消能减震部件的连接与构造[详细]

合集下载

土木工程中的消能减震结构设计研究

土木工程中的消能减震结构设计研究

土木工程中的消能减震结构设计研究在土木工程领域,保障建筑物在地震等自然灾害中的安全性至关重要。

消能减震结构设计作为一种有效的抗震手段,近年来受到了广泛的关注和研究。

本文将对土木工程中的消能减震结构设计进行深入探讨。

一、消能减震结构的基本原理消能减震结构的核心原理是通过在结构中设置专门的消能部件,如阻尼器,来消耗地震输入结构的能量,从而减轻主体结构的地震响应。

当建筑物受到地震作用时,消能部件能够产生较大的阻尼力,迅速将地震能量转化为热能等其他形式的能量耗散掉,降低结构的振动幅度和变形,保护主体结构的完整性和稳定性。

常见的消能器包括粘滞阻尼器、金属阻尼器、摩擦阻尼器等。

粘滞阻尼器利用液体的粘性阻力来消耗能量;金属阻尼器则依靠金属材料的塑性变形来实现耗能;摩擦阻尼器通过接触面的摩擦力来消耗能量。

二、消能减震结构设计的关键要素1、消能器的选型与布置消能器的类型和性能应根据建筑物的结构特点、地震烈度、使用功能等因素进行选择。

在布置消能器时,需要考虑结构的受力特点和变形模式,使消能器能够在地震作用下充分发挥作用。

一般来说,消能器应布置在结构的变形较大、受力复杂的部位,如框架结构的梁柱节点、剪力墙结构的连梁等。

2、结构分析与计算进行消能减震结构设计时,需要采用合适的分析方法和计算软件,准确模拟消能器的力学性能和结构的地震响应。

常用的分析方法包括时程分析法、振型分解反应谱法等。

时程分析法能够较为真实地反映结构在地震作用下的动态响应,但计算量较大;振型分解反应谱法则相对简单,但对于复杂结构和消能器的模拟可能不够精确。

3、连接构造设计消能器与主体结构之间的连接构造至关重要,它直接影响消能器的工作性能和结构的安全性。

连接构造应具有足够的强度、刚度和耐久性,能够可靠地传递消能器产生的力和变形。

同时,还应考虑连接构造的施工可行性和维护便利性。

三、消能减震结构设计的流程1、确定设计目标根据建筑物的重要性、使用功能和所处地区的地震危险性,确定消能减震结构的设计目标,如降低结构的地震响应、保证人员生命安全、减少经济损失等。

消能减震结构体系及设计方法

消能减震结构体系及设计方法
名称解释
消能减震结构体系 及设计方法
消能减震,耗能减震,制震
薛彦涛
中国建筑科学研究院
13501034240
消能减震结构
一、什么是消能减震结构
一、什么是消能减震结构 二、消能器有哪几种 三、消能减震适用什么样的结构 四、消能减震的试验研究 五、消能器与结构如何连接结构 六、消能减震结构如何设计 七、工程介绍
阻尼是靠结构局部损坏产生 的,例如梁、柱的塑性铰。
多遇地震下 多遇地震下: 地震下: 结构处于弹性状态,结构阻尼由组成 的材料决定。 如:钢筋混凝土结构5% 钢结构 2%
1
大震下结构几种塑性铰形式
地震中出现构件损伤
强柱弱梁型
强梁弱柱型
偏心支撑
不同阻尼下的反应谱
框架,框架剪力墙,消能减震框架 在ELCENTRO波输入的反应

年的九二一集集大地震,造成許多 人员伤亡,让人印象深刻。台湾地处板块交 界处,每年约有8000多次的地震发生,强度 不一。 当地震來临时高楼大厦搖晃严重,纵使 大樓没有破坏发生,也难以确保居住的安全 性。目前建筑用来抵抗地震的方法,除了建 物结构体外,就是加装隔震、制震装置。
1999
台湾许多建筑已经采用消能减震技术,在经 历过无数大小地震的震撼教育后,台湾民众及建 造商对建筑物有了防震的概念。选择信誉卓越及 优良技术的制震技术,來降低地震的损害,确保 生命财产安全,以及维持建筑物的功能。 因应四川震灾,全台在预售豪宅推销宣传 中,又重新标榜各种超规格制震住宅,
优点 :
屈曲约束支撑的优点
利用各种类型消能器的组合成一个高 效的消能系统
3.支撑构件好比结构体系中可更换的保险丝, 既可保护其他构件免遭破坏,并且大震后, 可以方便地更换损坏的支撑。 4.由于屈曲约束支撑具有很高的变形能力,因 此框架支撑结构具有较强的抗倒塌能力,在 抗震加固中,屈曲约束支撑比传统的支撑系 统更有优越性。

第六章工程结构消能减震设计简介

第六章工程结构消能减震设计简介

PPT文档演模板
第六章工程结构消能减震设计简介
6.2.2 基础隔震装置
隔震装置由隔震器、阻尼器和复位装置组成 隔震器的作用:支承上部结构全部质量,延长结构自振
周期,同时具有经历较大变形的能力 阻尼器的作用:消耗地震能量,抑制结构可能发生的过
大位移 复位装置的作用:提高隔震系统早期刚度使结构在微震
或风载作用下,能够具有和普通结构相同的安全性
这样,总之香港汇丰银行大楼通过炫耀技术的悬
挂结构,代替了鸡腿建筑,实现了柯布的早期理
PPT文档演模板
想。
第六章工程结构消能减震设计简介
•6.2.3 悬挂隔震实例
• 和田先生则以自己敏锐的抗震思维,通过将 隔震和悬挂合二为一,为底部开敞的悬挂结构赋予 了更充分的结构抗震的合理性,建筑理想的实现多 么依赖于结构工程技术的进步。 • • 在清水建设的支持下,在清水建设技术研究 所的门口按照和田先生的想法建造起来一座四层的 钢筋混凝土悬挂隔震示范建筑,如下页的小图所示。
• 10年后重建,并增加了抗震强度。
PPT文档演模板
第六章工程结构消能减震设计简介
6.2.3 悬挂隔震实例
l “鸡腿建筑” 最初的希望将地面空间还给城市,还给市民的 理想也随之被扭曲。即使建筑师自己不去否定鸡腿建筑,它 们也注定要被结构师否定,尤其是在地震危险性较高的地区。 香港人自以为占了块风水宝地,永远不会地震,确实那也真 的没被怎么震过,于是肆无忌惮的在山坡和港湾建造了大量 的鸡腿建筑,而且还相当骨感,真让人替他们担心。建筑的 形式不是由单单由建筑师决定的,也不是单单由结构师决定 的,还有追求经济利益的业主。底部沿街楼层对开敞的大空 间有挥之不去的商业热情,建筑师和结构师的工作就是尽量 满足这种商业需求。

消能减震安装要点

消能减震安装要点

消能减震安装要点
消能减震的安装要点包括以下几个方面:
1. 确定安装位置:消能减震器通常安装在建筑物的基础或结构的关键位置,以达到减震效果。

安装位置应根据具体建筑结构和减震需求进行确定。

2. 固定支撑:消能减震器需要通过固定支撑来连接到建筑结构上,以确保其稳定性和安全性。

支撑结构的设计和材料选择应考虑到减震器的负荷和工作环境等因素。

3. 安装预应力调整装置:消能减震器通常需要在安装过程中进行预应力调整,以使其满足设计要求。

预应力调整装置的设置和调整方法应遵循相关规范和要求。

4. 连接管道:消能减震器的安装通常需要连接到建筑结构的管道系统中,以便传递冲击能量。

连接管道的设计和材料选择应考虑到消能减震器的负荷和工作环境等因素。

5. 注意安全:在消能减震器的安装过程中,需要注意施工安全和操作规范,遵循相关的安全操作规程和施工要求。

安装过程中应使用合适的工具和设备,并由经验丰富的施工人员进行操作。

6. 做好施工记录:在消能减震器的安装过程中,应做好详细的施工记录,包括施工过程中的检查、调整和验收等内容。

施工
记录有助于追溯和排查可能存在的问题,并对以后的维护和检修提供参考依据。

消能减震设计讲解

消能减震设计讲解
耗的能量; Ws——设置消能部件的结构在预期位移下的总应变能。
不考虑扭转影响时,消能减震结构在其水平 地震作用下的总应变能,可按下式估算:
Ws=1 / 2FiUi
Fi——质点i的水平地震作用标准值; Ui——质点i对应于水平地震作用标准值的位 移。
速度相关型消能器在水平地震作用下所消耗 的能量Wc,可按下式估算:
消能减震结构中的消能部件应沿 结构的两个主轴方向分别设置,消能 部件宜设置在层间变形较大的位置, 其数量和分布应通过综合分析合理确 定,并有利于提高整个结构的消能减 震能力,形成均匀合理的受力体系。
消能减震结构计算要点
(1)消能减震结构一般应采用非线性静力分 析法或非线性时程分析法计算。当主体结构 基本处于弹性工作阶段时,可采用线性分析 方法作近似估算,并根据结构的变形特征和 高度等,采用底部剪力法、振型分解反应谱 法和时程分析法。其地震影响系数可根据消 能减震结构的总阻尼比按《规范》的规定计 算。
粘滞阻尼器
一般Kd=0,Cd= C0 ,阻尼力仅与速度有关, 可表示为:
Fd Cd
C0为粘滞阻尼器的阻尼系数,可由阻尼器的 产品型号或由试验确定。
粘弹性阻尼器
刚度Kd和阻尼系数Cd一般由下式确定:
AG( ) Kd
( )AG( )
Cd

η(ω)和 G(ω)分别是粘弹性材料的损失因子
和剪切模量,一般与频率和速度有关,由粘弹 性材料特性实验曲线确定,A和δ 分别是粘弹 性材料层的受剪面积和厚度,ω是结构振动的 频率,对于多自由度结构, ω可取结构弹性
振动的基本固有频率。
(2)滞变型消能器的恢复力模型
软钢类消能器具有类似的 滞回性能,仅其特征参数不同。 通常可采用图(a)所示的折线 形模型来描述。摩擦消能器和 铅消能器的滞回曲线近似为 “矩形”,基本不受荷载大小、 频率、循环次数等影响,故可 采用图(b)所示的刚塑性恢 复力模型。

2019年新《减震抗震设计规范》中的隔震与消能减震.doc

2019年新《减震抗震设计规范》中的隔震与消能减震.doc

3、隔震和消能减震设计的主要优点隔震体系能够减小结构的水平地震作用,已被理论和国外强震记录所证实。

国内外的大量试验和工程经验表明:“隔震”一般可使结构的水平地震作用降低60%左右,从而消除或有效地减轻结构和非结构的地震损坏,提高建筑物及其内部设施、人员在地震时的安全性,增加震后建筑物继续使用的能力。

采用消能方案可以减少结构在风作用下的位移已是公认的事实,对减少结构水平和竖向地震反应也是有效的。

4、隔震和消能减震设计的适用范围1)、隔震设计的适用范围规范12.1.3条对隔震结构提出了一些使用要求。

根据研究:隔震结构主要用于体型基本规则的低层和多层建筑结构。

日本和美国的经验表明,不隔震时基本周期小于1.0秒的建筑结构减震效果与经济性均最好,对于高层建筑效果较差。

国外对隔震建筑工程的较多考察资料表明:硬土场地较适合于隔震建筑;软弱场地滤掉了地震波的中高频分量,延长结构的周期有可能增大而不是减小其地震反应。

墨西哥地震就是一个典型的例子。

日本“隔震结构设计技术标准”(草案)规定,隔震建筑适用于一、二类场地。

我国Ⅰ、Ⅱ、Ⅲ类场地的反应谱周期均较小,故都可建造隔震建筑。

隔震设计中对风荷载和其他非地震作用的水平荷载给予一些限制(规范12.1.3条3款)是为了保证隔震结构具有可靠的抗倾覆能力。

就使用功能而论,隔震结构可用于:医院、银行、保险、通讯、警察、消防、电力等重要建筑;首脑机关、指挥中心以及放置贵重设备、物品的房屋;图书馆和纪念性建筑;一般工业与民用建筑;建筑物的抗震加固。

2)、消能设计的适用范围消能部件的置入,不改变主体承载结构的体系,又可减少结构的水平和竖向地震作用,不受结构类型和高度的限制,在新建和建筑抗震加固中均可采用。

二、隔震与消能减震设计要求1、设计方案建筑结构的隔震和消能减震设计,应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与建筑抗震设计的设计方案进行技术、经济可行性的对比分析后,确定其设计方案。

第六章 消能减震部件的连接与构造讲解

第六章  消能减震部件的连接与构造讲解
第六章 消能减震部件的连接与构造
6.1 6.2 6.3 6.4 连接与节点的一般要求 常见连接与节点形式 连接设计的计算 构造要求
6.1 连接与节点的一般要求
• 消能器与主体结构的连接非常重要,正确的连接能保证地 震作用下消能器的正常工作,实现预期减震目标。消能器 的连接应与计算模型相符,消能器的连接应保证足够的强 度,不应先于消能器失效。具体设计中,与消能器或消能 部件相连的预埋件、支撑和支墩(剪力墙)及节点板的设 计承载力应按以下要求取值: (1)位移相关型消能器:不应小于消能器在设计为以 下对应阻尼力的1.2倍; (2)速度相关型消能器:不应小于消能器在设计速度 下对应阻尼力的1.2倍。
(3)通常采用高强螺栓连接,水平向梁上埋板螺栓个数计 算如下: 螺栓个数:
N tb F1H N Vb F1V n1 N tb N Vb
(6 - 13)
式中,N tb 和N Vb 分别为抗拉和抗剪承载 力设计值。
(4)竖向柱子预埋件螺栓个数计算 螺栓个数:
N vb F2 H N tb F2V n2 N tb N vb
• 为保证消能器的变形绝大部分发生在消能器上,与消能器 相连的预埋件、支撑和支墩(墙柱)及节点板应具有足够 的刚度、强度和稳定性。同时在相应的消能器极限位移或 极限速度的阻尼力作用下,与消能器连接的支撑、墙(支 墩)应处于弹性界限以内;消能器部件与主体结构连接的 预埋件、节点板等也应处于弹性工作状态,且不应出现滑 移、拔出和局部失稳等破坏。节点板在支撑力作用下具有 足够的承载力和刚度,同时还应采取增加节点板厚度或设 置加劲肋等措施防止节点板发生面外失稳破坏。
6.3.4 预埋板与主体结构的连接计算
预埋板与主体结构的连接分为预埋钢筋连接和高强锚栓连接, 分别对应新建建筑和加固建筑(见图6-14),两者的计算方 法基本相同。本节针对工程中最常用的屈曲约束支撑和软钢 剪切阻尼器说明预埋板与主体结构的连接计算。

隔震与消能减震设计简介

隔震与消能减震设计简介
隔震与消能减震设计简介
抗震结构 隔震结构 消能减震结构
一.抗震结构 利用结构各构件的承载力和变形能力抵御地震作用,
吸收地震能量。 立足于“抗”。
二.隔震结构 在建筑物上部结构与基础之间设置滑移层,阻止地
震能量向上传递。 立足于“隔”。
隔振(隔震)
隔震包括基础隔震和层间隔震。
隔震技术的原理: (1)隔震系统的柔性层使结构的振动周期
基本原理:在消能减震结构体系中,消能(阻尼)装置或元件 在主体结构进入非弹性状态前率先进入耗能工作状态,充分发挥 耗能作用,消耗掉输入结构体系的大量地震能量,使结构本身需 消耗的能量很少,这意味着结构反应将大大减小,从而有效地保 护了主体结构,使其不再受到损伤或破坏。
由于消能减震结构具有减震机理明确、减震效果显著、安全 可靠、经济合理、适用范围广等特点,目前已被成功用于工程结 构的减震控制中。
日本1997年度评定的隔震建筑中,采用铅芯橡胶支座隔震房屋占总 数的40%,美国在1985年以后兴建的隔震房屋中,完全或部分采用铅芯 橡胶支座的隔震房屋占总数的60.7%,我国在已建成的隔震房屋中,完 全或部分采用铅芯橡胶支座的隔震房屋占总数的60%。
耗能减震
结构耗能减震技术是在结构物某些部位(如支撑、剪力墙、 连接缝或连接件)设置耗能(阻尼)装置(或元件),通过该装 置产生摩擦,弯曲(或剪切、扭转)弹塑性(或粘弹性)滞回变 形来耗散或吸收地震输入结构的能量,以减小主体结构的地震反 应,从而避免结构产生破坏或倒塌,达到减震控制的目的。
1.早期隔震技术
河合浩藏的“地震时不受大震动的结构 ”
右图是1891年河合浩藏的“地震时 不受大震动的结构”。其隔震思路是在 地基上并排铺设了数层圆木,并且把建 筑物周围挖空,从而地震时可对上部建 筑起到隔震
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工字型截面的螺栓一般布置在翼缘和腹板处。对于小吨位的 消能器,也可采用与十字型截面类似的布置方式,螺栓间距 为100~120mm ,螺栓排距≥3d0,边距≥1.5d0(d0为螺栓孔的 直径);对于吨位较大的消能器,节点螺栓数量较多的情况, 多采用梅花形式布置,见图6-10。
2.软钢剪切消能器与连接板的计算
消能器的连接部件应具有足够的刚度。连接部件的刚度 太弱,结构中的变形将无法通过连接部件集中到消能器中, 导致消能器效率降低。
消能器的连接与节点不应影响主体的结构的变形能力。不 合理的连接构造不仅影响消能器发挥作用,甚至会对主体结 构的抗震性能产生不良影响。例如,采用墙柱连接的时候, 如果不能保证墙柱和周边框架柱之间足够的变形缝,将可能 使周边框架柱在地震中称为“短柱”,出现剪切破坏。
1.屈曲约束支撑与连接板连接的计算 首先确定螺栓个数:
(1)节点的作用力F=极限力×1.2。
(2)根据《钢结构设计规范》(GB50017-2003)的7.2.2 款,单个高强螺栓抗剪强度设计值如下:
Nv 0.9n f P
(6 -1)
式中:nf为传力摩擦面数;μ为摩擦抗滑移系数,应按表6-1 采用;P为螺栓的预拉应力,应按表6-2采用。
(3)高强螺栓个数n为
n≧F/Nv 式中n取正整数。
然后考虑螺栓的布置方式。根据屈曲约束支撑产品端头形式 的不同,屈曲约束支撑与连接板螺栓的布置形式也有所不同。 以屈曲约束为例,屈曲约束支撑的端头一般有十字型和工字 型两种截面,如图6-9所示。
十字型螺栓的布置一般都沿十字截面的四个翼缘错开布置, 螺栓间距一般为100~120mm,并用夹板连接,夹板的宽度 ≥3d0(d0为螺栓孔的直径)。
(1)位移相关型消能器:不应小于消能器在设计为以 下对应阻尼力的1.2倍;
(2)速度相关型消能器:不应小于消能器在设计速度 下对应阻尼力的1.2倍。
• 消能器的连接应保证良好的稳定性,特别对目前广泛使用 的支撑型消能器,如屈曲约束支撑、黏弹性消能器支撑、 黏滞消能器支撑等尤其重要。图6-1给出了实验室中屈曲 约束支撑由于端部设计不合理而出现局部失稳破坏的图片。
寸、端头形式及尺寸等。
2.消能器安装的位置子框架信息 (1)计算用层高:梁底到露楼面的距离。 (2)计算用跨度:柱子与柱子间净距。 (3)结构的梁柱尺寸。
6.3.2 消能器与连接板的连接计算
消能器与连接板的连接可以采用螺栓连接和焊缝连接。考虑 到施工质量的可控性和地震后消能器的可更换性,宜采用高 强螺栓连接。以下针对工程中最常用的屈曲约束支撑和软钢 剪切消能器说明采用螺栓连接的设计方法。
消能器节点设计需要两个方面的数据;消能器相关参数 和消能器安装位置处的主体结构构件信息。
1.消能器的相关信息 (1)消能器本身参数:如,软钢剪切消能器的屈服荷载、
屈服位移、极限荷载、极限位移等。 (2)消能器的平面布置:消能器的位置、数量及布置形式
等。 (3)消能器的产品尺寸:如,屈曲约束支撑的外套筒尺
第六章 消能减震部件的连接与构造
6.1 连接与节点的一般要求 6.2 常见连接与节点形式 6.3 连接设计的计算 6.4 构造要求
6.1 连接与节点的一般要求
• 消能器与主体结构的连接非常重要,正确的连接能保证地 震作用下消能器的正常工作,实现预期减震目标。消能器 的连接应与计算模型相符,消能器的连接应保证足够的强 度,不应先于消能器失效。具体设计中,与消能器或消能 部件相连的预埋件、支撑和支墩(剪力墙)及节点板的设 计承载力应按以下要求取值:
6.2 常见连接与节点形式
• 实际工程中,消能器与主体结构最常见的连接包括:支撑 型、墙型、柱型、门架式和腋撑型等,如图6-2所示。
• 消能器与支撑及连接件的连接方式分为:高强螺栓连接、 销轴连接和焊接连接见图6-3.考虑震后消能器的可更换
性以及施工质量可控性,宜采用螺栓连接。当采用螺栓连 接时,应保证相连节点的螺栓在罕遇地震下不发生滑移。
• 为保证消能器的变形绝大部分发生在消能器上,与消能器 相连的预埋件、支撑和支墩(墙柱)及节点板应具有足够 的刚度、强度和稳定性。同时在相应的消能器极限位移或 极限速度的阻尼力作用下,与消能器连接的支撑、墙(支 墩)应处于弹性界限以内;消能器部件与主体结构连接的 预埋件、节点板等也应处于弹性工作状态,且不应出现滑 移、拔出和局部失稳等破坏。节点板在支撑力作用下具有 足够的承载力和刚度,同时还应采取增加节点板厚度或设 置加劲肋等措施防止节点板发生面外失稳破坏。
常见的软钢剪切阻尼器与连接板的连接形式如图6-11所示。 与屈曲约束支撑和连接板的连接不同,软钢剪切消能器的剪 力对螺栓群除产生剪力外,还会产生弯矩平面内的弯矩,应 对螺栓群的受力进行详细验算。
螺栓布置情况见图6-12 。
屈曲约束支撑与连接板之间的连接多采用螺栓连接或焊接, 图6-4位采用螺栓连接的屈曲约束支撑现场节点连接案例。
• 筒式黏滞消能器与连接件之间的连接同城采用一端销轴连 接,另一端采用法兰连接,见图6-5。
• 黏弹性消能器通常通过支墩(墙柱)与主体结构连接,如 图6-6所示。
• 剪切软钢消能器与主体结构的连接方式与黏弹性消能器相 似,图6-7为软钢消能器连接节点在施工过程中的案例。
器与连接板的连 接;连接板与预 埋件的连接;预
埋件与主体结构
的连接。消能器
连接的设计计算
主要涉及流程如 右图所示:
设计开始 步骤一:提取连接设计相关参数 步骤一:提取连接设计相关参数 步骤一:提取连接设计相关参数 步骤一:提取连接设计相关参数
步骤一:提取连接设计相关参数
设计结束
6.3.1 提取连接件设计相关数据
• 消能器部件属于非承重构件,其功能仅用于保证 消能器在结构变形过程中发挥耗能作用,而不是 承担结构的竖向荷载作用,即增设消能器不改变 主体结构的竖向受力体系。因此无论是新建消能 器减震结构,还是采用消能减震进行抗震加固的 既有结构,主体结构都必须满足竖向承载力的要 求!
6.3 连接设计计算
• 消能器与主体结 构的连接设计包 括三部分:消能
相关文档
最新文档