碳纤维的发展与现状
碳纤维的发展及其应用现状

碳纤维的发展及其应用现状目前,碳纤维工业化产品主要包括PAN基和沥青基,世界上消费高性能碳纤维主要是美国,而生产高性能碳纤维主要是日本,碳纤维已广泛应用于各行各业中。
碳纤维大多应用于复合材料的生产,且广泛应用于各行各业。
论文主要分析了国内外碳纤维发展现状,着重介绍了碳纤维在宇航、体育用品领域、工业领域、交通运输领域及土木建筑领域的应用。
标签:碳纤维;复合材料;领域;应用一、碳纤维的发展现状研究1.国外发展现状1959年日本进藤博士采用PAN奥纶为原材料研究开发基碳纤维,日本大谷教授利用煤焦、石油炼制过程中的副产品(沥青)研究成功开发了沥青基碳纤维。
1965年,粘胶纤维基碳纤维是由美国的UCC公司开发成功的,主要材料是粘胶纤维。
于20世纪70年代初就开始生产碳纤维,主要应用于火箭喷嘴,其能有效防止热气流传。
1971年至1983年,日本东邦人造丝公司、东丽公司等对碳纤维研究比较早,在此期间已经能进行大批量的生产,主要用于体育器具,欧美则用于航空和航天工业。
1980年前,波音公司首次将碳纤维使用在757飞机上,1985年-1990年,欧美主要对复合材料产品性能和深加工技术进行了研究。
国外利用电磁辐射等离子技术由碳纤维原丝来生产碳纤维;并把纳米技术应用于碳纤维上,研制出纳米碳纤维,超高模量的沥青碳纤维长丝发展迅速。
2.国内发展状况20世纪70年代中期,我国开始研究碳纤维,经过多年的发展,碳纤维在研发领域上取得了很大的成就,但总的来说,国内碳纤维的研制与生产水平还较低。
吉林省长春应用化学研究所于1960年代初,开始对PAN基碳纤维进行研究,并先后完成了连续化中试装置。
上海合成纤维研究所等单位也开始研究,于1980年通过了中试。
总之,我国在碳纤维领域的研究方面起步晚、发展也缓慢。
二、碳纤维的应用状况研究1.宇航领域碳纤维重量很轻,但其尺寸稳定性,刚性和导热性能均很好,最初的高模量碳纤维广泛在人造卫星技术当中使用。
国际碳纤维现状分析报告

国际碳纤维现状分析报告概述碳纤维是一种高性能纤维材料,具有轻质、高强度、高模量等优点,被广泛应用于航空航天、汽车制造、体育器材等领域。
本报告将对国际碳纤维产业进行现状分析,以期提供参考和指导。
1. 碳纤维产业总体情况碳纤维产业在全球范围内呈现快速增长的趋势。
根据市场调研机构的数据,碳纤维市场规模从2015年的100亿美元增长到2020年的150亿美元。
这一增长主要源于航空航天、汽车制造和体育器材等行业对碳纤维的需求不断增加。
2. 主要碳纤维生产国家和企业目前,日本、美国、德国和中国等国家是全球碳纤维生产的主要国家。
其中,日本的碳纤维产业发展最早,具有雄厚的技术实力和丰富的经验,市场份额占据全球的30%以上。
美国和德国的碳纤维产业也相对发达,技术水平和产品质量在国际上处于领先地位。
中国作为世界制造大国,在碳纤维产业的发展中起到了重要作用。
目前,中国的碳纤维企业数量众多且规模不断扩大,技术水平和产品质量也在逐步提高。
中国的碳纤维市场份额逐年增加,已成为全球碳纤维产业的重要参与者。
3. 市场应用情况碳纤维在航空航天、汽车制造和体育器材等领域具有广泛的应用。
在航空航天领域,碳纤维被用于制造飞机机体、机翼和推进器等部件,以提高飞行器的强度和耐久性,同时减轻自身重量,提高燃油效率。
在汽车制造领域,碳纤维被应用于汽车车身和底盘等部件的制造,以实现轻量化,提高汽车性能和燃油经济性。
在体育器材领域,碳纤维被广泛用于制造高尔夫球杆、网球拍和自行车等器材,以提高产品的强度和稳定性,提升运动员的表现水平。
4. 挑战与机遇碳纤维产业面临一些挑战和机遇。
挑战方面,碳纤维的生产成本较高,技术门槛也较高,限制了其在一些领域的广泛应用。
此外,碳纤维的回收利用和环境影响等问题也需要关注和解决。
机遇方面,碳纤维在新兴领域的应用潜力巨大。
例如,新能源汽车领域的发展推动了碳纤维复合材料在汽车制造中的应用。
随着技术的不断进步和成本的降低,碳纤维有望在更多领域替代传统材料,促进产业的进一步发展。
碳纤维增强复合材料技术发展现状及趋势

碳纤维增强复合材料技术发展现状及趋势碳纤维增强复合材料是一种具有轻质、高强度、耐腐蚀、抗疲劳等优点的新型复合材料,已经广泛应用于航天航空、汽车、船舶、体育器材等领域。
近年来,随着科技的发展和需求的增加,碳纤维增强复合材料技术也在不断进步,呈现出以下发展现状和趋势。
1.材料性能提升:随着碳纤维及复合材料制备技术的不断改善,碳纤维增强复合材料的力学性能得到了极大的提升。
例如,新型的高性能碳纤维材料具有更高的拉伸强度和模量,可以满足更高的工程性能要求。
2.成本降低:由于碳纤维和树脂材料的价格较高,导致碳纤维增强复合材料的成本相对较高。
为了降低成本,正在研究开发更加经济实用的碳纤维制备技术,比如通过改变纤维结构、调整成纤维化学组成等方式降低成本。
3.制备工艺改进:为了更好地满足不同工程应用的需求,人们正在不断改进碳纤维增强复合材料的制备工艺。
例如,采用新的纤维排列方式、改变纤维束的堆放方式等,可以提高材料的强度、断裂韧性和耐疲劳性。
4.新型纤维增强材料的研发:除了传统的碳纤维增强复合材料,人们还在研究开发其他类型的纤维增强材料,如陶瓷纤维、金属纤维等。
这些新型纤维材料可以通过与树脂组合使用,进一步提高复合材料的力学性能和耐高温性能。
5.应用领域的拓展:碳纤维增强复合材料已经成功应用于航空航天和汽车行业,而随着技术的进步,复合材料的应用领域将进一步拓展。
例如,在新能源领域,碳纤维增强复合材料可以用于制造风力发电机叶片和光伏支架;在医疗器械领域,可以制备高性能的假体和支架等。
总之,碳纤维增强复合材料技术在不断发展中,其性能提升、成本降低、制备工艺改进、新型材料研发和应用领域拓展等方面都显示出明显的趋势。
这一技术的进步将进一步推动碳纤维增强复合材料在各个领域的应用,并为新材料和新技术的研发提供更加广阔的空间。
2024年沥青基碳纤维市场发展现状

2024年沥青基碳纤维市场发展现状沥青基碳纤维是一种新型的复合材料,具有优异的力学性能和化学稳定性,被广泛应用于工程建设和材料科学领域。
本文将探讨沥青基碳纤维市场的发展现状,包括市场规模、应用领域和存在的挑战。
市场规模沥青基碳纤维市场在过去几年持续增长,预计未来几年仍将保持稳定增长。
市场规模的增长得益于沥青基碳纤维的广泛应用以及市场需求的增加。
根据市场研究报告,2019年沥青基碳纤维市场规模达到XX亿美元,并预计到2025年将达到XX亿美元。
应用领域沥青基碳纤维在各个领域都有应用,主要包括以下几个方面:道路建设沥青基碳纤维材料被广泛应用于道路建设领域,特别是在高速公路和机场跑道等需要高强度和耐久性的路面工程中。
沥青基碳纤维的添加可以增强沥青混凝土的抗裂性能和疲劳寿命,提高道路的承载能力和耐久性。
桥梁建设沥青基碳纤维材料在桥梁建设中起到了重要作用。
由于其高强度和轻质特性,可以用来增强桥梁结构的抗震性能和荷载承载能力。
同时,沥青基碳纤维还可以增强混凝土桥面的耐久性,延长桥梁的寿命。
石油行业沥青基碳纤维在石油行业中也有广泛应用。
由于其耐高温和耐腐蚀性能,可以被用于制造油井抽油杆和油管等石油设备。
此外,沥青基碳纤维还可以用于油井水平钻井中的加固和纤维增强。
存在的挑战尽管沥青基碳纤维市场发展迅速,但仍面临一些挑战。
高成本沥青基碳纤维的生产成本相对较高,这导致其价格较高,限制了其广泛应用。
降低生产成本是一个亟待解决的问题。
市场竞争沥青基碳纤维市场存在激烈的竞争。
目前市场上已有多家企业涉足该领域,并且不断推出新产品。
在如此竞争激烈的市场环境下,企业需要不断改进产品技术,提高产品性能和质量,保持竞争力。
技术创新尽管沥青基碳纤维已经取得了显著的发展,但仍有待进一步的技术创新。
例如,如何提高沥青基碳纤维的抗拉强度和热稳定性,以满足更广泛的应用需求,是一个需要解决的问题。
总结沥青基碳纤维市场在快速发展,各个领域都有广泛的应用。
2023年3D打印碳纤维行业市场发展现状

2023年3D打印碳纤维行业市场发展现状目前,3D打印碳纤维技术已经被广泛应用到许多领域中,如航空、汽车、医疗等。
该技术的主要优势是生产速度快,精度高,且可根据用户需求定制产品。
下面将从市场状况和发展前景两个方面对3D打印碳纤维行业进行分析。
市场状况:碳纤维材料的应用范围因其高强度、耐腐蚀性、重量轻等优势而不断扩大,同时,3D打印碳纤维技术的广泛应用也使得该材料市场需求量不断增加。
最近几年,全球3D打印碳纤维材料市场规模不断扩大,预计到2025年将达到18亿美元。
3D打印碳纤维技术在航空、汽车、医疗等领域的应用也呈现出持续增长的趋势。
航空业中,3D打印碳纤维技术被用于生产零件和结构体,可以大大降低生产成本和周期,并提高生产效率。
在汽车制造业中,3D打印碳纤维材料作为核心材料,应用上的优势也得到了充分体现。
在医疗行业中,3D打印技术可以制造仿真人体器官,最大程度地缩短了人工制造器官的时间和成本。
发展前景:3D打印碳纤维技术的发展前景非常广阔,未来预计将在以下几方面得到拓展:1. 全球航空、汽车、医疗、电子等行业的需求将会继续增加,3D打印碳纤维材料的应用前景十分广阔。
2. 3D打印技术的不断进步和研发创新将加速碳纤维制造技术的进步,3D打印碳纤维将会有更高的产能和质量,降低原材料浪费率。
3. 3D打印碳纤维技术将在未来越来越多地应用在复杂的结构体的生产上,如航空、航天领域中的飞机及卫星组件等。
4. 3D打印碳纤维技术发展的另一个方向是个性化定制,3D打印可以根据客户要求进行定制化生产,实现个性化生产,满足客户需求。
总之,随着3D打印碳纤维技术的不断发展和研究,碳纤维材料的应用范围也将不断扩大。
未来的碳纤维行业发展前景十分广阔,需求量将会持续增长。
国内外碳纤维复合材料现状及研究开发方向概要

国内外碳纤维复合材料现状及研究开发方向概要碳纤维复合材料是一种具有很高强度和轻质化特性的新型材料。
它由碳纤维和树脂等基质材料组成,具有优异的力学性能和低密度,广泛应用于航空航天、汽车、船舶、体育器材等领域。
本文将对国内外碳纤维复合材料的现状以及研究开发方向进行概述。
首先,国内外碳纤维复合材料的现状可以概括为以下几个方面。
一是碳纤维复合材料在航空航天领域的应用。
由于碳纤维复合材料具有高强度、低密度和热稳定性等特点,被广泛应用于航空航天领域,如飞机机体、发动机和燃气涡轮等部件。
二是碳纤维复合材料在汽车领域的应用。
汽车制造商越来越倾向于采用碳纤维复合材料制作汽车车身和结构件,以提高汽车的燃油效率和减轻车重,提高车辆的性能。
三是碳纤维复合材料在体育器材领域的应用。
碳纤维复合材料制作的高级运动器材,如高尔夫球杆、网球拍和自行车等,具有很高的刚性和强度,能够提高运动员的表现水平。
四是碳纤维复合材料在船舶领域的应用。
船舶结构件的重量和强度对于船舶的性能至关重要。
碳纤维复合材料具有高强度和轻质化特性,因此被广泛应用于船舶制造,可以提高船舶的性能和节能减排。
接下来,本文将重点讨论国内外碳纤维复合材料的研究开发方向。
一是开发新型碳纤维原料。
目前,市场上主要使用的碳纤维原料是聚丙烯腈纤维。
研究人员正在开发新型纤维原料,如石墨烯、纳米碳纤维等,以提高碳纤维的力学性能和热稳定性。
二是改善碳纤维与基质材料的界面粘结性能。
碳纤维与树脂等基质材料的界面粘结性能对复合材料的力学性能和耐久性影响很大。
研究人员正在探索提高界面粘结性能的方法,如表面改性和介入增韧等。
三是提高碳纤维复合材料的制备工艺。
制备工艺是影响碳纤维复合材料质量的关键因素之一、研究人员正在开发新的制备工艺,如预浸法、纺丝法和层合法等,以提高复合材料的力学性能和制造效率。
四是研究碳纤维复合材料的寿命与损伤机理。
碳纤维复合材料容易受到外界环境和应力加载的影响,会出现疲劳和损伤现象。
2024年活性碳纤维(ACF)市场发展现状

2024年活性碳纤维(ACF)市场发展现状1. 简介活性碳纤维(ACF)是一种具有高孔隙度和大比表面积的纤维材料。
它由活性碳纤维原料经过高温炭化和气体活化处理而成。
ACF在吸附、催化、导电等领域有广泛应用,并且由于其独特的性能,在新能源、环境保护、医疗等领域的需求不断增长。
2. 市场规模根据市场调研数据显示,活性碳纤维(ACF)市场近年来呈现出快速增长的趋势。
截至目前,全球ACF市场规模已达到XX亿美元,并预计未来几年将保持稳定增长。
3. 主要应用领域3.1 吸附材料活性碳纤维作为一种优秀的吸附材料,在水处理、空气净化等领域中得到广泛应用。
其大比表面积和孔隙结构能够有效吸附有害物质,提高净化效果。
随着城市化进程和环境污染的加剧,吸附材料市场需求将继续增长。
3.2 电池材料ACF在电池材料中有着重要的应用。
其高导电性和良好的储能性能使得活性碳纤维成为电池生产的理想材料。
目前,锂离子电池等新能源电池的快速发展推动了ACF 市场的增长。
3.3 催化剂载体活性碳纤维常被用作催化剂的载体。
其大孔隙结构和高比表面积有利于催化剂的分散和反应过程的进行。
在化工、石油等领域,催化剂载体的需求日益增长,带动了ACF市场的发展。
3.4 医疗领域活性碳纤维在医疗领域有广泛的应用,如人工器官、生物医学材料等。
其生物相容性和孔隙结构的特点使其成为医疗材料的理想选择。
随着人口老龄化程度的加剧和医疗技术的进步,ACF在医疗领域的市场将持续增长。
4. 市场发展趋势未来ACF市场的发展将呈现以下趋势:4.1 高性能化随着技术的不断进步,活性碳纤维的性能将不断提升。
纤维材料的制备工艺和表面改性技术的创新将使ACF具备更好的吸附性能、导电性能和化学稳定性,满足不同领域的需求。
4.2 新能源需求增长新能源领域对ACF的需求将继续增长。
随着可再生能源的快速发展,对电池和储能材料的需求将增加,进一步推动ACF市场的扩大。
4.3 环保意识提高全球环保意识的提高将促进活性碳纤维在污染治理和环境保护领域的应用。
2024年碳纤维加固市场发展现状

2024年碳纤维加固市场发展现状引言碳纤维加固技术是一种新兴的结构加固方法,具有重量轻、强度高等优点,被广泛应用于建筑、桥梁、航空航天等领域。
本文将介绍碳纤维加固市场的现状,包括市场规模、应用领域、发展趋势等。
市场规模碳纤维加固市场在过去几年内呈现出快速增长的趋势。
根据市场调研机构的数据显示,碳纤维加固市场规模从2015年的10亿美元增长到了2020年的30亿美元,年复合增长率达到了20%。
预计在未来几年内,市场规模还将继续增长。
应用领域建筑行业碳纤维加固技术在建筑行业中被广泛应用,主要用于加固混凝土结构、钢结构和木结构。
由于碳纤维加固材料具有高强度、轻质、抗腐蚀等特点,能够有效地提高结构的抗震、抗风等性能,因此受到了建筑行业的青睐。
桥梁行业桥梁是碳纤维加固的重要应用领域之一。
随着交通运输的发展,很多老旧桥梁需要进行加固维修,而传统的加固方法存在一些缺点,如施工周期长、造成交通阻塞等。
碳纤维加固技术通过悬挂式加固和包裹式加固等方法,可以快速、有效地对桥梁进行加固,提高其承载能力和使用寿命。
航空航天行业碳纤维材料具有轻质高强度的特点,因此在航空航天行业中有广泛的应用。
碳纤维加固技术可以用于加固飞机、火箭等航空器的结构部件,从而提高其性能和安全性。
发展趋势技术创新随着碳纤维加固技术的应用不断扩大,厂商们开始注重技术创新,推出更加高效、环保的加固材料和工艺。
例如,一些厂商正在研发具有自愈功能的碳纤维材料,以应对结构受损后的修复问题。
市场竞争随着市场规模的扩大,碳纤维加固领域的竞争也越来越激烈。
现有的厂商不断提升产品质量和性能,同时新的竞争者也在不断涌现。
因此,市场竞争将促使碳纤维加固技术不断创新和进步。
法规支持为了推动结构加固技术的发展,许多国家和地区都制定了相关的法规和标准,以规范碳纤维加固工程的施工和质量要求。
这些法规的出台将进一步推动碳纤维加固市场的发展。
结论碳纤维加固市场在过去几年内实现了快速增长,未来仍具有较大的发展潜力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人员分工情况资料收集:蔡煜简江婷婷宋爽韵周晓楠张领中英文摘要:蔡煜张领周晓楠内容编写:发展部分简江婷婷宋爽韵现状与差距部分蔡煜张领周晓楠排版校对:简江婷婷宋爽韵宋爽韵 20110815023简江婷婷 20110815036蔡煜 20110815045周晓楠 20110815047张领 20110815050碳纤维的发展与现状学生:蔡煜简江婷婷宋爽韵周晓楠张领指导老师:秦文峰摘要:简要介绍了碳纤维的性能、发展历史以及在航空航天领域中的应用,同时分析了国内外碳纤维的发展差距,给出了对我国碳纤维发展的建议。
关键词:碳纤维;碳纤维复合材料;应用领域;发展差距;发展建议Abstract:The brief introduction of the performance and development history and application in the aviation&aerospace field of carbon fiber ,the analysis of the development gap of carbon fiber between home and abroad ,the advises of carbon fiber’s development to our country are given in this paper.Key words:carbon fiber;carbon fiber composites;application territory; development gap;development advises目录1 前言 (4)2 碳纤维应用的发展与现状 (4)2.1发展概况 (4)2.2 碳纤维在军机中的应用 (6)2.3 碳纤维在民机中的应用 (8)2.3.1 碳纤维在B777上的应用 (9)2.3.2 碳纤维在A380-800中的应用 (9)2.4 碳纤维复合材料(CFRP)在航天领域的应用 (10)2.4.1 碳纤维复合材料在国外航天领域的应用 (10)2.4.2 碳纤维复合材料在国内航天领域的应用 (14)3 国内外碳纤维发展差距和建议 (15)3.1 国内外碳纤维发展差距 (15)3.2 对我国碳纤维发展的建议 (16)3.3 结语 (18)1 前言碳纤维是指含碳量高于 90% 的无机高分子纤维,一般作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成具有强度高、模量高、重量轻、抗疲劳、耐腐蚀等一系列优异性能的新型复合材料。
与传统的玻璃纤维(GF)相比,杨氏模量是其3倍多;它与凯芙拉纤维( KF-49)相比,不仅杨氏模量是其2倍左右,而且耐蚀性出类拔萃。
碳纤维根据原丝类型可分为聚丙烯腈( PAN) 基、沥青基和粘胶基等 3 种;根据力学性能可分为通用型、高性能型两种。
目前,全世界碳纤维生产中以聚丙烯腈基为主。
碳纤维的主要性能:①密度小、质量轻,密度为1.5~2g·cm-3,相当于钢密度的l/4、铝合金密度的 1/2;②强度、弹性模量高,其强度比钢大4~5倍,弹性回复l00%;③具有各向异性,热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂;④导电性好,25℃时高模量纤维为775μΩ·cm-1,高强度纤维为1500μΩ·cm-1;⑤耐高温和低温性好,在3000℃非氧化气氛下不融化、不软化,在液氮温度下依旧很柔软,也不脆化;⑥耐酸性好,对酸呈惰性,能耐浓 HCl 、 H3PO4、 H2SO4等侵蚀。
此外,还有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。
但其耐冲击性较差,容易损伤,易在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。
因此,碳纤维在使用前须进行表面处理。
自碳纤维工业化生产以来,世界各国都特别重视其应用开发。
通常,碳纤维不单独使用,而是与塑料、橡胶、金属、水泥、陶瓷等制成高性能的复合材料,该复合材料具有轻质、高强、耐高温、耐疲劳、抗腐蚀、导热、导电等优良性质,已在现代工业领域得到广泛应用。
随着碳纤维价格的不断降低,其应用范围从满足性能要求高的航空、航天领域逐步向文体和民用领域扩展。
]1[2 碳纤维应用的发展与现状2.1 发展概况只有人们产生了某种需求,才能去认识并制造出一种材料。
同样碳纤维最早是为了满足制造优良的灯丝的要求应运而生的。
1860年,英国人瑟夫·斯旺将细长的绳状纸片碳化制取碳丝,并以此制作电灯的灯丝,但这项发明未能成功。
至1879年,美国人爱迪生将油烟和焦油的混合物做成丝,再碳化制成灯丝,并解决了电灯的相应使用问题,碳丝才在电灯上得到应用。
虽然这种碳纤维最终被钨丝等材料所代替,但是它的特点比如密度小,模量高,耐酸碱,耐氧化是以往的材料所不能比拟的,后来人们不断探索用其它方法来制造碳纤维。
20世纪50年代,美国为了研发大型火箭和人造卫星以及全面提升飞机的性能,急需新型结构材料和耐烧蚀材料,使得碳纤维重新出现在新材料的舞台上。
美国最先开发出粘胶基碳纤维,应用于耐烧蚀和隔热材料。
由于在航空和军事方面的大量应用及性能的不断提升,使得粘胶基碳纤维在一段时间里处于鼎盛时期。
但后来陆续开发出更优越的碳纤维,粘胶基碳纤维的产量减少了。
粘胶基碳纤维发展的同时,在1959年,日本大阪工业试验所的近藤昭男发明了利用聚丙烯腈纤维制造碳纤维的新方法。
这一创新促进了碳纤维工业的大发展,成为当前碳纤维的主流。
他发明了生产碳纤维新的技术路线,但是并不能制造出高性能的PAN基碳纤维。
1963年,英国航空研究所(RAE)的瓦特(W.Wat)等人在预氧化过程中施加张力,抑制原丝在热处理过程中的收缩,奠定了现代生产PAN基碳纤维的工艺基础。
约翰逊(W·Johnson)等人改进预氧化装置,他们打通了制造高性能PAN基碳纤维的技术路线。
1965年,日本群马大学的大谷衫郎研制沥青基碳纤维,并获得成功。
使得沥青成为生产碳纤维的新原料,并成为当前碳纤维领域仅次于PAN基碳纤维的第二大原料路线。
1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市。
1975年,UCC开始高性能中间相碳纤维“Thomel-P55”的研制,并取得成功。
目前Thomel-P系列高性能沥青碳纤维仍是沥青基碳纤维中最好的产品。
碳纤维从诞生发展至今,经历了几起几落。
这既是优胜劣汰促进碳纤维工业发展的必然规律,也是市场经济的无情裁决。
20世纪60年代PAN基碳纤维的研制中心在英国,并且得到了很大的发展。
但是在激烈的市场竞争中,因为种种原因,碳纤维的研制和生产中心发生转移。
目前世界PAN基碳纤维生产厂商主要集中在日本和美国。
日本三大碳纤维生产商东丽集团、东邦集团和三菱集团为最大的生产商,三家公司合计产能占全球产能的70%以上。
其中东丽集团的产能最大,并且主要集中在高性能的小丝束的生产。
同时东丽的碳纤维的性能一直处于前列,堪称是碳纤维行业的领头羊。
其最早开发出的T300系碳纤维强度达到3.54Gpa,现在已逐步要被强度为4.92GPa的T700系碳纤维代替。
]2[到了21世纪初,聚丙烯腈碳纤维工艺生产技术已经成熟。
现在已分化成为大丝束碳纤维生产和小丝束碳纤维生产两大种类。
大丝束生产对前驱体要求较低,产品成本低,较适合一般民用工业使用和产品开发。
小丝束生产追求高性能化,代表碳纤维发展的先进水平。
对于高性能PAN基碳纤维,美、日等发达国家均极为重视,在研发、生产方面给予经费、人力上的大力支持,并获得成功。
我国从20世纪60年代后期开始研制碳纤维,历经40多年的发展历程。
由于国外严格控制封锁,制约了我国碳纤维工业的发展,与国外相比有很大差距。
产量不能满足市场发展需求,PAN基原丝质量不过关,生产技术及设备落后等。
目前国内小规模PAN基碳纤维生产企业和科研院所共十余家,其中最大生产企业为吉化公司,其年生产能力号称300t,实际年产量不足100t,且产品质量不稳定,达不到T300级的水平。
20世纪70年代初突破连续化工艺,1976年在中国科学院山西煤炭化学研究所建成我国第一条PAN基碳纤维扩大试验生产线,年生产能力为2 t;20世纪80年代开展了高强型碳纤维的研究,于1998年建成一条新的中试生产线,年生产能力为40t。
我国主要研究单位有中国科学院山西煤炭化学研究所、上海市合成纤维研究所、北京化工大学、山东工业大学、东华大学、安徽大学、浙江大学、长春工业大学等。
随着我国经济的快速发展,碳纤维需求与日俱增,虽然国际上一些公司T300级原丝和碳纤维产品对我国开始解冻,但碳纤维及其复合材料的生产关系到国防建设,必须立足国内。
研制生产高性能、高质量的碳纤维,以满足军工和民用产品的需求,扭转大量进口的局面,是我国碳纤维工业发展亟待解决的问题。
碳纤维已被列为国家化纤行业重点扶持的新产品。
在国家政策的重点扶持下,国内碳纤维的研究开发和生产呈现出令人鼓舞的发展趋势。
]3[2.2 碳纤维在军机中的应用碳纤维增强树脂基复合材料是生产武器装备的重要材料。
在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。
国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能。
如果用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。
未来以F-22为目标的背景机复合材料用量比例需求35%左右,其中碳纤维复合材料将成为主体材料。
国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。
目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材料。
美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。
八十年代初美国生产的单人驾驶的“星舟”轻型机,结构质量约1800kg,其中复合材料用量超过1200kg。
1986年美生产的“旅行者”号轻型飞机,其90%以上的结构采用了碳纤维复合材料,创下了不着陆连续九天进行环球飞行的世界记录。
Boeing公司用GF/PPS制造海军巡航导弹的壳体,Du Pont公司用GF、KF/ PA、PPS,制造军机的零部件。
由于碳纤维增强复合材料不但是轻质高强的结构材料,还具有隐身的重要功能,如CF/PEEK 或CF/PPS具有极好的宽峰吸收性能,能有效地吸收雷达波。
美国已用来制造新型的隐形轰炸机。
美国的P-22超音速飞机的主要结构就是采用了中等模量的碳纤维增强的特种工程塑料。
幻影III战斗机的减速降落伞盖和弹射的弹射装置也由这种材料制成。