(word完整版)人教版高一数学必修三测试题
(完整版)数学必修三全册试卷及答案,推荐文档

19.(12 分)你有一箱牛奶内装 6 盒,如果其中有 2 盒已经过期,问你从中随机拿出 2 盒, 拿到过期牛奶的概率有多大? 0.6 20.(12 分)如图是某市抽取的 100 户居民月使用水量(单位顿)的频率分布直方图,各 组频率分别是 0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02。
是否使用共享单车作为交通工具,调查的结果如表所示,则该小区居民交通工具为共享单
车的人数为 9500
.
第 II 卷(非选择题)
3、解答题(70 分)
17. (10 分)甲乙两台机床同时生产一种零件,10 天中,两台机床每天生产的次品数分别 是:
甲0 1 乙2 3
02 11
20 3 1 2 4 02 1 1 0 1
相同,现从中随机取 2 个小球,则取出的小球标注的数字之和为 3 或 6 的概率是( B )
1
A.
B. 3
1
C.
1
D.
12
10
5
10
6. 高三毕业时,甲、乙、丙、丁四位同学站成一排照相留念,则甲丙相邻的概率为( A )
1
1
A.
B.
2
3
2
C.
3
1
D.
4
7. 将 x 2005 输入如下图所示的程序框图得结果( A )
一、单选题(60 分)
第 I 卷(选择题)
1. 某班级有50 名学生,其中有30 名男生和20 名女生,随机询问了该班五名男生和五名 女生在某次数学测验中的成绩,五名男生的成绩分别为116 , 124 , 118 , 122 , 120 ,五名女生的成绩分别为118 , 123 , 123 , 118 , 123 ,下列说法一定正确的
新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
人教版高中数学高一A数学必修3测试卷(一)

高中同步测试卷(一)单元检测 算法与程序框图 (时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列关于程序框图的说法正确的是( ) A .程序框图是描述算法的图形语言B .在程序框图中,一个判断框最多只能有两个退出点C .程序框图虽可以描述算法,但不如用自然语言描述算法直观D .程序框图和流程图不是一个概念 2.已知如图是算法程序框图的一部分其中含条件结构的是( )A .①②B .①③C .②③D .①②③3.在如图所示的程序框图中,若输入m =4,n =10,则输出a ,i 的值别是( ) A .12,4 B .16,5 C .20,5 D .24,6第3题图 第5题图4.下列问题中,可以只用顺序结构就能解决的是( ) A .求关于x 的方程ax 2+bx +c =0的根B .求函数f (x )=⎩⎪⎨⎪⎧x 2(x ≥0)x (x <0)的值C .求1+4+7+10+13的值D .求一个数x 的绝对值5.按照如图所示的程序框图运行,已知输入x 的值为1+log 23,则输出y 的值为( ) A.112 B.38 C.712 D.1124 6.如果执行如图所示的程序框图,那么输出的S 等于( ) A .2 550 B .-2 550 C .2 548 D .-2 552第6题图 第7题图7.如图所示,若f (x )=x 2,g (x )=log 2x ,输入x =0.25,则输出h (x )=( ) A .0.25 B .2 C .-2 D .-0.258.如图所示是计算12+14+16+…+120的值的一个程序框图,其中在判断框内应填入的条件是( )A .i ≤10B .i >10C .i <20D .i >20第8题图 第9题图 9.执行如图所示的程序框图,输出的S 值为( ) A .1 B .3 C .7 D .1510.阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( )A .S =2i -2B .S =2i -1C .S =2iD .S =2i +411.若如图所示的框图所给的程序运行结果为S =35,那么判断框中应填入的关于k 的条件是( )A .k =7?B .k ≤6?C .k <6?D .k >6?第11题图第12题图12.若执行如图所示的程序框图,输出S的值为4,则判断框中应填入的条件是() A.k<14? B.k<15? C.k<16? D.k<17?题号123456789101112答案二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若某程序框图如图所示,则该程序运行后输出的k的值是________.14.如图所示的程序框图是变换两个变量的值并输出,则图中①处应为________.第13题图第14题图第15题图第16题图15.阅读如图所示的程序框图,若输出S=30,则在判断框内应填入________.16.如图所示,该程序框图运行后输出的结果为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)阅读如图所示的程序框图,若输出y的值为0,则输入的x值是多少?18.(本小题满分12分)设计求经过任意两点P1(x1,y1),P2(x2,y2)的直线的斜率的算法,并画出相对应的程序框图.19.(本小题满分12分)阅读右边的程序框图,运行相应的程序,试求输出i的值.20.(本小题满分12分)给出50个数1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推,要求计算这50个数的和,请画出程序框图.21.(本小题满分12分)画出求满足1×3×5×7×…×n>10 000的最小自然数n的程序框图.22.(本小题满分12分)某小区每月向居民收取卫生费,计费方法是:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费,并画出程序框图.参考答案与解析1.[导学号10390001] 解析:选A.由于存在一种多分支判断,所以一个判断框可能有多个退出点,所以B 选项是错误的;相对于自然语言,用程序框图描述算法的优点主要就是直观、形象,容易理解,在步骤表达上简单了许多,所以C 选项是错误的;程序框图就是流程图,所以D 选项也是错误的.A 选项正确.2.解析:选C.①只含顺序结构,②③均有判断框,都含有条件结构.3.解析:选C.输入m =4,n =10,i =1;a =4×1=4,10不能整除4,i =1+1=2;a =4×2=8,10不能整除8,i =2+1=3;a =4×3=12,10不能整除12,i =3+1=4;a =4×4=16,10不能整除16,i =4+1=5;a =4×5=20,10能整除20;输出20,5,结束.故选C.4.解析:选C.A 、B 、D 项还需用到条件结构.5.[导学号10390002] 解析:选A.因为x =1+log 23<4, 所以x =x +1=2+log 23, 所以y =⎝⎛⎭⎫122+log 23=14×13=112. 6.解析:选C.这个程序是计算-2+0+2+4+…+100的算法,结果为2 548.故选C. 7.[导学号10390003] 解析:选C.h (x )取f (x )与g (x )中的较小值,即h (0.25)=min{f (0.25),g (0.25)},g (0.25)=log 20.25=-2,f (0.25)=(14)2=116,故选C.8.解析:选A.计算的值是10个数的和. 当i ≤10时成立继续循环, 当i =11时跳出循环体,此时输出的S 就是这10个数的和. 9.解析:选C.程序框图运行如下:k =0<3,S =0+20=1,k =1<3;S =1+21=3,k =2<3;S =3+22=7,k =3.输出S =7. 10.解析:选C.当i =2时,S =2×2+1=5<10;当i =3时,仍然循环,排除D ;当i =4时,S =2×4+1=9<10; 当i =5时,不满足S <10,即此时S ≥10,输出i =5.此时A 项中,S =2×5-2=8,B 项中,S =2×5-1=9,C 项中,S =2×5=10,故C 正确.11.[导学号10390004] 解析:选D.初始值:k =10,S =1,判断条件成立; S =1+10=11,k =10-1=9,判断条件成立; S =11+9=20,k =9-1=8,判断条件成立; S =20+8=28,k =8-1=7,判断条件成立;S =28+7=35,k =7-1=6,判断条件不成立,输出S =35,结束算法.由此可得判断框中应填k >6?,故选D.12.解析:选C.初始条件S =1,k =2;运行第一次,S =1·log 23=log 23,k =k +1=3;运行第二次,S =log 23·log 34,k =k +1=4;运行第三次,S =log 23·log 34·log 45,k =k +1=5;运行第四次,S =log 23·log 34·log 45·log 56,k =k +1=6;运行第五次,S =log 23·log 34·log 45·log 56·log 67,k =k +1=7;…;运行第十四次,S =log 23·log 34·log 45·log 56·log 67…log 1516=4,k =k +1=16.不满足条件,停止运行,输出的S =4,所以判断框中应填入的条件是k <16?,故选C.13.解析:初始值:k =2, 执行“k =k +1”得k =3,a =43=64,b =34=81,a >b 不成立; k =4,a =44=256,b =44=256,a >b 不成立;k =5,a =45=1 024,b =54=625,a >b 成立,此时输出k =5. 答案:514.解析:交换两个变量的值,需引入第三个量,将其中一个量的值赋给第三个量后,将第二个量的值赋给第一个量,再将第三个量的值赋给第二个量.答案:x =y15.[导学号10390005] 解析:由框图可知,算法结构为直到型循环结构,因为30=12+22+32+42,所以条件应为“i >4?”(或i ≥5?).答案:i >4?(或i ≥5?)16.解析:当a =4时,退出循环,b =23=8. 答案:817.解:由题意,⎩⎪⎨⎪⎧x >1x 2-4x +4=0或⎩⎪⎨⎪⎧x <1,x =0,解得x =2或0. 18.解:算法设计如下: 第一步,输入x 1,y 1,x 2,y 2.第二步,如果x 1=x 2,输出“斜率不存在”,结束算法;否则,执行第三步. 第三步,k =y 2-y 1x 2-x 1.第四步,输出k . 程序框图如下:19.[导学号10390006] 解:第一次循环:i =1,a =2, 第二次循环:i =2,a =5, 第三次循环:i =3,a =16,第四次循环:i =4,a =65>50,循环结束. 所以输出i 的值为4.20.解:程序框图如图所示:21.解:程序框图如图所示:22.[导学号10390007]解:程序框图如下:。
人教A版高中数学必修三试卷高一年级 数学学科 试 题.docx

高中数学学习材料马鸣风萧萧*整理制作七校联考高一年级 数学学科 试 题一.选择题(共12小题,每小题4分,共48分)1.330sin 的值为( ) A .21-B .21C .23-D .232.下列四式不能化简为AD 的是( )A .;)++(BC CD AB B .);+)+(+(CM BC MB AD C .;-+BM AD MB D .;+-CD OA OC3. 把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .sin(2)3y x π=-,x R ∈ B.sin()26x y π=+,x R ∈C.sin(2)3y x π=+,x R ∈D.sin(2)32y x π=+,x R ∈ 4.已知)sin ,(cos αα=a ,)sin ,(cos ββ=b ,且()0cos =-βα,那么=+b a ( )A .2B .22C .2D .3 5.已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎫α+π2=( ). A .-104 B .-64 C .64 D .1046.已知船A 在灯塔C 北偏东85且到C 的距离为km 2,船B 在灯塔C 西偏北25且到C 的距离为km 3,则A ,B 两船的距离为( )A .km 32B .km 23 C..km 15 D .km 13 7.函数)(x f y =的图象如图所示,则)(x f y =的解析式为( )A .22sin -=x yB .13cos 2-=x yC .1)52sin(--=πx yD . )52sin(1π--=x y8.在△ABC 中,若22tan tan ba B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形 C .不能确定 D .等腰三角形9.==-αααα2cos 则,55cos sin 是第一象限角,已知( ) A. 53-B. 53±C.54D.54± 10.已知ABC ∆的重心为G ,内角A ,B ,C 的对边分别为c b a ,,,若033=++GC c GB b GA a ,则角A 为( ) A .4π B .6π C .3π D .2π11. 在△ABC 中,23,4(0)a m b m m ==>,如果三角形有解,则A 的取值范围是( )A .060A ︒<≤︒B .030A ︒<<︒10π 207πo xy21 ABCMC .090A ︒<<︒D .3060A ︒<<︒12. 如图,O 为△ABC 的外心,BAC AC AB ∠==,2,4为钝角,M 是边BC 的中点,则AO AM ⋅的值( )A . 4 B..6 C .7 D . 5二.填空题(本大题共6小题,单空题每小题4分,多空题每小题6分每空3分,共28分,将答案填在答题卷的相应位置)13.一扇形的周长等于4cm ,面积等于12cm ,则该扇形的半径为 ,圆心角为 .14.化简()()=+-⎪⎭⎫ ⎝⎛---+αππααπαπs i n 32s i n c os )2c o s (3 ,=++ 35tan 25tan 335tan 25tan .15.已知向量a 与b 的夹角为120°,且|a |=2, |b |=5,则(2a -b )·a =16.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a+b+c=20,三角形面积为310, 且角60=A ,则边a = ________17.在ABC ∆中,90=C ,3=CB ,点M 是 AB 上的动点(包含端点),则CB MC ⋅的取值范围为 . 18.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,则如下结论中不正确的序号是_________________ ①、图象C 关于直线11π12x =对称; ②、图象C 关于点2π03⎛⎫⎪⎝⎭,对称;③、函数()f x 在区间π5π1212⎛⎫-⎪⎝⎭,内是增函数; ④、由3sin 2y x =的图像向右平移π3个单位长度可以得到图象C三.解答题(本大题有4小题,前2题每题10分,后2题每题12分,共44分.解答应写出文字说明,证明过程或验算步骤.) 19.(本题10分)已知a 、b 、c 是同一平面内的三个向量,其中a =(1,-2). (1)若|c |52=,且a c //,求c 的坐标;(2)若|b |=1,且a b +与2a b -垂直,求a 与b 的夹角θ的余弦值.20.(本题10分)已知A,B,C 的坐标分别为)sin 3,cos 3(),4,0(),0,4(ααC B A . (1)若)0,(πα-∈且||||BC AC =,求α的值;(2)若0=⋅BC AC ,求αααtan 12sin sin 22++21.(本题12分)已知函数1cos sin 3cos )(2+-=x x x x f .(1)求函数)(x f 的最小正周期和单调递增区间; (2)若65)(=θf ,)3π23π(,∈θ,求θ2sin 的值.22.(本小题满分12分)在ABC ∆中,角C B A ,,的对边分别为c b a ,,,若()()()C A c B A b a sin sin sin sin -=-+. (1)求角B 的大小;(2)设BC 中点为D ,且3=AD ,求c a 2+的最大值.2015学年第二学期期中杭州地区七校联考高一年级数学学科参考答案一.选择题 1 2 3 4 5 6 7 8 9 10 11 12 ACCCBDDBABAD二.填空题13. 1 , 2 14. 1-,315. 13 16. 717. []09,- 18. ④ 三.解答题19. 解:(1)设),(y x c =,由a c //和52||=c 可得: ⎩⎨⎧2212020y x x y ⋅+⋅=+= , ……………….. 2分 ∴ ⎩⎨⎧24x y =-= 或 ⎩⎨⎧24x y ==- ………………..4分 ∴(2,4)c =-,或(2,4)c =- ………………… 5分 (2)()(2),a b a b +⊥-∴()(2)0a b a b +⋅-= ……… 7分即2220,a a b b -⋅-=∴22||2||0a a b b -⋅-=,∴ 520a b -⋅-=,所以3a b ⋅=, ………….8分 ∴35cos 5||||a b a b θ⋅==⋅ …………10分 20.解:(1)由已知:)sin 3,4cos 3αα-=(AC ,)4sin 3,cos 3(-=ααBC …………..1分BCAC =()()()()4sin 3cos 3sin 34cos 32222--+=+∴αααα化简得:1tan ,cos sin ==ααα即………………..3分)0,(πα-∈ 43πα-=∴……………………5分 (2)0=⋅BC AC 0)4sin 3(sin 3)4sin 3(cos 3=-+-∴αααα43cos sin =+αα ………….7分 两边平方得:167cos sin 2-=αα ………………..8分又αααtan 12sin sin 22++=ααααααcos cos sin cos sin 22sin 2++=167cos sin 2-=αα………………….10分 21. 解:(1)1cos sin 3cos )(2+-=x x x x f12sin 2322co 1+-+=x x s ....................2分 23)32cos(++=πx . ……………..4分 函数最小正周期T=π ……………..5分由ππππk x k 2322≤+≤-,得632ππππ-≤≤-k x k (Z k ∈). ∴函数)(x f 的单调递增区间是]6,32[ππππ--k k (Z k ∈).…………………………………………….7分(2)∵65)(=θf ,∴6523)32cos(=++πx ,32)32cos(-=+πθ.∵⎪⎭⎫⎝⎛∈323ππθ,,∴)35,(32πππθ∈+,35)32(cos 1)32(sin 2-=+--=+πθπθ. ………………….9分 ∴)32cos(23)32sin(21)332sin(2sin πθπθππθθ+-+=-+=6532-=…………………………………12分 22.解:(1)()()()C A c B A b a sin sin sin sin -=-+ 所以由正弦定理可得()()()c a c b a b a -=-+ , 即ac b c a =-+222,…………………2分由余弦定理可知212cos 222=-+=ac b c a B ,…………………………4分 因为()π,0∈B ,所以3π=B …………………………5分(2)设θ=∠BAD ,则在ABD ∆中, 由3π=B 可知⎪⎭⎫ ⎝⎛∈32,0πθ, 由正弦定理及3=AD 可得23sin32sin sin ==⎪⎭⎫⎝⎛-=πθπθADAB BD,………………………7分所以θsin 2=BD ,θθθπsin cos 332sin 2+=⎪⎭⎫⎝⎛-=AB ,…………………………8分 所以⎪⎭⎫⎝⎛+=+=+6sin 34sin 6cos 322πθθθc a ,…………………………10分 由⎪⎭⎫⎝⎛∈32,0πθ可知⎪⎭⎫⎝⎛∈+65,66πππθ,所以当26ππθ=+, 即3πθ=时,c a 2+的最大值为34.…………………………12分。
(完整word)数学必修三综合测试题[含答案解析],推荐文档
![(完整word)数学必修三综合测试题[含答案解析],推荐文档](https://img.taocdn.com/s3/m/418e28cfe518964bcf847ceb.png)
数学必修三综合测试题一、选择题1.算法的三种基本结构是( )A .顺序结构、模块结构、条件分支结构B .顺序结构、条件结构、循环结构C .模块结构、条件分支结构、循环结构D .顺序结构、模块结构、循环结构2. 一个年级有12个班,每个班有学生50名,并从1至50排学号,为了交流学习经验,要求每班学号为14的同学留下进行交流,这里运用的是( )A.分层抽样B.抽签抽样C.随机抽样D.系统抽样3. 某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( )A.3人B.4人C.7人D.12人4.一个容量为20的样本数据,分组后组距与频数如下表.则样本在区间(-∞,50)上的频率为( )A.0.5B.0.25C.0.6D.0.75、把二进制数)2(111化为十进制数为 ( )A 、2B 、4C 、7D 、8 6. 抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为 ( )A.至多两件次品B.至多一件次品C.至多两件正品D.至少两件正品7. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率是.( )A.21B.31 C.41 D.不确定 8.甲、乙2人下棋,下成和棋的概率是21,乙获胜的概率是31,则甲不胜的概率是( ) A. 21 B.65 C.61 D.32 9.某银行储蓄卡上的密码是一种4位数号码,每位上的数字可在0到9中选取,某人只记得密码的首位数字,如果随意按下一个密码,正好按对密码的概率为( )A . 4101 B. 3101 C.2101 D.101 10. 甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球个数的标准差为0.3.下列说法正确的个数为( )①甲队的技术比乙队好 ②乙队发挥比甲队稳定③乙队几乎每场都进球 ④甲队的表现时好时坏A.1B.2C.3D.411.已知变量a ,b 已被赋值,要交换a, b 的值,应采用下面( )的算法。
人教版高中数学高一A数学必修3测试卷(十五)

高中同步测试卷(十五)模块综合检测(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.101 110(2)转化为等值的八进制数是( ) A .46(8) B .56(8) C .67(8) D .76(8)2.在1 000个有机会中奖的号码(编号为000~999)中,按照随机抽样的方法确定后两位数为88的号码为中奖号码,该抽样运用的抽样方法是( )A .随机数表法B .系统抽样C .分层抽样D .抽签法3.为了了解高三学生的数学成绩,抽取了某班60名学生的数学成绩,将所得数据整理后,画出其频率分布直方图如图,已知从左到右各长方形高的比为2∶3∶5∶6∶3∶1,则该班学生数学成绩在[80,100)之间的学生人数是( )A .32B .27C .24D .334.某中学高三年级从甲、乙两个班级中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .105.在一个棱长为3 cm 的正方体的表面涂上颜色,将其适当分割成棱长为1 cm 的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是( )A.49B.827C.29D.1276.如图所示是一个算法的程序框图,该算法的输出结果是( ) A.12 B.23 C.34 D.457.将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设两条直线l 1:ax +by =2,l 2:x +2y =2,l 1与l 2平行的概率为p 1,相交的概率为p 2,则p 2-p 1的大小为( )A.3136B.56C .-56D .-31368.下表是某厂1~4月份x 1 2 3 4 用水量y4.5432.5用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y ^=-0.7x +a ,则a 的值为( )A .5.25B .5C .2.5D .3.59.如图是在元宵晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,410.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,则弦AA ′的长度大于等于半径长度的概率为( )A.23B.12C.32D.1411.从分别写有数字1,2,3,…,9的9张卡片中任意取出两张,观察上面的数字,则两数积是完全平方数的概率为( )A.19B.29C.13D.5912.执行下边的程序框图,若输出的S =127,则条件①可以为( )A .n ≤5B .n ≤6C .n ≤7D .n ≤8 题号 123456789101112答案二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.在某路段检测点对200辆汽车的车速进行检测,检测结果表示为频率分布直方图如图,则车速不小于89.9 km/h 的汽车约有 ________辆.第13题图 第16题图 14.将一枚骰子先后抛掷两次,观察向上的点数.设抛掷两次向上的点数分别为a 和b ,则等式2a -b =1成立的概率为________.15.有20张卡片,每张卡片上分别标有两个连续的自然数K ,K +1,其中K =0,1,2,…,19.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)大于14”为A ,则P (A )=________.166名主力队员在最近三场比赛中投进的三分球个数如下表所示:队员 123456三分球个数a 1 a 2 a 3 a 4 a 5 a 6如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填________,输出的s =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)袋中有大小、形状相同的红球、黑球各一个,现依次有放回地随机摸取3次,每次摸取一个球.(1)试问:一共有多少种不同的结果?请列出所有可能的结果;(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.18.(本小题满分12分)高三年级进行模拟考试,统计某班参加考试的40名学生的成绩如分数段[70,90)[90,100)[100,120)[120,150]人数5 a 15b规定分数在90分及以上为及格,120分及以上为优秀,成绩高于85分低于90分的学生为希望生.已知该班希望生有2名.(1)从该班所有学生中任选1名,求其成绩及格的概率;(2)当a=11时,从该班所有学生中任选1名,求其成绩优秀的概率;(3)从分数在[70,90)的5名学生中,任选2名学生参加辅导,求其中恰有1名希望生的概率.19.(本小题满分12分)如图,一张圆形桌面被分成了M,N,P,Q四个区域,∠AOB=30°,∠BOC=45°,∠COD=60°.将一粒小石子随机扔到桌面上,假设小石子不落在线上,求下列事件的概率.(1)小石子落在区域M内的概率;(2)小石子落在区域M或区域N内的概率;(3)小石子落在区域Q内的概率.20.(本小题满分12分)某同学参加省学业水平测试,物理、化学、生物获得等级A 和获得等级不是A 的机会相等,物理、化学、生物获得等级A 的事件分别为W 1,W 2,W 3,物理、化学、生物获得等级不是A 的事件分别为W 1-,W 2-,W 3-.(1)试列举该同学这次水平测试中物理、化学、生物成绩的所有可能结果(如三科成绩均为A 记为(W 1,W 2,W 3));(2)求该同学参加这次水平测试获得两个A 的概率;(3)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于85%,并说明理由.21.(本小题满分12分)某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔1小时抽一包产品,称其重量(单位:克)是否合格,分别记录6个抽查数据,获得重量数据的茎叶图如图所示:(1)根据样品数据,计算甲、乙两个车间产品重量的平均数与方差,并说明哪个车间的产品的重量相对较稳定;(2)若从乙车间6件样品中随机抽取2件,求所抽取的2件样品的重量之差不超过2克的概率.22.(本小题满分12分)某高校在2015年的自主招生考试成绩中随机抽取100位学生的笔试成绩,按成绩分组,得到的频率分布表如下所示:(1)请先求出频率分布表中①、②位置相应的数据,再完成下列频率分布直方图(如图);组号分组频数频率第1组[160,165)50.050第2组[165,170)①0.350第3组[170,175)30②第4组[175,180)200.200第5组[180,185]100.100合计100 1.000(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6位学生进入第二轮面试,求第3、4、5组每组各抽取多少位学生进入第二轮面试;(3)在(2)的前提下,学校决定在6位学生中随机抽取2位学生接受A考官进行面试,求第4组至少有一位学生被考官A面试的概率.参考答案与解析1.[导学号10390095]解析:选B.因为101 110(2)=1×25+1×23+1×22+1×2=46,46=8×5+6,5=8×0+5,所以46=56(8),故选B.2.解析:选B.由系统抽样的定义可知,该抽样符合系统抽样. 3.解析:选D.数学成绩在[80,100)之间的频率为 5+62+3+5+6+3+1=1120.频数为60×1120=33,故该班学生数学成绩在[80,100)之间的人数为33人.4.解析:选B.因为85×7=2×70+3×80+2×90+30+x ,所以x =5.又因为乙班学生成绩的中位数是83,所以y =3,所以x +y =5+3=8.故选B.5.[导学号10390096] 解析:选C.依题意得,共有27个棱长为1 cm 的小正方体,其中表面仅有一个面涂有颜色的共有6个,因此所求的概率等于627=29,故选C.6.解析:选C.该框图执行算法11×2+12×3+13×4=34.7.解析:选A.由题意知本题是古典概型的问题,试验发生包含的事件是一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,共有36种结果.要使两条直线l 1:ax +by =2,l 2:x +2y =2平行,则a =2,b =4或a =3,b =6,共有2种结果;a =1,b =2时,两直线重合;其他33种结果,都使得两条直线相交. 所以两条直线平行的概率是p 1=236,两条直线相交的概率是p 2=3336,所以p 2-p 1=3136.8.解析:选A.线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.9.[导学号10390097] 解析:选C.去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6,因此选C.10.解析:选A.设圆心为O ,连接AO ,A ′O (图略),在△AOA ′中,当且仅当∠AOA ′=60°时,弦AA ′的长度等于半径,故由圆的对称性及几何概型可知其概率P =360°-2×60°360°=23,故选A. 11.解析:选A.从9张卡片中任取两张,所有的取法种数为36,其中两数的积是完全平方数有1×4=4,1×9=9,2×8=16,4×9=36,共4种.因为是“任取两张”,所以每一种取法都是等可能的,故利用古典概型的概率计算公式得P =436=19.12.解析:选B.据程序框图令S =1+21+22+…+2n =2n +1-1=127,解得n =6,故①处应填入条件为n ≤6,故选B.13.[导学号10390098] 解析:频率=频率组距×组距=(0.02+0.01)×10=0.3,频数=频率×样本总数=0.3×200=60(辆).答案:6014.解析:将一枚骰子先后抛掷两次的基本事件有36个,其中满足2a -b =1,即a =b 的有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共有6个,由古典概型知所求概率P =636=16. 答案:1615.解析:对于大于14的数字之和的情况通过列举可得有5种情况,即7,8;8,9;16,17;17,18;18,19.而基本事件有20种,因此P (A )=14.答案:1416.解析:由题意可知,程序框图是要统计6名队员投进的三分球的总数,由程序框图的循环逻辑知识可知,判断框应填i ≤6?,输出的结果就是6名队员投进的三分球的总数,而6名队员投进的三分球数分别为a 1,a 2,a 3,a 4,a 5,a 6,故输出的s =a 1+a 2+…+a 6.答案:i ≤6?或(i <7?) a 1+a 2+a 3+a 4+a 5+a 617.[导学号10390099] 解:(1)一共有8种不同的结果,列举如下:(红,红,红)、(红,红,黑)、(红,黑,红)、(红,黑,黑)、(黑,红,红)、(黑,红,黑)、(黑,黑,红)、(黑,黑,黑).(2)记“3次摸球所得总分为5”为事件A .事件A 包含的基本事件为(红,红,黑)、(红,黑,红)、(黑,红,红),事件A 包含的基本事件数为3.由(1)可知,基本事件总数为8, 所以事件A 的概率为P (A )=38.18.解:(1)设“从该班所有学生中任选1名,其成绩及格”为事件A ,则P (A )=40-540=78. (2)设“从该班所有学生中任选1名,其成绩优秀”为事件B ,则当a =11时,成绩优秀的学生人数为40-5-11-15=9,所以P (B )=940.(3)设“从分数在[70,90)的5名学生中,任选2名学生参加辅导,其中恰有1名希望生”为事件C .记这5名学生分别为a ,b ,c ,d ,e ,其中希望生为a ,b .从中任选2名,所有可能的情况为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,共10种.其中恰有1名希望生的情况有ac ,ad ,ae ,bc ,bd ,be ,共6种.所以P (C )=610=35.19.解:将一粒小石子随机扔到桌面上,它落在桌面上任一点的可能性都是相等的,根据几何概型的概率计算公式,可得:(1)小石子落在区域M 内的概率是S 扇形OAB S 圆O=112.(2)小石子落在区域M 或区域N 内的概率是S 扇形OAB +S 扇形OBC S 圆O =524.(3)小石子落在区域Q 内的概率是1-S 扇形OAB +S 扇形OBC +S 扇形OCD S 圆O=58.20.解:(1)该同学这次水平测试中物理、化学、生物成绩的所有可能结果有8种,分别为(W 1,W 2,W 3),(W -1,W 2,W 3),(W 1,W -2,W 3),(W 1,W 2,W -3),(W -1,W -2,W 3),(W-1,W 2,W -3),(W 1,W -2,W -3),(W -1,W -2,W -3).(2)由(1)可知,有两个A 的情况为(W -1,W 2,W 3),(W 1,W -2,W 3),(W 1,W 2,W -3),共3种,从而其概率为P =38.(3)方案一:该同学参加这次水平测试中物理、化学、生物成绩不全为A 的事件概率大于85%,理由如下:该同学参加这次水平测试中物理、化学、生物成绩不全为A 的事件有如下7种情况:(W -1,W 2,W 3),(W 1,W -2,W 3),(W 1,W 2,W -3),(W -1,W -2,W 3),(W -1,W 2,W -3),(W 1,W -2,W -3),(W -1,W -2,W -3),概率是P =78=0.875>85%.方案二:该同学参加这次水平测试中物理、化学、生物成绩至少一个为A 的事件概率大于85%,理由如下:该同学参加这次水平测试中物理、化学、生物成绩至少一个为A 的事件有如下7种情况:(W 1,W 2,W 3),(W -1,W 2,W 3),(W 1,W -2,W 3),(W 1,W 2,W -3),(W-1,W -2,W 3),(W -1,W 2,W -3),(W 1,W -2,W -3),概率是P =78=0.875>85%.21.解:(1) x -甲=16(107+111+111+113+114+122)=113,x -乙=16(108+109+110+112+115+124)=113,s 2甲=16[(107-113)2+(111-113)2+(111-113)2+(113-113)2+(114-113)2+(122-113)2]=21,s 2乙=16[(108-113)2+(109-113)2+(110-113)2+(112-113)2+(115-113)2+(124-113)2]=883,因为x -甲=x -乙,s 2甲<s 2乙, 所以甲车间的产品的重量相对较稳定.(2)从乙车间6件样品中随机抽取2件,共有15种不同的取法:(108,109),(108,110),(108,112),(108,115),(108,124),(109,110),(109,112),(109,115),(109,124),(110,112),(110,115),(110,124),(112,115),(112,124),(115,124).设A 表示随机事件“所抽取的两件样品的重量之差不超过2克”,则A 的基本事件有4种:(108,109),(108,110),(109,110),(110,112),故所求概率为P (A )=415.22.[导学号10390100] 解:(1)由题可知,第2组的频数为0.35×100=35(人),第3组的频率为30100=0.300,频率分布直方图如图所示.(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为第3组:3060×6=3(人),第4组:2060×6=2(人),第5组:1060×6=1(人),所以第3、4、5组分别抽取3人、2人、1人.(3)设第3组的3位同学为A 1,A 2,A 3,第4组的2位同学为B 1,B 2,第5组的1位同学为C 1,则从六位同学中抽两位同学有15种可能,如下:(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1),(A 3,B 2),(A 3,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1).第4组至少有一位同学入选的有:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(B 1,B 2),(A 3,B 2),(B 1,C 1),(B 2,高中数学-打印版精校版 C 1),共9种可能.所以第4组的2位同学至少有一位同学入选的概率为915=35.。
(word完整版)高中数学必修三期末测试题(2021年整理)
(word完整版)高中数学必修三期末测试题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中数学必修三期末测试题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中数学必修三期末测试题(word版可编辑修改)的全部内容。
必修三期末测试题考试时间:90分钟 试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.如果输入n =3,那么执行右图中算法的结果是( ). A .输出3B .输出4C .输出5D .程序出错,输不出任何结果2.一个容量为1 000的样本分成若干组,已知某组的频率为0。
4,则该组的频数是( ). A .400B .40C .4D .6003.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( ). A .61B .41C .31D .214.用样本估计总体,下列说法正确的是( ). A .样本的结果就是总体的结果 B .样本容量越大,估计就越精确C .样本的标准差可以近似地反映总体的平均状态D .数据的方差越大,说明数据越稳定 5.把11化为二进制数为( ). A .1 011(2)B .11 011(2)C .10 110(2)D .0 110(2)6.已知x 可以在区间[-t ,4t ](t >0)上任意取值,则x ∈[-21t ,t ]的概率是( ).(word 完整版)高中数学必修三期末测试题(word 版可编辑修改)A .61 B .103C .31D .217.执行右图中的程序,如果输出的结果是4,那么输入的只可能是( )。
最新人教版高中数学必修三测试题及答案全套
最新人教版高中数学必修三测试题及答案全套阶段质量检测(一)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *AA .0个B .1个C .2个D .3个解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.2.计算机执行下面的程序段后,输出的结果是( )a =1b =3a =a +b b =a -bPRINT a ,bA .1 3B .4 1C .0 0D .6 0解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180D .179解析:选D 10 110 011(2)=1×27+0×26+1×25+1×24+0×23+0×22+1×21+1×20=128+32+16+2+1=179.4.下图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2解析:选B当x>-1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.5.下面的程序运行后的输出结果为()A.17 B.19C.21 D.23解析:选C第一次循环,i=3,S=9,i=2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环,输出S=21,结束.6.下面的程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL 2^i >2 000 i =i -1PRINT i ENDA .8B .9C .10D .11解析:选C 由题意知,此程序为循环语句,当i =10时,210=1 024;当i =11时,211=2 048>2 000,输出结果为i =11-1=10.7.下列程序框图运行后,输出的结果最小是( )A .2 015B .2 014C .64D .63解析:选D 由题图知,若使n (n +1)2>2 015,n 最小为63.8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C.17 D.34解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.9.执行如图所示的程序框图,输出的结果为()A.55 B.89C.144 D.233解析:选B初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y =3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y =13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x =34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20 D.35解析:选B由程序框图知,初始值:n=3,x=2,v=1,i=2,第一次循环:v=4,i=1;第二次循环:v=9,i=0;第三次循环:v=18,i=-1.结束循环,输出当前v的值18.故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51. 答案:5112.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1.答案:113.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:314.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.解析:S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.答案:4三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.)15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么?(2)根据框图用“当”型循环语句编写程序.解:(1)①k<101?(k<=100?)②S=S+1k. (2)程序如下:16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:算法语句每一步骤对应于程序框图的步骤,其框图如下:17.(本小题满分12分)画出求12-22+32-42+…+992-1002的值的程序框图.解:程序框图如图所示:18.(本小题满分14分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n).(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.算法的每一步都应该是确定的,能有效执行的,并且得到确定的结果,这是指算法的( ) A .有穷性 B .确定性 C .普遍性 D .不唯一性 答案:B2.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构 答案:C3.用“辗转相除法”求得360和504的最大公约数是( ) A .72 B .36 C .24D .2520解析:选A 504=360×1+144,360=72×5+0,故最大公约数是72. 4.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析:选D 由题意知,26=3×k 1+2,解得k =8.5.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .3B .11C .38D .123解析:选B 根据框图可知第一步的运算为:a =1<10,满足条件,可以得到a =12+2=3,又因为a=3<10,满足条件,所以有a=32+2=11,因为a=11>10,不满足条件,输出结果a=11.6.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4C.2,3 D.2,9解析:选A本题主要考查条件语句的应用.输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.7.根据下面的算法,可知输出的结果S为()第一步,i=1;第二步,判断i<10是否成立,若成立,则i=i+2,S=2i+3,重复第二步,否则执行下一步;第三步,输出S.A.19 B.21C.25 D.27解析:选C该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.8.按下列程序运行的结果是()A.10.5 B.11.5C.16 D.25解析:选D A=4.5,第一个条件结构中的条件不满足,则B=6-3=3,B=3+2=5;而第二个条件结构中的条件满足,则B=5×5=25,所以运行结果为25.9.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1)B.S=S*x n+1C.S=S*nD.S=S*x n解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.10.(全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.将二进制数110 101(2)化成十进制数,结果为________,再转为七进制数,结果为________.解析:110 101=1×25+1×24+0×23+1×22+0×21+1=32+16+0+4+0+1=53.110 101(2)=104(7).答案:53104(7)12.如图所示,程序框图(算法流程图)的输出结果是________.解析:第一次进入循环体有T =0+0,第二次有T =0+1,第三次有T =0+1+2,……,第n 次有T =0+1+2+…+n -1(n =1,2,3,…),令T =n (n -1)2>105,解得n>15,故n =16,k =15.答案:1513.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据为8,t ≤4不成立, ∴c =0.2+0.1(8-3)=0.7. 答案:0.714.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析:第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案:7三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)阅读下列两个程序,回答问题. ①x =3 y =4 x =y PRINT x ,y END(1)上述两个程序的运行结果是:①________________;②_____________________________________________. (2)上述两个程序中的第三行有什么区别? 解:(1)两个程序的运行结果是①4 4;②3 3;(2)程序①中的x =y 是将y 的值4赋给x ,赋值后,x 的值变为4,程序②中的y =x 是将x 的值3赋给y ,赋值后y 的值变为3.16.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值.解:f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789, v 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3+0=21 324, ∴f (3)=21 324.17.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.②x =3 y =4 y =x PRINT x ,yEND解:由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10.程序框图,如图所示:程序如下:18.(本小题满分14分)设计一个算法,求f(x)=x 6+x 5+x 4+x 3+x 2+x +1,当x =2时的函数值,要求画出程序框图,并写出程序.解:则程序框图为:程序为:S =0i =0WHILE i ≤6S =S +2^i i =i +1WEND PRINT S END阶段质量检测(二)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6.10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12.答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100, x乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43, s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定. 16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为 y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a ×0.5, 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是() A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:选D由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x ′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4 解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1个B.2个C.3个D.4个解析:选D因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,①也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,①正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,①正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是()A.①B.②C.③D.①②③④解析:选D运用计算公式x=1n(x1+x2+…+x n),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n,则n×(0.1+0.12)×1=11,所以n=50,故所求的城市数为50×0.18=9.答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株. (1)列出频率分布表; (2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几? 解:(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, ∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x 2i =280,∑i =17x i y i =3 487, (1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17x i y i -7x - y-∑i =17x 2i -7x2=3 487-7×6×79.86280-7×62≈4.75. a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).阶段质量检测(三)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) A .对立事件 B .互斥但不对立事件 C .不可能事件D .必然事件解析:选B 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.2.已知集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B .12C.13D .16解析:选C 从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所以所求概率P =26=13.3.在区间[-3,3]上任取一个实数,所得实数是不等式x 2+x -2≤0的解的概率为( ) A.16 B .13C.12D .23解析:选C 由x 2+x -2≤0,得-2≤x ≤1, 所求概率为1-(-2)3-(-3)=12.4.在正方体ABCD A 1B 1C 1D 1中随机取点,则点落在四棱锥O ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13 B .16C.12D .14解析:选B 设正方体的体积为V ,则四棱锥O ABCD 的体积为V6,所求概率为V 6V =16.5.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 子集的概率是( ) A.35 B .25C.14D .18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.6.(全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13B.12C.23D.56解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19 B .29C.13D .49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有⎩⎪⎨⎪⎧m =1n =1,⎩⎪⎨⎪⎧ m =1n =2,⎩⎪⎨⎪⎧ m =1n =3,⎩⎪⎨⎪⎧ m =2n =1,⎩⎪⎨⎪⎧ m =2n =2,⎩⎪⎨⎪⎧ m =2n =3,⎩⎪⎨⎪⎧ m =3n =1,⎩⎪⎨⎪⎧m =3n =2,共8种,故概率为29.8.甲、乙、丙三人在3天节假日中值班,每人值班1天,则甲排在乙的前面值班的概率是( ) A.16 B .14C.13 D .12解析:选C 甲、乙、丙三人在3天中值班的情况为甲,乙,丙;甲,丙,乙;丙,甲,乙;丙,乙,甲;乙,甲,丙;乙,丙,甲共6种,其中符合题意的有2种,故所求概率为13.9.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个卡片,从中无放回...地每次抽一张卡片,共抽2次,则取得两张卡片的编号和不小于...14的概率为( )A.128 B .156C.356D .114 解析:选D 从中无放回地取2次,所取号码共有56种,其中和不小于14的有4种,分别是(6,8),(8,6),(7,8),(8,7),故所求概率为456=114.10.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各。
高一数学人教A版必修3章末综合测评2 Word版含解析
章末综合测评(二) 统计
(时间分钟,满分分)
一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的)
.某学校为了调查高一年级的名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取名同学进行抽查;第二种由教务处对该年级的学生进行编号,从到,抽取学号最后一位为的同学进行调查.则这两种抽样的方法依次是( )
.分层抽样,简单随机抽样
.简单随机抽样,分层抽样
.分层抽样,系统抽样
.简单随机抽样,系统抽样
【解析】由抽样方法的概念知,第一种是简单随机抽样,第二种是系统抽样.
【答案】
.小波一星期的总开支分布如图①所示,一星期的食品开支如图②所示,则小波一星期的鸡蛋开支占总开支的百分比为( )
图
..
.
【解析】由题图②知,小波一星期的食品开支为元,其中鸡蛋开支为元,占食品开支的,而食品开支占总开支的,所以小波一星期的鸡蛋开支占总开支的百分比为.
【答案】
.某同学使用计算器求个数据的平均数时,错将其中一个数据输入为,则由此求出的平均数与实际平均数的差是( ) ..-
.-
【解析】少输入,=,平均数少,求出的平均数减去实际平均数等于-.
【答案】
.某校现有高一学生人,高二学生人,高三学生人,学校学生。
人教版高一数学必修三测试题
高一数学(必修三)一 选择题(每题5分,共60分) 1.下列四个数中,数值最小的是( )A .25(10)B .54(6)C .10111(2)D .26(8) 2.执行如图所示的算法框图,输出的M 值( )A .2B .12C 、-1D .-23.给出以下四个问题:①输入一个数x , 输出它的相反数.②求面积为6的正方形的周长.③求三个数,,a b c 中输入一个数的最大数.④求函数1,0()2,0x x f x x x -≥⎧=⎨+<⎩的函数值.其中不需要用条件语句来描述其算法的有( )A .1个B .2个C .3个D .4个4.如图是一个算法的程序框图,当输入的x 值为3时,输出y 的结果恰好是31,则空白处的关系式可以是( )A .3x y =B .x y -=3C .xy 3= D . 31x y =5.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且=2.347x ﹣6.423; ②y 与x 负相关且=﹣3.476x+5.648; ③y 与x 正相关且=5.437x+8.493 ④y 与x 正相关且=﹣4.326x ﹣4.578. 其中一定不正确的结论的序号是( ) A .①②B .②③C .③④D .①④6.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为( ) A .10 B .9 C .8 D .77.学校为了解高二年级l203名学生对某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k 为A.40 B. 30.1 C.30 D. 128.集合A={2,3},B={1,2,3},从A,B中各取任意一个数,则这两数之和等于4的概率是()A. B. C. D.9.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A. B. C. D.10.一个长为12m,宽为4m的长方形内部画有一个中国共青团团徽,在长方形内部撒入80粒豆子,恰好有30粒落在团徽区域上,则团徽的面积约为()A.16m2 B.30m2 C.18m2 D.24m211.从装有两个红球和两个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球”C.“至少有一个黑球”与“都是红球” D.“恰好有一个黑球”与“恰好有两个黑球”12.某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A.90 B.75 C.60 D.45二填空题(每题5分,共20分)13.已知变量x,y的取值如表所示:x 4 5 6y 8 6 7如果y 与x 线性相关,且线性回归方程为=x+2,则的值是 . 14.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙两人下成平局的概率为________. 15.如图所示的程序框图输出的结果为___________ 16.在大小相同的6个球中,2个是红球,4个是白球, 若从中任意选取3个,则所选的3个球至少有一个红 球的概率是_______(用分数表示). 三 解答题(共70分) 17.(本题10分)用辗转相除法或更相减损术求1734和816的最大公约数(写出过程)18.(本题12分)知一个4次多项式为,71197)(234++--=x x x x x f 用秦九韶算法求这个多项式当1=x 时的值19.(本题12分)下表提供了某厂节能降耗技术发行后,生产甲产品过程中记录的产量x (吨)与相应的生产能耗y(吨标准煤)的几组对应数据.x 3 4 5 6 y2.5344.5(1)求线性回归方程a x b y))+=ˆ所表示的直线必经过的点; (2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程a xb y))+=ˆ; 并预测生产1000吨甲产品的生产能耗多少吨标准煤?20.(本题12分)《朗读者》栏目在央视一经推出就受到广大观众的喜爱,恰逢4月23日是“世界读书日”,某中学开展了诵读比赛,经过初选有7名同学进行比赛,其中4名女生A1,A2,A3,A4和3名男生B1,B2,B3.若从7名同学中随机选取2名同学进行一对一比赛.(1)求男生B1被选中的概率;(2)求这2名同学恰为一男一女的概率.21.( 本题12分)一个包装箱内有6件产品,其中4件正品,2件次品.现随机抽出两件产品,(1)求恰好有一件次品的概率.(2)求都是正品的概率.22. ( 本题12分)某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:(Ⅰ)补全频率分布直方图;(Ⅱ)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段[120,130)内的概率.试卷答案1-6D CBC DA 7-12C CBCD A 13.1 14.50% 15.8 16.4517.解:辗转相除法:1734=816×2+102 816=102×8 所以1734与816的最大公约数为102.更相减损术:因为1734与816都是偶数,所以分别除以2得867和408. 867﹣408=459,459﹣408=51,408﹣51=357,357﹣51=306,306﹣51=255,255﹣51=204,204﹣51=153,153﹣51=102,102﹣51=51,所以867和408的最大公约数是51,故1734与816的最大公约数为51×2=102.18..f(x)=x(x(x(x-7)-9)+11)+7 f(1)=319.( 1) 线性回归方程a x b y))+=ˆ所表示的直线必经过的点(4.5,3.5) (2) 预测生产1000吨甲产品的生产能耗700.35吨20.解:(1)经过初选有7名同学进行比赛,其中4名女生A 1,A 2,A 3,A 4和3名男生B 1,B 2,B 3.从7名同学中随机选取2名同学进行一对一比赛. 基本事件总数n=,设事件A 表示“男生B 1被选中”,则事件A 包含的基本事件有: (A 1,B 1),(A 2,B 1),(A 3,B 1),(A 4,B 1),(B 1,B 2),(B 1,B 3),共6个, ∴男生B 1被选中的概率P (A )=.(2)设事件B 表示“这2名同学恰为一男一女”,则事件B 包含的基本事件有: (A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3), (A 3,B 1),(A 3,B 2),(A 3,B 3),(A 4,B 1),(A 4,B 2),(A 4,B 3), 共12个,∴这2名同学恰为一男一女的概率p=.21.解:将六件产品编号,ABCD (正品),ef (次品),从6件产品中选2件,其包含的基本事件为:(AB)(AC)(AD)(Ae)(Af)(BC)(BD)(Be)(Bf)(CD)(Ce)(Cf)(De)(Df)(ef).共有15种,(1)设恰好有一件次品为事件A,事件A中基本事件数为:8则P(A)=(2)设都是正品为事件B,事件B中基本事件数为:6则P(B)=22.解:(Ⅰ)分数在[120,130)内的频率1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3,因此补充的长方形的高为0.03,补全频率分布直方图为:…..(Ⅱ)估计平均分为…..(Ⅲ)由题意,[110,120)分数段的人数与[120,130)分数段的人数之比为1:2,用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,需在[110,120)分数段内抽取2人成绩,分别记为m,n,在[120,130)分数段内抽取4人成绩,分别记为a,b,c,d,设“从6个样本中任取2人成绩,至多有1人成绩在分数段[120,130)内”为事件A,则基本事件共有{(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)},共15个.事件A包含的基本事件有{(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)}共9个.∴P(A)==.…..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学(必修三)一 选择题(每题5分,共60分) 1.下列四个数中,数值最小的是( )A .25(10)B .54(6)C .10111(2)D .26(8) 2.执行如图所示的算法框图,输出的M 值( )A .2B .12C 、-1D .-23.给出以下四个问题:①输入一个数x , 输出它的相反数.②求面积为6的正方形的周长.③求三个数,,a b c 中输入一个数的最大数.④求函数1,0()2,0x x f x x x -≥⎧=⎨+<⎩的函数值.其中不需要用条件语句来描述其算法的有( )A .1个B .2个C .3个D .4个4.如图是一个算法的程序框图,当输入的x 值为3时,输出y 的结果恰好是31,则空白处的关系式可以是( )A .3x y =B .x y -=3C .xy 3= D . 31x y =5.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且=2.347x ﹣6.423; ②y 与x 负相关且=﹣3.476x+5.648; ③y 与x 正相关且=5.437x+8.493 ④y 与x 正相关且=﹣4.326x ﹣4.578. 其中一定不正确的结论的序号是( ) A .①②B .②③C .③④D .①④6.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为( ) A .10 B .9 C .8 D .77.学校为了解高二年级l203名学生对某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k 为A.40 B. 30.1 C.30 D. 128.集合A={2,3},B={1,2,3},从A,B中各取任意一个数,则这两数之和等于4的概率是()A. B. C. D.9.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A. B. C. D.10.一个长为12m,宽为4m的长方形内部画有一个中国共青团团徽,在长方形内部撒入80粒豆子,恰好有30粒落在团徽区域上,则团徽的面积约为()A.16m2 B.30m2 C.18m2 D.24m211.从装有两个红球和两个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球”C.“至少有一个黑球”与“都是红球” D.“恰好有一个黑球”与“恰好有两个黑球”12.某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A.90 B.75 C.60 D.45二填空题(每题5分,共20分)13.已知变量x,y的取值如表所示:x 4 5 6y 8 6 7如果y 与x 线性相关,且线性回归方程为=x+2,则的值是 . 14.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙两人下成平局的概率为________. 15.如图所示的程序框图输出的结果为___________ 16.在大小相同的6个球中,2个是红球,4个是白球, 若从中任意选取3个,则所选的3个球至少有一个红 球的概率是_______(用分数表示). 三 解答题(共70分) 17.(本题10分)用辗转相除法或更相减损术求1734和816的最大公约数(写出过程)18.(本题12分)知一个4次多项式为,71197)(234++--=x x x x x f 用秦九韶算法求这个多项式当1=x 时的值19.(本题12分)下表提供了某厂节能降耗技术发行后,生产甲产品过程中记录的产量x (吨)与相应的生产能耗y(吨标准煤)的几组对应数据.x 3 4 5 6 y2.5344.5(1)求线性回归方程a x b y+=ˆ所表示的直线必经过的点; (2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程a xb y+=ˆ; 并预测生产1000吨甲产品的生产能耗多少吨标准煤?20.(本题12分)《朗读者》栏目在央视一经推出就受到广大观众的喜爱,恰逢4月23日是“世界读书日”,某中学开展了诵读比赛,经过初选有7名同学进行比赛,其中4名女生A1,A2,A3,A4和3名男生B1,B2,B3.若从7名同学中随机选取2名同学进行一对一比赛.(1)求男生B1被选中的概率;(2)求这2名同学恰为一男一女的概率.21.( 本题12分)一个包装箱内有6件产品,其中4件正品,2件次品.现随机抽出两件产品,(1)求恰好有一件次品的概率.(2)求都是正品的概率.22. ( 本题12分)某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:(Ⅰ)补全频率分布直方图;(Ⅱ)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段[120,130)内的概率.试卷答案1-6D CBC DA 7-12C CBCD A 13.1 14.50% 15.8 16.4517.解:辗转相除法:1734=816×2+102 816=102×8 所以1734与816的最大公约数为102.更相减损术:因为1734与816都是偶数,所以分别除以2得867和408. 867﹣408=459,459﹣408=51,408﹣51=357,357﹣51=306,306﹣51=255,255﹣51=204,204﹣51=153,153﹣51=102,102﹣51=51,所以867和408的最大公约数是51,故1734与816的最大公约数为51×2=102.18..f(x)=x(x(x(x-7)-9)+11)+7 f(1)=319.( 1) 线性回归方程a x b y+=ˆ所表示的直线必经过的点(4.5,3.5) (2) 预测生产1000吨甲产品的生产能耗700.35吨20.解:(1)经过初选有7名同学进行比赛,其中4名女生A 1,A 2,A 3,A 4和3名男生B 1,B 2,B 3.从7名同学中随机选取2名同学进行一对一比赛. 基本事件总数n=,设事件A 表示“男生B 1被选中”,则事件A 包含的基本事件有: (A 1,B 1),(A 2,B 1),(A 3,B 1),(A 4,B 1),(B 1,B 2),(B 1,B 3),共6个, ∴男生B 1被选中的概率P (A )=.(2)设事件B 表示“这2名同学恰为一男一女”,则事件B 包含的基本事件有: (A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3), (A 3,B 1),(A 3,B 2),(A 3,B 3),(A 4,B 1),(A 4,B 2),(A 4,B 3), 共12个,∴这2名同学恰为一男一女的概率p=.21.解:将六件产品编号,ABCD (正品),ef (次品),从6件产品中选2件,其包含的基本事件为:(AB)(AC)(AD)(Ae)(Af)(BC)(BD)(Be)(Bf)(CD)(Ce)(Cf)(De)(Df)(ef).共有15种,(1)设恰好有一件次品为事件A,事件A中基本事件数为:8则P(A)=(2)设都是正品为事件B,事件B中基本事件数为:6则P(B)=22.解:(Ⅰ)分数在[120,130)内的频率1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3,因此补充的长方形的高为0.03,补全频率分布直方图为:…..(Ⅱ)估计平均分为…..(Ⅲ)由题意,[110,120)分数段的人数与[120,130)分数段的人数之比为1:2,用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,需在[110,120)分数段内抽取2人成绩,分别记为m,n,在[120,130)分数段内抽取4人成绩,分别记为a,b,c,d,设“从6个样本中任取2人成绩,至多有1人成绩在分数段[120,130)内”为事件A,则基本事件共有{(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)},共15个.事件A包含的基本事件有{(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)}共9个.∴P(A)==.…..。