逐步探索解决方案。

我们选择使用B型车进行光电寻迹任务。

根据任务需求,老师将其划分为几个关键模块(寻迹模块、电源模块、驱动模块、测速模块),我负责的是寻迹模块的构建。

起初,对于黑白寻迹,我仅感到“神秘”。

通过查阅资料和老师的指导,我理解了其寻迹原理。

这主要基于黑白颜色对光的反射差异(白色完全反射,黑色完全吸收)来识别黑白线。

由于我们之前未接触过传感器知识,对此领域略感模糊,因此我专门投入时间学习传感器,理解了其在电路中的功能。

接下来,我们面临材料选择的挑战,市场上的光电管种类繁多,各校使用的也不尽相同。

我们需要找到一款适合我们车辆的光电管。

我最初在网上找到一些电路图,并购买了一些光电管进行焊接,但结果并未达到预期。

我一度认为问题出在光电管上,但即使更换为光电发射与接收一体管,问题仍未解决。

在一段时间的停滞和反复试验后,我尝试调整了与接收管串联的电阻值(从10k改为100k),意外地提高了接收距离,达到十几厘米。

这仍不理想,因为为了防止光电管之间的相互影响,每个光电管都需要加上套管,而我们购买的光电管无法满足这一要求。

经过深入研究,查阅资料,以及反复实验,我们最终选择了____公司的光电管(型号)。

我想强调的是,他人的经验可以作为参考,但不一定适用于我们自身,就像我之前选择的光电管电路图,可能在某些情况下适用,但在我们的特定需求下并不理想。

在探索阶段,逐步实验始终是至关重要的。

确定光电管后,我们进入了电路焊接阶段。

我们借鉴了其他学校的经验,初步决定使用____来配置光电管。

第五届飞思卡尔杯全国大学生智能汽车竞赛技术报告

第五届飞思卡尔杯全国大学生智能汽车竞赛技术报告

第五届全国大学生智能汽车邀请赛技术报告第五届飞思卡尔杯全国大学生智能汽车竞赛技术报告第一章引言“飞思卡尔杯”智能车大赛起源于韩国,是韩国汉阳大学汽车控制实验室在飞思卡尔半导体公司资助下举办的以HCSl2单片机为核心的大学生课外科技竞赛。

组委会提供一个标准的汽车模型、直流电机和可充电式电池,参赛队伍要制作一个能够自主识别路径的智能车,在专门设计的跑道上自动识别道路行驶,谁最快跑完全程而没有冲出跑道并且技术报告评分较高,谁就是获胜者。

其设计内容涵盖了控制、模式识别、传感技术、汽车电子、电气、计算机、机械、能源等多个学科的知识,对学生的知识融合和实践动手能力的培养,具有良好的推动作用。

智能小车系统由HCS12微控制器、电源管理单元、路径识别电路、车速检测模块、舵机控制单元和直流驱动电机控制单元组成。

本系统以飞思卡尔公司的16位微处理器MC9S12XS128为控制核心,并采用CodeWarrior软件编程和BDM作为调试工具。

运用激光发射强大光线,使用采集光敏传感器AD值进行道路信息采集,并采用PWM技术来控制舵机的转向和电机转速。

舵机控制主要采用PWM信号开环控制,而速度控制方面,由数据表来设定速度,PID控制来调整速度。

通过将总线频率超频到40M来更快更准确地进行控制。

各个部分经过MCU的协调处理,能够以较快的速度在指定的轨迹上行驶,在进弯道之前能够提前减速并改变角度,达到平滑过弯和减小路程的效果。

在前几个月的努力中,我们自主设计机械结构和控制电路,构思独特算法,并一次次地对单片机具体参数进行调试。

可以说,这辆在跑道上奔驰的小车凝聚着我们的汗水和智慧。

在准备比赛的过程中,我们小组成员涉猎多个学科,这次磨练对我们的知识融合和实践动手能力的培养有极大的推动作用。

第五届全国大学生智能汽车邀请赛技术报告第二章方案选择第二章方案选择智能汽车比赛以快速平稳地完成赛程作为目标,这就要求赛车能够快速准确地检测跑道路径,及时做出合理的控制并迅速执行。

飞思卡尔智能车 电磁组 技术报告

飞思卡尔智能车 电磁组 技术报告
[6]卓晴.基于磁场检测的寻线小车传感器布局研究[J].清华大学.2009
[7]杨延玲.载流直导线的电磁场特性分析[J].山东师范大学.2007
[8]王毅敏.马丽英等.一种改进的数字PID控制算法及其在励磁系统中的应用电网技术[J].1998
[9]高金源,夏洁.计算机控制系统[M].清华大学出版社.2007
[10]第五届北京交通大学电磁二队的技术报告.2010
[11]第五届哈尔滨工程大学电磁组—极品飞车三号队的技术报告.2010
[12]第五届清华大学三角洲电磁队的技术报告.2010

源代码
(1)main.c文件代码
#define MotorMax 14000
#define MotorMin10
#define NMAX 3//使用3个电感拟合
本校积极组队参加第六届“飞思卡尔”杯全国大学生智能汽车竞赛。从2010年底着手准备,历时半年多,经过不断试验设计,最终设计出较为完整的智能赛车。在赛区比赛中获得了较好的综合性能和成绩。
在本次比赛中,采用大赛组委会统一提供的竞赛车模,采用飞思卡尔16位微控制器MC9S12XS128作为核心控制单元,构思控制方案及系统设计,进行包括机械结构的调整与优化,硬件的设计与组装、软件控制算法的编写与改进等过程(小车上的具体方案模块有传感器信号采集处理、控制算法及执行、动力电机驱动、转向舵机控制等)从而实现小车智能化的识别道路,最终实现智能化竞速。
电磁传感器是赛车循迹的前提,采用图4.1电路,由谐振回路,放大电路和倍压整流电路三部分组成,电路如下图所示。
图4.1电磁传感器电路
4.2
主板承担着整部赛车各类电源的提供以及信号采集控制任务,主要由各类电源电路和单片机系统与接口电路组成。我们没有将传感器和传感器电路设置在主板上。否则,将大量消耗狭小的底盘安装空间,使得主板面积过小元件信号线过度密集导致抗干扰性能变差,不利于系统的可靠性,电路图与PCB图分别如图4.2、4.3所示。

飞思卡尔技术报告

飞思卡尔技术报告

K60模块分配K60的简介,我们本次使用了以下模块。

1. FTM模块:K60中集成3个FTM模块,而今年我们选用两个B车进行追踪循迹。

B车模使用单电机、单舵机,另外需要一个编码器。

所以对3个FTM模块进行如下配置:FTM0用以产生300Hz PWM信号控制舵机,FMT1用以产生18.5KHz PWM信号控制电机,FTM2用以采集编码器数据。

2. 定时器模块:K60中有多个定时器模块,我们使用了其中2个。

其一用以产生5ms 中断,处理相关控制程序。

另一个用以超声波模块的计时。

3. SPI模块:我们使用了K60的一个SPI模块,用以和无线射频模块NRF24L01P通信。

4.外部中断:我们使用了三个外部中断。

第一个是PORTA的下降沿中断,用以响应干簧管检测到磁铁。

第二个是PORTD的跳变沿中断,用以响应超声波模块的输出信号。

最后一个是PORTE的下降沿中断,用以响应NRF24L01P模块的相关操作。

数据采集算法传感器是智能车的眼睛,它们给智能车循迹和追踪提供了必不可少的信息。

因此,在智能车软件设计中必须保证数据采集算法的稳定性,同时兼顾其快速性。

本车比赛,我们的智能车主要采集以下传感器的数据:电感传感器电路板、编码器、超声波、干簧管。

下面主要详述超声波模块、电感传感器电路板的数据采集。

1 .超声波模块数据采集我们使用的超声波模块的DO引脚输出50Hz的矩形波信号,通过高电平的时间向单片机传递数据。

本超声波传感器的高电平时间为声波单程传输的时间,通过这个时间可计算出两车之间的距离。

我们使用外部中断和计时器结合的方式测量高电平时间。

首先配置PORTD11为跳变沿中断。

中断被触发时,如果PORTD11为高电平则开始计时,如果PORTD11为低电平则停止计时并记录时间间隔。

2. 电感传感器电路板的数据采集电感传感器电路板通过输出电压的大小反应响应位置和方向的磁场强度。

本次比赛中,我们使用了10个电感分布在6个不同位置,因此每个周期都要采集10路ADC数据,每路ADC数据采集32次进行平均滤波。

飞思卡尔杯全国大学生智能汽车竞赛进击者队技术报告

飞思卡尔杯全国大学生智能汽车竞赛进击者队技术报告

第九届“飞思卡尔”杯全国大学生智能汽车竞赛技术报告组别:光电组队伍名称:进击者I目录第一章:引言 (5)1.1 赛道尺寸介绍 (5)1.2技术方案介绍 (5)1.2.1 控制系统设计 (5)1.2.2 赛车结构设计 (5)1.3技术报告内容安排 (6)第二章:机械设计(各部分附图说明) (6)2.1 PCB板的安装 (6)2.2车轮的安装与调整 (7)2.2.1 主销后倾角 (7)2.2.2 主销内倾角 (7)2.2.3 车轮外倾角 (7)2.3舵机的安装 (8)2.3.1 舵机延时分析 (8)2.3.2舵机的安装与控制延时解决办法 (10)2.4齿轮传动机械安装 (11)2.5传感器的安装 (11)第三章:硬件电路设计(各部分附图说明) (12)3.1单片机最小系统 (12)3.2路径识别电路设计 (13)3.2.1 CCD接口 (13)3.2.2 起跑线检测电路 (13)3.3电源管理电路设计 (14)3.4电机驱动电路设计 (15)3.5通讯接口电路设计 (15)3.6速度检测模块 (15)3.7现场调试调试模块 (16)3.7.1 SD卡接口 (16)3.7.3 OLED液晶 (16)3.8其他电路 (17)第四章:软件设计 (18)4.1设计思路与控制策略 (18)4.2软件流程图(包括主程序和子程序) (18)4.3 PID控制 (19)4.3.1 PID算法介绍 (19)4.3.2 舵机PD算法 (20)4.3.3 电机PID算法 (20)4.4软件开发环境(包括编程、下载、调试) (21)4.4.1开发工具 (21)4.4.2调试工具 (21)4.4.3 上位机调试 (22)4.5 特殊赛道元素分析 (22)4.5.1十字弯 (22)4.5.2 坡道 (23)4.5.3 起跑线 (23)4.5.4 障碍 (23)第五章:模型车各项参数 (23)5.1 车模基本尺寸(长、宽、高、车重) (23)5.2电路功耗及电容总容量 (23)5.3传感器及伺服电机数量 (23)5.4赛道检测精度、周期 (24)第六章:结论 (24)6.1本赛车特色 (24)6.2存在的问题 (24)6.3改进的措施 (24)附件一:电路源文件 (24)K60最小系统电路 (24)电机H桥驱动电路 (25)电源控制电路 (26)主板集成电路 (26)系统电路PCB板 (27)附件二:控制程序源代码 (27)第一章:引言1.1 赛道尺寸介绍在初赛阶段时,跑道所占面积在5m×7m 左右,决赛阶段时跑道面积可以增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九届“飞思卡尔”杯全国大学生智能车竞赛光电组技术报告学校:中北大学伍名称:ARES赛队员:贺彦兴王志强雷鸿队教师:闫晓燕甄国涌关于技术报告和研究论文使用授权的说明书本人完全了解第八届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。

参赛队员签名:带队教师签名:日期:2014-09-15日摘要本文介绍了第九届“飞思卡尔杯全国大学生智能车大赛光电组中北大学参赛队伍整个系统核心采用飞思卡尔单片机MC9S12XS128MAA ,利用TSL1401线性CCD 对赛道的行扫描采集信息来引导智能小车的前进方向。

机械系统设计包括前轮定位、方向转角调整,重心设计器件布局设计等。

硬件系统设计包括线性CCD传感器安装调整,电机驱动电路,电源管理等模块的设计。

软件上以经典的PID算法为主,辅以小规Bang-Bang算法来控制智能车的转向和速度。

在智能车系统设计开发过程中使用Altium Designer设计制作pcb电路板,CodeWarriorIDE作为软件开发平台,Nokia5110屏用来显示各实时参数信息并利用蓝牙通信模块和串口模块辅助调试。

关键字:智能车摄像头控制器算法。

目录1绪论 (1)1.1 竞赛背景 (1)1.2国内外智能车辆发展状况 (1)1.3 智能车大赛简介 (2)1.4 第九届比赛规则简介 (2)2智能车系统设计总述 (2)2.1机械系统概述 (3)2.2硬件系统概述 (5)2.3软件系统概述 (6)3智能车机械系统设计 (7)3.1智能车的整体结构 (7)3.2前轮定位 (7)3.3智能车后轮减速齿轮机构调整 (8)3.4传感器的安装 (8)4智能车硬件系统设计 (8)4.1XS128芯片介绍 (8)4.2传感器板设计 (8)4.2.1电磁传感器方案选择 (8)4.2.2电源管理模 (9)4.2.3电机驱动模块 (10)4.2.4编码器 (11)5智能车软件系统设 (11)5.1程序概述 (11)5.2采集传感器信息及处理 (11)5.3计算赛道信息 (13)5.4转向控制策略 (17)5.5速度控制策略 (19)6总结 (19)6.1效果 (20)6.2遇到的问题以及解决办法 (20)6.3队员之间的合作很重要 (21)附录 (22)源程序 (23)1绪论1.1 竞赛背景随着经济发展,道路交通面临新的问题和新的挑战。

所以急需改变传统交通模式,解决当前面临的困境,正是在这样的背景下智能汽车迎来了大发展的时期,各国争相投入大量资金研究无人驾驶技术。

智能车的发展早期受限于技术手段,智能化较低,主要应用在自动化仓贮系统和柔性装配系统的物料运输,随着新型高精度,高可靠性的传感器不断涌现,现阶段智能车正在向适应城市道路,野外复杂地形等方向发展,在不久的将来即可真正替代人工驾驶。

1.2 国内智能车辆发展状况1992年,国防科技大学研制成功了我国第一辆真正意义上的无人驾驶汽车。

由计算机及其配套的检测传感器和液压控制系统组成的汽车计算机自动驾驶系统,被安装在一辆国产的中型面包车上,使该车既保持了原有的人工驾驶性能,又能够用计算机控制进行自动驾驶行车。

2000年6月,国防科技大学研制的第4代无人驾驶汽车试验成功,最高时速达76km,创下国内最高纪录。

2003年7月,国防科技大学和中国一汽联合研发的红旗无人驾驶轿车高速公路试验成功,自主驾驶最高稳定时速130km,其总体技术性能和指标已经达到世界先进水平。

1.3 智能车大赛简介飞思卡尔是业界领先的半导体公司,主要研发领域面向汽车应用领域,产品质量优秀,其他公司在汽车应用方面很难与之抗衡。

飞思卡尔智能车竞赛已经经历了7届比赛,并将于今年的夏天举办第八届比赛。

该竞赛由竞赛秘书处设计、规范标准硬软件技术平台,竞赛过程包括理论设计、实际制作、整车调试、现场比赛等环节,要求学生组成团队,协同工作,初步体会一个工程性的研究开发项目从设计到实现的全过程。

该竞赛融科学性、趣味性和观赏性为一体,是以迅猛发展、前景广阔的汽车电子为背景,涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械与汽车等多学科专业的创意性比赛。

该竞赛规则透明,评价标准客观,坚持公开、公平、公正的原则,力求向健康、普及、持续的方向发展。

竞赛主要分为竞速赛和创意赛两种。

在竞速赛中,规则规定了使用的车模、传感器类型、处理器类型和赛道尺寸等关键的因素,参赛选手可以在相同的条件下,自行设计硬件电路和软件算法,最终能以最快速度跑完全程。

竞速赛分为三个赛题组:光电组、摄像头组、电磁组。

不同之处在三个组的循线传感器是不一样的。

电磁组的赛道中心铺有细导线,导线中通有频率和电流稳定的电信号,能利用电磁感应原理检测中心导线的位置。

电磁组和另两个赛题组相比,优势在于检测信号稳定,不会受到外界采光条件的变化而影响,也不会受到赛道外的背景色所干扰,所以比较少在比赛中途因找不到赛道中心而冲出赛道的情况,缺点在于电磁传感器一般由电感电容组成,如果需要增加赛车前瞻的话需要加固定支架把传感器伸到赛车前方,这样会增加车子转弯时的转动惯量,影响车子转弯的灵活性,曾有强队想出来车体主动悬挂的方式抵消转弯时的转动离心力,从而提升车子转弯速度,使得电磁车速度得到很大提升。

1.4第九届比赛规则简介参赛选手须使用竞赛秘书处统一指定的竞赛车模套件,采用飞思卡尔半导体公司的8位、16位、32位微控制器作为核心控制单元,自主构思控制方案进行系统设计,包括传感器信号采集处理、电机驱动、转向舵机控制以及控制算法软件开发等,完成智能车工程制作及调试,于指定日期与地点参加各分(省)赛区的场地比赛,在获得决赛资格后,参加全国决赛区的场地比赛。

参赛队伍的名次(成绩)由赛车现场成功完成赛道比赛时间来决定,参加全国总决赛的队伍同时必须提交车模技术报告。

大赛根据道路检测方案不同分为电磁、光电平衡与摄像头三个赛题组。

使用四轮车模通过指定的线阵CCD器件或者分立的光电管传感器获得一维连续或者离散点赛道信息的属于光电组,光电组:四轮车模允许双向运行。

车模使用 B 型车模。

车模运行可以在比赛过程中,根据赛道要求随时调整运行方向,如图2 所示图X原型车模如下2 智能车系统设计总述智能车主要分为机械系统、硬件系统、和软件系统三个部分,三个部分中以机械系统、硬件系统为基础,软件系统为核心。

在整个的后续调试和三部分之间的融合过程中也需要不断地修正已达到优良的效果。

2.1机械系统概述机械系统作为智能车的基础影响着整个车的运行姿态和速度,轻巧的车身可以使车更加灵活容易操控,合理的重心位置可以让车运行更平稳,而前轮定位、舵机安装的方式和位置可以影响转向灵活度。

为了和传感器和系统PCB控制板的安装,也需要对车身,舵机,舵机的转度进行细致的调整。

图V整体车体结构图VV线性CCD部分图XX舵机部分图BB编码器部分2.2硬件系统概述硬件系统作为小车的基础最重要的就是运行稳定,XS128单片机满足了智能车竞赛中对运算速度的需求,传感器部分的设计要注意模块间的分隔,避免相互干扰,要注意的是排列尽可能紧密,减小电路板面积。

在设计电源管理模块,传感器检测处理模块,起点检测模块,电机驱动模块等的时候都积极思考,尽量做到减少干扰,安全可靠。

图XB硬件系统搭建简图2.3软件系统概述软件系统作为智能车的核心是决定最后运行速度和平稳性的关键,主要工作是对传感器采集到的数据进行处理,选择合适的方法解算赛道信息,制定合理的转向控制策略使转向平滑快速,制定有效的速度控制策略使智能车平均速度提高。

程序流程图:3智能车机械系统设计3.1智能车的整体结构如图所示:为了排布pcb板,安装舵机和传感器固定杆,并根据规则和车体的尺寸,对智能车的机械结构做了一些调整包括减震弹簧的安装,车底盘的高度,电池位置,期间为了较强的稳固车体我们将电机部分和前车体进行了固定。

3.2前轮定位前轮定位(转向轮定位)指转向轮、转向节和前轴三者之间与车架必须保持一定的相对安装位置。

在规则中只禁止改动车底盘结构轮距、轮径和轮胎。

前轮位置可以任意调整改变。

若要在不同速度,负载,重心条件下使车在轻快稳定的前进,那么最开始时候的前轮要力求最好的中心位置的摆正。

我们在舵机摆角设定的最小范围内,依次标算出它的左右摆点位置。

并形成查询表,根据不同道路的信息不同来计算不同路径下的最优曲率输出控制舵机的摆角。

3.3智能车后轮减速齿轮机构调整齿轮传动机构对车模的驱动能力有很大的影响。

调整的原则是:两传动齿轮轴保持平行,齿轮间的配合间隙要合适,过松容易打坏齿轮,过紧又会增加传动阻力,浪费动力;传动部分要轻松、顺畅,不能有迟滞或周期性振动的现象。

判断齿轮传动是否良好的依据是,听一下电机带动后轮空转时的声音。

声音刺耳响亮,说明齿轮间的配合间隙过大,传动中有撞齿现象;声音闷而且有迟滞,则说明齿轮间的配合间隙过小,或者两齿轮轴不平行,电机负载变大。

调整好的齿轮传动噪音很小,并且不会有碰撞类的杂音,后轮减速齿轮机构就基本上调整好了,动力传递十分流畅。

3.4传感器的安装首先根据理论计算得出比较适合的前瞻距离,来慢慢调整线性CCD的仰角和高度。

其引线尽可能的以最短的距离来将信息送入核心控制部分。

起初设定的前瞻距离为50cm,来调整CCD。

经过后期调试最佳前瞻距离达到了60cm的距离。

支架用的是材质轻巧强度很高的碳纤维管作为支撑杆。

4智能车硬件系统设计4.1 主控芯片XS128芯片介绍:最高可以超频到80MHz bus clock,BDM接口;PB0上接一个发光二极管“PB0”;电源指示放光二极管“5V”;参考电压可以选择5V,也可以去掉VRH电阻外接;两个电源接口;对单片机供电部分布线作了特殊处理,更稳定;插针为100mil的整数倍,标准点阵板可以直接插上去。

板子尺寸:51*49mm,小而稳!4.2硬件部分包括的几大部分:4.2.1电源硬件设计部分cpu最小系统部分,电机驱动部分,传感器处理部分,显示模块,按键模块。

整体硬件搭建原理图如图:4.2.2电源管理部分:电源管理模块需要为整个电路提供稳定而高质量的电源,特别是对单片机的供电。

本系统的设计中,编码器、串口通信、传感器和液晶显示部分都需要5v供电;单片机OLED 模块均使用3.3v供电。

考虑到电池电压7.8v左右,电源管理模块需要5v3.3v两个稳压其中5v稳压芯片使用的是8940稳压芯片使用AMS1117全部输出耦合采用红宝石的顶级电解电容,确保稳定型和可靠性。

为防止电源电压被拉低时引起单片机复位,采用二极管/电感和40uf电容的电路为单片机储存电能,电路原理图如下:4.2.3电机驱动模块用两片英飞凌公司的半桥驱动芯片BTS7970组成全桥。

相关文档
最新文档