扫描电子显微镜SEM使用的基础知识
扫描电子显微镜SEM培训资料

电子光学系统
由电子枪,电磁透镜,扫描线圈和样品室等部件组成。 其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强
度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径
微米纳米研究中心 Micro and Nano Technology Research Center
SKLMS 机械制造系统工程国家重点实验室
可以产生信号的区域称为有效作 用区,有效作用区的最深处为电子有 效作用深度。 但在有效作用区内的信号并不一定 都能逸出材料表面、成为有效的可供 采集的信号。这是因为各种信号的能 量不同,样品对不同信号的吸收和散 射也不同。 随着信号的有效作用深度增加, 作用区的范围增加,信号产生的空间 范围也增加,这对于信号的空间分辨 率是不利的。
STATE KEY LABORATORY FOR MANUFACTURING SYSTEMS ENGINEERING
信号收集及显示系统
检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系
统的调制信号。普遍使用的是电子检测器,它由闪烁体,光导管和光电倍 增器所组成
微米纳米研究中心 Micro and Nano Technology Research Center
4. 扫描电子显微镜的构造
电子光学系统
信号收集及显示系统 真空系统和电源系统
微米纳米研究中心 Micro and Nano Technology Research Center
SKLMS 机械制造系统工程国家重点实验室
STATE KEY LABORATORY FOR MANUFACTURING SYSTEMS ENGINEERING
STATE KEY LABORATORY FOR MANUFACTURING SYSTEMS ENGINEERING
扫描电子显微镜及能谱仪SEM

扫描电子显微镜及能谱仪SEM扫描电子显微镜及能谱仪SEM扫描电子显微镜及能谱仪SEM是一种强大的实验仪器,它能够帮助我们开启微观世界的大门,从而深入了解物质在最基本层面的性质和结构。
本文将在以下几个方面对SEM及其应用进行介绍。
一、扫描电子显微镜SEM的原理扫描电子显微镜SEM是一种采用电子束的显微镜,通过高能电子束与样品相互作用,透过扫描线圈产生扫描信号,实现对样品表面形貌的观察和获取高清晰度的图像。
SEM和光学显微镜有很大的不同,光学显微镜是使用光来观察物质的显微镜,而SEM则是使用电子来观察物质。
扫描电子显微镜SEM的工作原理主要分为以下三个步骤:1、获得高能电子束:扫描电子显微镜SEM内部有个电子枪,电子枪发射出的电子经过加速器的加速器和聚焦极的聚焦,成为高能电子束。
2、扫描样品表面:高能电子束射向样品表面,样品表面反弹回来的电子信号被SEM仪器捕获。
3、产生扫描信号:把从样品表面反弹回来的电子信号进行放大,形成显微图像。
二、能谱仪的原理能谱仪是SEM中的重要组成部分,它可以检测电子在样品中的反应和监测样品中所含的化学元素,以及相应元素的含量。
能谱仪的工作原理是通过检测样品产生的X射线来分析样品组成,电子束与样品相互作用,产生一系列的X射线能量峰值。
每个元素都有不同能级的电子,其X射线产生的能量也分别对应不同的峰值。
因此,通过表征能谱仪所发现的不同X射线能量峰的位置和强度,可以确定样品中所含元素。
三、SEM的应用1、矿物学SEM被广泛应用于矿物学研究中,因为它能够提供很高的图像分辨率。
将样品与高能电子束相互作用可使样品表面反射的电子被收集,从而形成高分辨率的矿物学图像。
2、材料科学在材料科学中,SEM被用于表面形貌研究以及微观结构解析。
通过SEM可以获取材料的内部结构和力学特性,为材料研发和工业应用提供了有力支持。
3、医学SEM在医学领域也有极为重要的应用,例如用于人体组织医学研究。
SEM可以提供高质量且精细的人体组织图像,进一步促进了医学领域的研究和治疗。
扫描电镜sem

扫描电镜(SEM)简介扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种利用电子束对样品表面进行扫描的显微镜。
相比传统的光学显微镜,SEM具有更高的分辨率和更大的深度视野,使得它成为材料科学、生命科学和物理科学等领域中常用的研究工具。
SEM通过利用电子多次反射,将样品表面的形貌细节放大数千倍,可以观察到微观结构,比如表面形态、粗糙度、纳米级颗粒等。
SEM通常需要真空环境下操作,因为电子束在大气压下很快会失去能量而无法达到高分辨率。
工作原理SEM的工作原理可以简单地分为以下几步:1.电子发射:SEM中,通过热发射或场发射的方式产生电子束。
这些电子被加速器加速,形成高速的电子流。
电子束的能量通常在10-30 keV之间。
2.样品照射:电子束通过一个聚焦系统照射到样品表面。
电子束与样品原子发生相互作用,从而产生各种现象,比如电子散射、透射和反射。
3.信号检测:样品与电子束发生相互作用后,产生的信号会被探测器捕获。
常见的SEM信号检测器包括二次电子检测器和反射电子检测器。
这些探测器可以测量电子信号的强度和性质。
4.信号处理和图像生成:SEM通过对探测到的信号进行处理和放大,生成图像。
这些图像可以显示出样品表面的微观结构和形貌。
应用领域SEM在许多科学领域中都有广泛的应用。
以下是一些常见的应用领域:材料科学SEM可以用于研究材料的结构和形态。
它可以观察微观缺陷、晶体结构、纳米颗粒等材料细节。
这对于材料工程师来说非常重要,可以帮助他们改进材料的性能和开发新的材料。
生命科学SEM可以用于观察生物样品的微观结构。
比如,它可以观察细胞的形态、细胞器的分布和细胞表面的纹理。
这对于生物学家来说非常重要,可以帮助他们了解生物体的结构和功能。
纳米科学SEM在纳米科学领域中也有广泛的应用。
通过SEM可以对纳米材料进行表面形貌和结构的观察。
它可以显示出纳米结构的细节,帮助科学家研究纳米颗粒的组装、层析和相互作用等现象。
扫描电子显微镜(SEM)简介

完成观察后,关闭扫描电子显微镜主机和计 算机,清理样品台,保持仪器整洁。
注意事项
样品求
确保样品无金属屑、尘埃等杂质,以 免损坏镜体或影响成像质量。
避免过载
避免长时间连续使用仪器,以免造成 仪器过载。
保持清洁
定期清洁扫描电子显微镜的镜头和样 品台,以保持成像清晰。
操作人员要求
操作人员需经过专业培训,了解仪器 原理和操作方法,避免误操作导致仪 器损坏或人员伤害。
操作方式
有些SEM需要手动操作,而有 些型号则具有自动扫描和调整 功能。
适用领域
不同型号的SEM适用于不同的领 域,如材料科学、生物学等,选
择时应考虑实际应用需求。
04
SEM的操作与注意事项
操作步骤
01
02
03
开机与预热
首先打开电源,启动计算 机,并打开扫描电子显微 镜主机。预热约30分钟, 确保仪器稳定。
场发射电子源利用强电场作用下的金属尖端产生电子,具有高亮度、低束流的优点, 但需要保持清洁和稳定的尖端环境。
聚光镜
聚光镜是扫描电子显微镜中的重 要组成部分,它的作用是将电子 束汇聚成细束,并传递到样品表
面。
聚光镜通常由两级组成,第一级 聚光镜将电子束汇聚成较大直径 的束流,第二级聚光镜进一步缩
小束流直径,提高成像质量。
生态研究
环境SEM技术可以应用于生态研究中, 例如观察生物膜、土壤结构等,为环 境保护和治理提供有力支持。
THANKS
感谢观看
样品放置
将样品放置在样品台上, 确保样品稳定且无遮挡物。
调整工作距离
根据样品特性,调整工作 距离(WD)至适当位置, 以确保最佳成像效果。
操作步骤
扫描电镜知识汇总

扫描电镜(SEM)超全知识汇总真空技术扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。
如图1所示,是扫描电子显微镜的外观图。
▲图1. 扫描电子显微镜特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。
基本结构从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。
电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。
通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。
扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。
样品室内除放置样品外,还安置信号探测器。
2、信号探测处理和显示系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。
所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。
虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。
有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。
3、真空系统真空系统主要包括真空泵和真空柱两部分。
真空柱是一个密封的柱形容器。
真空泵用来在真空柱内产生真空。
有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨灯丝枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧及六硼化铈枪的扫描电镜,则需要机械泵加涡轮分子泵的组合。
扫描电子显微镜操作流程

扫描电子显微镜操作流程扫描电子显微镜(Scanning Electron Microscope,SEM)是一种常用的显微镜,用于观察微观尺度下的表面形貌和组织结构。
本文将介绍扫描电子显微镜的操作流程,帮助您更好地使用该仪器。
一、准备工作在进行扫描电子显微镜操作之前,需要做一些准备工作:1. 查看设备状态:确保扫描电子显微镜处于正常工作状态。
2. 清洁样品:将待观察的样品进行适当的清洁处理,以去除表面的杂质和污染物。
3. 固定样品:将样品放置在适当的样品架上,并使用夹具或者导电胶带等方式固定好。
二、样品装载1. 打开样品室:打开扫描电子显微镜的样品室门,确保样品室内的环境与外界隔离。
2. 放置样品:将准备好的样品小心地放置在样品架上,并确保样品与检测器件之间的距离适当。
3. 关闭样品室:关闭样品室门,并确保密封良好,避免样品室内空气进入。
三、真空抽气由于扫描电子显微镜需要在真空环境下运行,因此需要进行真空抽气:1. 打开真空阀门:打开真空阀门,开始抽气。
2. 监测真空度:通过监测仪器,观察真空度的变化,待真空度达到设定要求后进行下一步操作。
3. 关闭真空阀门:当真空度稳定后,关闭真空阀门,保持真空状态。
四、电子束调节1. 打开激光:打开光源或电子束发射器。
2. 对焦:通过调节电子束的对焦控制,使得电子束聚焦在样品表面上。
3. 调节亮度和对比度:根据实际需求,调节电子束的亮度和对比度,以获得清晰的显微镜图像。
五、影像获取1. 扫描区域选择:根据需要选择要扫描的区域,调整样品台的位置。
2. 开始扫描:按下扫描按钮,开始扫描电子显微镜。
3. 图像观察:通过显微镜的显示屏或者计算机上的图像软件,观察并记录扫描获得的图像。
4. 图像保存:根据需要,将扫描得到的图像保存到计算机或其他存储设备中。
六、仪器关闭1. 关闭激光:关闭光源或电子束发射器。
2. 关闭扫描电子显微镜:按下关闭按钮,将扫描电子显微镜关闭。
3. 停止真空抽气:打开真空阀门,停止真空抽气。
SEM工作原理与使用方法
SEM工作原理与使用方法SEM(扫描电子显微镜)是一种使用电子束对样品进行成像的显微镜。
与光学显微镜相比,SEM具有更高的分辨率和放大倍数,能够显示更小尺寸的样品细节。
SEM广泛应用于材料科学、生物学、化学和纳米技术等领域。
本文将介绍SEM的工作原理和使用方法。
SEM的工作原理:SEM使用电子束而不是光线来照射样品,并通过收集散射的电子来获得图像。
一般来说,SEM包括以下几个主要的部分:电子枪、聚焦系统、样品台、检测系统和显示系统。
1.电子枪:电子枪产生高速的电子束。
其工作原理是通过在热阴极附近加热产生的热电子,被高压枪芯电场加速并形成一个细束的电子束。
这个束被称为原始电子束。
2.聚焦系统:原始电子束经过由磁环组成的聚焦系统,通过调整磁场来聚焦电子束,使其具有更好的聚焦能力。
这样可以使电子束更加凝聚和集中,以准确地照射样品。
3.样品台:样品放置在样品台上。
样品台可以通过微调机械装置进行调整,以便将样品放置在正确的位置并获得最佳的成像效果。
常用的样品制备方法包括金属喷溅、真空蒸镀和冷冻切片等。
4.检测系统:电子束照射到样品上时,会发生与样品相互作用的散射。
检测系统主要包括接收和检测这些散射电子的装置。
这些散射电子被放大并转换为电子信号。
5.显示系统:收集到的电子信号经过处理,通过显示设备(如计算机显示器)以图像的形式呈现。
SEM的使用方法:1.样品制备:首先,样品需要被制备成薄片、薄片或粉末的形式。
然后,样品需要被金属喷溅、真空蒸镀或冷冻切片等方法进行表面处理。
2.调整SEM系统参数:选择合适的加速电压、工作距离和聚焦电流等参数,以获得适当的分辨率和成像深度。
不同的样品可能需要不同的参数设置。
3.放置样品:将制备好的样品放置在样品台上,并使用微调机械装置进行调整,使样品可以位于所需的位置。
4.获取图像:打开SEM系统,开始获取图像。
在整个过程中,可以根据需要调整聚焦、缩放和对比度等参数,以获得清晰的图像。
扫描电子显微镜(SEM)操作课件资料
3
How to get an image?
Electron gun
125868eelleeccttrroonnss!!
Detector
Image
④样品室:放置样品台和信号探测器,样品台用 来固定样品,可作平移(x+y)、倾斜和转动等运 动,通常是单台,也有多台的。还可在样品室中 装上附件,对样品进行加热、冷冻和机械性能试 验等。新型SEM的样品台,除了可手动操作外, 也可通过软件进行数字化操作,可记忆观察位置 和观察条件,随时找回所记忆的位置和条件,非 常方便。此外用红外CCD动态监控样品台的移动。
2 month life is not uncommon.
2
电子枪特性比较
灯丝材料
W灯丝 钨丝
灯丝工作温度(K) 尖端半径(m) 发射源直径(nm) 图像分辨率(nm)
2800 50~100
~104 3.0
LaB6灯丝 冷场
Schottky
LaB6晶体 钨单晶 钨单晶表面镀ZrO2
(310)
(100)
二次电子能量低,加上一个5~10 kV的正压就可将 样品上方绝大部分二次电子收集(引向闪烁体),信 号收集率高,图像细节清晰。背散射电子能量高,运 动方向不易偏转,因此信号收集效率较低。
一般设有两个显示通道:一个用来观察,一个用来 照相记录。观察用100×100 mm2荧光屏一般有500扫描 线,扫描1帧需要1秒。照相记录用显像管要求有800~ 1000线,照相时采用慢速扫描。
常规探测器和高分辨(In-Lens)探测器成像对比
常规探测器 In-Lens探测器
电子的能量过滤探测
SE探测
过滤SE
In-Lens SE探测器
SEM扫描电子显微镜基础知识
扫描电子显微镜(Scanning Electron Microscope)基础知识一、扫描电子显微镜的工作原理扫描电镜是用聚焦电子束在试样表面逐点扫描成像。
试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。
其中二次电子是最主要的成像信号。
由电子枪发射的能量为 5 ~ 35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。
聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。
二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。
二、扫描电镜具有以下的特点(1) 可以观察直径为0 ~ 30mm的大块试样(在半导体工业可以观察更大直径),制样方法简单。
(2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。
(3) 放大倍数变化范围大,一般为 15 ~ 200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。
(4) 具有相当高的分辨率,一般为 3.5 ~ 6nm。
(5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。
采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。
(6) 可进行多种功能的分析。
与 X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。
(7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。
三、扫描电镜的主要结构1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。
SEM扫描电子显微镜知识
SEM扫描电子显微镜知识扫描电子显微镜知识A—Z / SEM的构造扫描电子显微镜(Scanning Electron Microscope:SEM)是观察样品表面的装置。
用很细的电子束(称为电子探针)照射样品时,从样品表面会激发二次电子,在电子探针进行二维扫描时,通过检测二次电子形成一幅图像,就能够观察样品的表面形貌。
SEM的构造装置的结构SEM由形成电子探针的电子光学系统、装载样品用的样品台、检测二次电子的二次电子检测器、观察图像的显示系统及进行各种操作的操作系统等构成(图1),电子光学系统由用于形成电子探针的电子枪、聚光镜、物镜和控制电子探针进行扫描的扫描线圈等构成,电子光学系统(镜筒内部)以及样品周围的空间为真空状态。
图1 SEM的基本结构1图2 电子枪的构造图电子枪电子枪是电子束的产生系统,图2是热发射电子枪的构造图。
将细(0.1 mm左右)钨丝做成的灯丝(阴极)进行高温加热(2800K左右)后,会发射热电子,此时给相向设置的金属板(阳极)加以正高圧(1~30kV),热电子会汇集成电子束流向阳极,若在阳极中央开一个孔,电子束会通过这个孔流出,在阴极和阳极之间,设置电极并加以负电圧,能够调整电子束的电流量,在这个电极(被称为韦氏极)的作用下,电子束被细聚焦,最细之处被称为交叉点(Crossover),成为实际的光源(电子源),其直径为15~20μm。
以上说明的是最常用的热发射电子枪,此外还有场发射电子枪和肖特基发射电子枪等。
热发射电子枪的阴极除使用钨丝外,还使用单晶六硼化镧(LaB6),LaB6由于活性很强,所以需要在高真空中工作。
2透镜的构造电子显微镜一般采用利用磁铁作用的磁透镜。
当绕成线圈状的电线被通入直流电后,会产生旋转对称的磁场,对电子束来说起着透镜的作用。
由于制作强磁透镜(短焦距的透镜)需要增加磁力线的密度,如图3所示,线圈的周围套有铁壳(轭铁),磁力线从狭窄的开口中漏洩出来,开口处被称作磁极片(极靴),经精度极高的机械加工而成。