电子电工基础
电工电子技术基础知识点

电工电子技术基础知识点一、电工技术基础1. 电路基础- 电路定义:电流的路径,由电源、导线、负载和开关组成。
- 欧姆定律:电压(V)、电流(I)和电阻(R)之间的关系,V = I * R。
- 基本电路类型:串联电路、并联电路、混合电路。
2. 电源- 直流电源(DC):电压和电流方向恒定的电源。
- 交流电源(AC):电压和电流方向周期性变化的电源。
- 电池、发电机、变压器等都是常见的电源设备。
3. 导线与连接- 导线材料:铜、铝等,具有低电阻率。
- 导线规格:根据负载电流选择合适截面积的导线。
- 连接方式:焊接、压接、螺栓连接等。
4. 负载- 电阻性负载:如电热器、电阻器。
- 电容性负载:如电容器。
- 感性负载:如电动机、变压器。
5. 开关与控制- 开关类型:单刀单掷、单刀双掷、三刀双掷等。
- 控制元件:继电器、接触器、定时器等。
二、电子技术基础1. 电子元件- 被动元件:电阻器、电容器、电感器。
- 主动元件:二极管、晶体管、集成电路。
- 半导体材料:硅、锗等。
2. 数字电子基础- 数字信号:二进制信号,0和1表示低电平和高电平。
- 逻辑门:与门、或门、非门、异或门等。
- 触发器:RS触发器、D触发器、JK触发器等。
3. 模拟电子基础- 放大器:运算放大器、音频放大器、功率放大器。
- 振荡器:正弦波振荡器、方波振荡器。
- 滤波器:低通滤波器、高通滤波器、带通滤波器。
4. 电子测量与测试- 测量仪器:万用表、示波器、信号发生器。
- 测试方法:电压测量、电流测量、电阻测量。
5. 电子电路设计- 电路原理图设计:使用绘图软件绘制电路图。
- PCB布局:电路板设计,包括元件布局和走线。
- 电路仿真:使用软件模拟电路工作情况。
三、安全与维护1. 电工安全- 遵守电气安全规范。
- 使用个人防护装备。
- 定期检查电气设备。
2. 电子设备维护- 清洁电路板和元件。
- 定期更换老化元件。
- 存储环境要求:防潮、防尘、防静电。
电工电子基础知识

电工电子基础知识电工电子基础知识是电气工程和电子技术领域的入门课程,它涵盖了电路的基本理论、电子元件的工作原理以及电子系统的构建方法。
以下是电工电子基础知识的详细内容:1. 电路的基本概念电路是由电源、导线、开关和负载等元件组成的闭合路径,它使得电流能够在其中流动。
电路的基本组成部分包括:- 电源:提供电能的设备,如电池、发电机等。
- 导线:连接电路元件,传输电流的导电材料。
- 开关:控制电路通断的装置。
- 负载:消耗电能的设备,如灯泡、电动机等。
2. 电路的基本定律电路分析中常用的基本定律包括欧姆定律、基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
- 欧姆定律:描述了电阻、电流和电压之间的关系,即V=IR,其中V是电压,I是电流,R是电阻。
- KCL:指出任何节点处流入的电流总和等于流出的电流总和。
- KVL:指出任何闭合回路中,电压的代数和为零。
3. 基本电子元件电子元件是构成电子电路的基本单元,常见的电子元件包括:- 电阻器:限制电流流动的元件,其阻值用欧姆表示。
- 电容器:能够储存电荷的元件,其容量用法拉表示。
- 电感器:对电流变化产生阻碍作用的元件,其感值用亨利表示。
- 二极管:允许电流单向流动的半导体元件。
- 三极管:用于放大或开关电流的半导体元件。
4. 直流电路分析直流电路是指电流方向不随时间变化的电路。
分析直流电路时,通常采用节点电压法或环路电流法。
- 节点电压法:将电路中的节点电压作为未知量,根据KCL和欧姆定律建立方程组求解。
- 环路电流法:将电路中的环路电流作为未知量,根据KVL和欧姆定律建立方程组求解。
5. 交流电路分析交流电路是指电流方向随时间周期性变化的电路。
分析交流电路时,需要考虑电压和电流的相位关系。
- 正弦波交流电路:采用复数表示法,将电路元件的阻抗表示为实部和虚部的复数形式,通过欧姆定律和相量分析法求解电路。
- 谐振电路:在特定频率下,电路的阻抗达到最小,此时电路发生谐振。
电工电子基础知识总结

电工电子基础知识总结电工电子是一门关于电路的基础知识学科,涵盖了电路基本理论、电路元件、电工设备等方面的知识。
下面将对电工电子的基础知识进行总结。
一、电路基本理论1. 电流、电压和电阻:电流是电子在导体中的流动,单位为安培;电压是电流的推动力,单位为伏特;电阻是物质对电流的阻碍程度,单位为欧姆。
2. 电功和功率:电功是电流通过电路元件所做的功率,单位为焦耳;功率是单位时间内所做的电功,单位为瓦特。
3. 基尔霍夫定律:包括基尔霍夫电压定律和基尔霍夫电流定律,用于描述电流和电压在电路中的分布和变化。
4. 电路拓扑:描述电路中元件之间的连接关系,包括串联、并联和混联等形式。
二、电路元件1. 电源:提供电路运行所需的电能,常见的电源有直流电源和交流电源。
2. 电阻器:用于限制电流流动的元件,通常用于调节电路中的电阻值。
3. 电容器:由两个带电平板和介质组成,用于储存电荷和电能,在电路中具有存储和释放电荷的作用。
4. 电感器:由线圈组成,具有储存和释放磁能的作用,在电路中常用于滤波和产生电磁感应等。
5. 二极管:由P型和N型半导体组成,具有单向导电特性,常用于整流和开关等应用。
6. 晶体管:由三层半导体构成,具有放大和开关功能,是现代电子器件的核心元件。
三、电工设备1. 电机:将电能转换为机械能的设备,分为直流电机和交流电机,应用广泛于各种电动机械设备中。
2. 变压器:用于改变交流电压的设备,分为升压变压器和降压变压器,常用于电力传输和电子设备供电等领域。
3. 电力电子器件:包括开关电源、逆变器、整流器等,用于处理和控制电能的变换和传输。
4. 电工工具:包括电流表、电压表、万用表等,用于测量电流、电压和阻抗等参数。
四、常见电路1. 直流电路:电流方向恒定,电压稳定的电路,常用于电池供电等。
2. 交流电路:电流方向和电压频率变化的电路,常用于家庭电源和工业电网等。
3. 放大电路:利用晶体管等放大器件将小信号放大的电路,常用于音频放大器、功放等设备。
电子电工基础知识

PPT文档演模板
电子电工基础知识
•1.1 电路基本物理量
•为了某种需要而由电源、导线、开关和负载 按一定方式组合起来的电流的通路称为电路。
电路的主要功能:
• 一:进行能量的转换、传输和分配。 • 二:实现信号的传递、存储和处理。
PPT文档演模板
电子电工基础知识
•一. 电路的组成:
•电源:将非电能转换成电能的装置 •(干电池,蓄电池,发电机)或信号源。
PPT文档演模板
电子电工基础知识
•1.2 电流电压及参考方向
•电荷的定向移动形成电流。 •电流的大小用电流强度表示,简称电流。 •电流强度:单位时间内通过导体截面的电荷量。
PPT文档演模板
•大写 I 表示直流电流
•小写 i 表示电流的一般符
号
电子电工基础知识
•正电荷运动方向规定为电流的实际方向。 •电流的方向用一个箭头表示。 •。任意假设的电流方向称为电流的参考方向
电子电工基础知识
2.2 电压源与电流源及其等效变换
• 电路元件主要分为两类:无源元件—电阻、电容、电感。 • 有源元件—独立源、受控源 。独立源主要有:电压源和
电流源。
•2.2.1电压 源
•定义:能够独立产生电压的电路元件。电压 源分为:理想电压源和实际电压源。
PPT文档演模板
电子电工基础知识
•1.理想电压源 (恒压源): RO= 0 时的电压源.
•1、理想电源串联、并联的化简
•电压源串联: •(电压源不能并联)
•电流源并联: •(电流源不能串联)
PPT文档演模板
电子电工基础知识
•等效互换公式
•I •a
••+RO •E •-
•Uab •b
电学基础知识大全电工电子学基础知识

电学基础知识大全电工电子学基础知识1、定义:把电源、用电器、开关、导线连接起来组成的电流的路径,电路知识点总结。
2、各部分元件的作用:(1)电源:提供电能的装置;(2)用电器:工作的设备;(3)开关:控制用电器或用来接通或断开电路;(4)导线:连接作用,形成让电荷移动的通路二、电路的状态:通路、开路、短路1、定义:(1)通路:处处接通的电路;(2)开路:断开的电路;(3)短路:将导线直接连接在用电器或电源两端的电路。
2、正确理解通路、开路和短路三、电路的基本连接方式:串联电路、并联电路四、电路图(统一符号、横平竖直、简洁美观)五、电工材料:导体、绝缘体1、导体(1)定义:容易导电的物体;(2)导体导电的原因:导体中有自由移动的电荷;2、绝缘体(1)定义:不容易导电的物体;(2)原因:缺少自由移动的电荷六、电流的形成1、电流是电荷定向移动形成的;2、形成电流的电荷有:正电荷、负电荷。
某碱盐的水溶液中是正负离子,金属导体中是自由电子。
七。
电流的方向1、规定:正电荷定向移动的方向为电流的方向;2、电流的方向跟负电荷定向移动的方向相反;3、在电源外部,电流的方向是从电源的正极流向负极。
八、电流的效应:热效应、化学效应、磁效应九、电流的大小:i=q/t十、电流的测量1、单位及其换算:主单位安(a),常用单位毫安(ma)、微安(μa)2、测量工具及其使用方法:(1)电流表;(2)量程;(3)读数方法(4)电流表的使用规则,工作总结《电路知识点总结》。
十一、电流的规律:(1)串联电路:i=i1+i2;(2)并联电路:i=i1+i2【方法提示】1、电流表的使用可总结为(一查两确认,两要两不要)(1)一查:检查指针是否指在零刻度线上;(2)两确认:①确认所选量程。
②确认每个大格和每个小格表示的电流值。
两要:一要让电流表串联在被测电路中;二要让电流从“+”接线柱流入,从“—”接线柱流出;③两不要:一不要让电流超过所选量程,二不要不经过用电器直接接在电源上。
电工电子技术基础 重点内容

电工电子技术基础重点内容电工电子技术基础重点内容一、电路基础理论1.电路的概念与基本定律1) 理解电路模型及抱负电路元件伏安特性, 抱负电路元件分有无源〔R L C〕和有源(电压源电流源)两大类。
2) 理解电压、电流参考方向的意义并能正确运用。
3) 理解电功率和额定值的意义。
4) 理解基尔霍夫定律。
2.电路的基本分析方法,深刻理解电路中电位的概念并能娴熟计算电路中各点的电位。
1) 理解电路等效变换的概念、掌控电阻和电源的'等效变换。
2) 掌控支路电流法。
3) 掌控结点电压法,能娴熟应用弥尔曼定理。
4) 掌控并能娴熟应用叠加定理和戴维宁定理。
三相异步电动机1.基本知识点三相异步电动机的基本结构及工作原理;三相异步电动机的转速、极数、转差率;三相异步电动机的电磁转矩与机械特性;三相异步电动机的起动、调速、制动、铭牌数据和选择。
第三部分电子技术一、半导体二极管半导体的的基础知识; PN结的形成及其特性;半导体二极管的伏安特性、主要参数及主要应用非常二极管;整流电路;滤波电路;硅稳压管稳压电路。
二、半导体三极管与基本放大电路三极管的伏安特性及主要参数;共射极放大电路的组成及工作原理;放大电路的分析―估算法和图解法;静态工作点的稳定和典型偏置电路的分析;三、集成运算放大电路集成运放的基本知识;抱负运算放大器的两个重要结论;集成运放中的反馈;四、门电路与时序电路基本门电路〔与门、或门和非门〕;常用门电路;规律代数及其化简;五、触发器与时序电路 R-S、JK、D触发器的符号和规律功能;集成计数器功能、分类及运用方法。
时序电路与时序电路的区分组合规律电路的输出仅与输入的状态有关。
时序规律电路的特点是:输出不仅取决于当时输入的状态还与电路原来的状态有关描述时序规律电路功能的两个重要方程式。
电工电子基础知识总结

电工电子基础知识总结————————————————————————————————作者:————————————————————————————————日期:23 电工电子基础知识总结一、导体、绝缘体和半导体(超导体)知识二、电阻、电容、电感相关知识及应用三、电路分析方法四、二极管、可控硅整流原理第一部分导体、绝缘体和半导体、超导体知识导体、半导体、绝缘体器件是构成各种电气设备、电工电子器件的基础,在电力生产上,更是普遍存在,作为一名电力生产人员,应熟悉掌握导体、半导体、绝缘体的定义和性质以及应用。
一、导体定义:具有良好导电性能的材料就称为导体。
大家知道,金属、石墨和电解液具有良好的导电性能,他们都是导体。
集肤效应:又叫趋肤效应。
直流通过导线时电流密度均匀分布于导线截面,不存在集肤效应。
而当交变电流通过导体时,电流将集中在导体表面流过,这种现象叫集肤效应。
二、绝缘体定义:不导电的物质,称为绝缘体。
如包在电线外面的橡胶、塑料。
常用的绝缘体材料还有陶瓷、云母、胶木、硅胶、绝缘纸和绝缘油(变压器油)等,空气也是良好的绝缘物质。
4 ⏹ 导体和绝缘体的区别决定于物体内部是否存在大量自由电子,导体和绝缘体的界限也不是绝对的,在一定条件下可以相互转化。
三、半导体有一些物质,如硅、锗、硒等,其原子的最外层电子既不象金属那样容易挣脱原子核的束缚而成为自由电子,也不象绝缘体那样受到原子核的紧紧束缚,这类物质的导电性能介于导体和绝缘体之间,并且随着外界条件及掺入微量杂质而显著改变,这类物质称为半导体。
1.半导体有以下独特性能:⏹ 通过掺入杂质可明显地改变半导体的电导率。
⏹ 温度可明显地改变半导体的电导率。
即热敏效应⏹ 光照不仅可改变半导体的电导率,还可以产生电动势,这就是半导体的光电效应。
与金属和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。
半导体技术的发现应用,使电子技术取得飞速发展,2.本征半导体与杂质半导体、P N 结(1)本征半导体:天然的硅和锗提纯后形成单晶体就是一个半导体,称为本征半导体。
电工电子知识点总结

电工电子知识点总结一、电工电子的概念及基础知识电工电子是指研究电力的生成、传输、分配和利用的学科,涉及电路、电力设备、电动机、发电机等方面的知识。
1. 电流(I)电流是电荷在单位时间内通过导体横截面的数量,单位为安培(A)。
2. 电压(U)电压是电势差的大小,是负责驱动电流在电路中流动的电势,单位为伏特(V)。
3. 电阻(R)电阻是电流在一个电路中受到的阻碍,单位为欧姆(Ω)。
4. Ohm's Law(欧姆定律)欧姆定律指出电流通过导体的大小与电压成正比,与电阻成反比。
即I = U / R。
5. 电路电路是由电流源、电阻、电容、电感等元件组成的闭合回路。
二、电工电子元件1. 电阻器电阻器用来控制电路中的电阻,限制电流的流动。
2. 电容器电容器用来储存电荷,可以在需要时释放出来。
常用于滤波、存储能量等。
3. 电感器电感器是由线圈组成的,通过存储磁能来储存电能,常用于电子滤波、变压器等电子设备中。
4. 二极管二极管是一种具有单向导电性的元件,常用于整流电路中。
5. 三极管三极管是一种具有放大和开关功能的元件,被广泛应用于电子电路中。
6. MOS管MOS管是一种金属-氧化物-半导体场效应管,常用于放大和开关电路中。
三、电工电子电路1. 直流电路直流电路中电流的流动方向是恒定的,电压不随时间变化。
适用于需要稳定电流的场合。
2. 交流电路交流电路中电流的流动方向和电压都随时间变化,根据电荷的周期性变化。
适用于输送电力的场合。
3. 串联电路串联电路中元件依次连接,总电流相同,总电压等于各个元件电压之和。
4. 并联电路并联电路中元件同时连接,总电压相同,总电流等于各个元件电流之和。
5. 混联电路混联电路是串联电路和并联电路的结合,适用于复杂电路中。
四、电工电子应用1. 电动机电动机是将电能转换成机械能的设备,广泛应用于工业制造、交通运输等领域。
2. 发电机发电机是将机械能转换成电能的设备,用于各种发电场合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章空间力系本章讨论了空间汇交力系的合成与平衡,介绍了力对点之矩与力对轴的矩的概念与计算,讨论了空间力偶系的合成与平衡,介绍了力对点的矩与力对轴的矩的概念与计算,讨论了空间力偶系的合成与平衡,利用力的平移定理,对空间任意力系进行了简化,得到了空间任意力系的简化结果,并对简化结果进行了分析,建立了空间任意力系的平衡方程,最后对重心的计算进行了讨论。
提示:本章的重点应放在空间任意力系的平衡问题上,而空间任意力系的平衡问题的计算主要是建立在力的投影与力对轴取矩的计算基础上,所以对空间力系的投影与力对轴取矩的计算要相当熟练。
只要空间的概念建立了起来,本章的内容并不难。
一、学习要求1.要求熟悉空间汇交力系、空间力偶系的合成结果;2.熟悉空间任意力系简化的中间结果和最后结果,会计算主矢和主矩;3.掌握力对点的矩的计算、力在坐标轴上的投影和力对轴的矩的计算;4.熟练应用空间任意力系的平衡方程求解物体的平衡问题;5.了解重心的概念及其计算方法。
二、基本内容1.基本概念1)力在空间直角坐标轴的投影(a)直接投影法:已知力F和直角坐标轴夹角α、β、γ,则力F在三个轴上的投影分别为α=XFc o sβY=c o sFγZ=cosF(b)间接投影法(即二次投影法):已知力F和夹角γ、ϕ,则力F在三个轴上的投影分别为γc o sϕ=Xs i nFγs i nϕY=Fs i nγc o s F =Z 2)力矩的计算(a)力对点之矩在空间情况下力对点之矩为一个定位矢量,其定义为k j i k j iF r F M )()()()(0yX xY xZ zX zY yZ Z Y X z y x-+-+-==⨯=k j i F k j i r Z Y X z y x ++=++=其中r 为力F 作用点的位置矢径(b)力对轴之矩在空间情况下力对轴之矩为一代数量,其大小等于此力在垂直于该轴的平面上的投影对该轴与此平面的交点之矩,其正负号按右手螺旋法则来确定,即OABh F M xy Z ∆±=±=2)(F在直角坐标条下有M x (F )=yZ -zY M y (F )=zX -xZ M z (F )=xY -yX(c )力矩关系定理 力对已知点之矩在通过该点的任意轴上的投影等于同一力对该轴之矩。
在直角坐标系下有M o (F )=M x (F )i +M y (F )j +M z (F )k(d )合力矩定理空间力系的合力对任一点之矩等于力系中各力对同一点之矩的矢量和,即M o (F R )=ΣM o (F )空间力系的合力对任一轴(例如z 轴)之矩等于力系中各力对同一轴之矩的代数和,即M z (F R )=ΣM z (F )=Σ(xY -yX )3)空间力偶及其等效条件(a )力偶矩矢空间力偶对刚体的作用效果决定于三个要素(力偶矩大小、力偶作用面方位及力偶的转向),它可用力偶矩矢M 表示。
力偶矩矢M 是个自由矢量,其大小等于力与力偶臂的乘积,方向与力偶作用面垂直,指向与力偶转向的关系服从右手螺旋法则。
(b)力偶的等效条件:若两个力偶的力偶矩矢相等,则它们彼此等效。
2.空间力系的简化与合成的最终结果1)空间力系向已知点O简化空间力系向已知点O简化的一般结果为一个作用在O点的力和一个力偶,该力矢量等于此力系的主矢。
该力偶的力偶矩矢量等于力系对简化中心O的主矩。
主矢与简化中心的选取无关。
一般情况下,主矩与简化中心的选取有关。
2)空间力系合成的最终结果空间力系的最终合成结果有四种可能:一个合力、一个合力偶、一个力螺旋和平衡,这四种结果可由力系的主矢和力系对任意一点的主矩来判断。
具体归纳如下:3.空间力系的平衡条件和平衡方程空间力系平衡的充分与必要条件为:该力系的主矢和对任意点的主矩同时为零。
其基本形式的平衡方程为:ΣX=0 ΣM x(F)=0ΣY=0 ΣM y(F)=0ΣZ=0 ΣM z(F)=0须指出,空间一般力系有六个独立的平衡方程可以求解六个未知量。
具体应用时,不一定使3个投影轴或矩轴互相垂直,也没有必要使矩轴和投影轴重合,而可以选取适宜轴线为投影轴或矩轴,使每一个平衡方程中所含未知量最少,以简化计算。
此外,还可以将投影方程用适当的力矩方程取代,得到四矩式、五矩式以至六矩式的平衡方程。
使计算更为简便。
几种特殊力系的平衡方程(a)空间汇交力系ΣX=0ΣY=0ΣZ=0(b)空间力偶系ΣM x(F)=0ΣM y(F)=0ΣM z(F)=0(c)空间平行力系(若各力//z轴)ΣZ=0ΣM x(F)=0ΣM y(F)=0(d)平面任意力系(若力系在Oxy平面内)∑X=∑Y=∑FM(=)z4.空间力系平衡方程的应用求解空间力系平衡问题的要点归纳如下:(1)求解空间力系的平衡问题,其解题步骤与平面力系相同,即先确定研究对象,再进行受力分析,画出受力图,最后列出平衡方程求解。
但是,由于力系中各力在空间任意分布,故某些约束的类型及其反力的画法与平面力系有所不同。
(2)为简化计算,在选择投影轴与力矩轴时,注意使轴与各力的有关角度及尺寸为已知或较易求出,并尽可能使轴与大多数的未知力平行或相交,这样在计算力在坐标轴上的投影或力对轴之矩就较为方便,且使平衡方程中所含未知量较少。
同时注意,空间力偶对轴之矩等于力偶矩矢在该轴上的投影。
(3)根据题目特点,可选用不同形式的平衡方程。
所选投影轴不必相互垂直,也不必与矩轴重合。
当用力矩方程取代投影方程时,必须附加相应条件以确保方程的独立性。
但由于这些附加条件比较复杂,故具体应用时,只要所建立的一组平衡方程,能解出全部未知量,则说明这组平衡方程是彼此独立的,已满足了附加条件。
(4)求解空间力系平衡问题,有时采用将该力系向三个正交的坐标平面投影的方法,把空间力系的平衡问题转化为平面问题求解。
这时必须注意正确确定各力在投影面中投影的大小、方向及作用点的位置。
5.平行力系中心及物体的重心1)平行力系中心只要平行力系中各力的大小及作用点的位置确定,无论平衡力系中力的方向如何,其合力作用线必定通过确定的一点,该点称为平行力系中心。
其坐标公式为i i i c i i i c i i i c F z F z F y F y F x F x ∑∑=∑∑=∑∑=, ,2)物体的重心 物体的重心是该重力的合力始终通过的一点。
均质物体的重心与中心重合。
物体的重心在物体内占有确定的位置,与物体在空间的位置无关。
物体重心的坐标公式为i i i c i i i c i i i c P z P z P y P y P x P x ∑∑=∑∑=∑∑=, ,三、重点和难点 重点:1.力在空间直角坐标轴上的两种投影法;2.力对轴之矩和力对点之矩的计算及力矩关系定理;3.空间汇交力系、空间任意力系、空间平行力系的平衡方程及其应用;4.各种常见的空间约束及约束反力画法;5.重心的坐标公式。
难点:1.力在坐标轴上的二次投影;2.空间力偶矩矢在坐标轴上的投影;3.解空间力系平衡问题时力矩轴的选取;4.求组合体的形心坐标。
四、学习提示1.利用多媒体课件的演示建立空间概念。
2.计算空间力在坐标轴上的投影有两种方法,弄清各自的适用条件,区分力的轴上、平面上的投影。
3.明确空间力偶矩矢的性质,为什么规定它为自由矢量、如何表示其等效条件,熟悉空间力偶系合成的解析法。
4.力对点之矩是理解空间力系简化与合成的关键,而力对轴之矩是正确列出力矩式平衡方程的基础,故要充分重视力对轴之矩的计算。
计算的方法有4种:(a )当力臂便于确定时,可直接由定义计算;(b )一般情况下,常将力沿坐标轴分解,应用合力矩定理计算;(c )将力沿坐标轴分解之后代入力对轴之矩的分析表达式计算;(d )利用力矩关系定理计算。
在计算力对轴之矩时准确地分析一个力对某轴之矩的正、负或为零也很重要(若一力与某轴共面,则此力对该轴之矩为零)。
5.通过与平面任意力系对照和比较的方法,来理解空间任意力系向一点简化的方法、主矢和主矩的概念,简化结果、平衡条件及平衡方程,重点介绍力矩轴与投影轴选取原则与方法,简单系统的空间平衡问题。
6.在计算重心坐标时要讲清坐标选取原则,利用对称均质物体的对称性求重心,对组一合法求重心要求熟练应用。
五、课后思考:1、作用在刚体上的4个力偶,若其力偶矩矢都位于同一平面,则一定是平面力偶系吗?若各偶矩矢自行封闭(如图4-1),则一定是平衡力系吗?为什么?图4-1提示解答:力偶矩矢都位于同一平面,不一定是平面力偶系。
平面力偶系各力偶矩矢是相互平行的。
若各偶矩矢自行封闭(如图),则一定是平衡力偶系,把汇交力系的平衡方程0=∑i F 与力偶系的平衡方程0=∑i M 进行比较即知。
2、用矢量积F r⨯计算力F 对点O 之矩,当力沿其作用线移动,改变了力作用点的坐标z y x ,,时,其计算结果有无变化?答案与提示:无变化。
依据矢量叉积的定义。
3、试证:空间力偶对任一轴之矩等于其力偶矩矢在该轴上的投影。
r 表提示:设力偶中一力作用线上一点用A表示,另一力作用线上一点用B表示,以AB示两力作用线间的矢径,写出力偶矩矢在各轴的投影表达式,计算力偶中两力对各轴的力矩,把两者进行比较。
4、轴AB上作用一主动力偶,矩为M1,齿轮的齿合半径R2 = 2R1,如图4-2示。
问当研究轴CD的平衡时,(1)能否以力偶矩矢是自由矢量为由,将作用在轴AB上的力偶搬运到轴CD上?(2)若在轴CD上作用矩为M2的力偶,使两轴平衡,问两力偶矩的大小是否相等?转向是否相反?图4-2答案与提示:不能搬移,因AB和CD不是同一刚体。
大小不相等,转向相同。
分别取两轴画受力图简单求解即可知。
5、空间平行力系的简化结果是什么?可能合成为力螺旋吗?答案:中间结果仍是一主矢和一主矩(主矢和主矩不会平行),最后结果可为一合力、合力偶或平衡。
不可能是力螺旋。
6、(1)空间力系中各力作用线平行于某一固定平面;(2)空间力系中各力的作用线分别汇交于两个固定点。
试分析这两种力系最多各有几个独立的平衡方程。
答案:各为5个。
7、传动轴用两个止推轴承支持,每个轴承有3个未知约束力,共6个未知量。
而空间任意力系的平衡方程恰好是6个,是否为静定问题?答案:为超静定问题。
因轴承所受全部主动力和约束力均通过轴线,6个平衡当中的一个力矩方程恒为零,无意义,故实际独立的平衡方程只有5个,是一次超静定。
8、某一空间力系对不共线的3个点的主矩都等于零,问此力系是否一定平衡?答案:一定平衡。
9、空间任意力系向两个不同的点简化,试问下述情况是否可能:(1)主矢相等,主矩也相等;(2)主矢不相等,主矩相等;(3)主矢相等,主矩不相等;(4)主矢、主矩都不相等。
答案:(1)(3)可能;(2)(4)不可能。
10、一均质等截面直杆的重心在哪里?若把它们弯成半圆形,重心的位置是否改变?答案:在杆正中间。