数字图像处理报告 图像二值化

合集下载

图像二值化实验报告c

图像二值化实验报告c

竭诚为您提供优质文档/双击可除图像二值化实验报告c篇一:图像处理实验报告1常用mATLAb图像处理命令一、实验目的1、熟悉并掌握mATLAb工具的使用;2、实现图像的读取、显示、代数运算和简单变换。

二、实验环境mATLAb20XXa版本、wIn7计算机三、常用函数?读写图像文件1imreadimread函数用于读入各种图像文件,如:a=imread(e:\w01.tif)2imwriteimwrite函数用于写入图像文件,如:imwrite(a,e:\w02.tif,’tif’)3imfinfoimfinfo函数用于读取图像文件的有关信息,如:imfinfo(e:\w01.tif)?图像的显示1imageimage函数是mATLAb提供的最原始的图像显示函数,如:a=[1,2,3,4;4,5,6,7;8,9,10,11,12];image(a);2imshowimshow函数用于图像文件的显示,如:i=imread(e:\w01.tif);imshow(i);title(‘原图像’)%加上图像标题3colorbarcolorbar函数用显示图像的颜色条,如:i=imread(e:\w01.tif);imshow(i);colorbar;4figurefigure函数用于设定图像显示窗口,如:figure(1);/figure(2);5subplot把图形窗口分成多个矩形部分,每个部分可以分别用来进行显示。

subplot(m,n,p)分成m*n个小窗口,在第p个窗口中创建坐标轴为当前坐标轴,用于显示图形。

6plot绘制二维图形plot(y)plot(x,y)xy可以是向量、矩阵。

?图像类型转换1rgb2gray把真彩图像转换为灰度图像i=rgb2gray(j)2im2bw通过阈值化方法把图像转换为二值图像I=im2bw(j,level)Level表示灰度阈值,取值范围0~1(即0.n),表示阈值取自原图像灰度范围的n%3imresize改变图像的大小I=imresize(j,[mn])将图像j大小调整为m行n列?图像运算1imadd两幅图像相加,要求同样大小,同种数据类型Z=imadd(x,y)表示图像x+y2imsubstract两幅图像相减,要求同样大小,同种数据类型Z=imsubtract(x,y)表示图像x-y3immultiplyZ=immultiply(x,y)表示图像x*y4imdivideZ=imdivide(x,y)表示图像x/y四、心得体会学习了matlab中基本的图像处理命令,为以后图像处理打下了较好的基础。

图像二值化实验报告c(共18页)

图像二值化实验报告c(共18页)

图像二值化实验报告c篇一:数字图像处理实验报告数字图像处理实验报告班级:通信103学号:20xx27201姓名:计富威指导教师:孙洁实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验内容及步骤1.利用imread( )函数读取一幅图像,假设其名为”第一个.tif”,存入一个数组中;>>I=imread('第一个.tif');2.利用whos命令提取该读入图像”第一个.tif”的基本信息; >>whos I3.利用imshow()函数来显示这幅图像;>>imshow(I);第一个.tif4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;>>imfinfo('第一个.tif');5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为flower.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。

>>imwrite(I,'第一个.jpg','quality',50)6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flower.bmp。

>>imwrite(I,'第一个.bmp');7.用imread()读入图像:Lenna256.jpg 和camemaman.jpg; >>b=imread('lena256.bmp');>>c=imread('cameraman.tif');8.用imfinfo()获取图像Lenna256.jpg和camemaman.jpg 的大小; >>imfinfo('lena256.bmp');>>imfinfo('cameraman.tif');9.用figure,imshow()分别将Lenna256.jpg和camemaman.jpg显示出来,观察两幅图像的质量。

数字图像处理中的二值化技术研究

数字图像处理中的二值化技术研究

数字图像处理中的二值化技术研究数字图像处理是指对数字化的图像进行各种算法处理,以改善图像质量、实现目标应用和进行图像分析等。

其中,二值化技术是数字图像处理中应用最为广泛的技术之一。

本文将从二值化的基本原理、常见算法、优化技术以及应用等方面进行综述。

一、二值化的基本原理二值化是将一幅灰度图像转换成只有两种颜色的图像,常见的是黑白二值图像。

它的目的是将灰度范围较大的图像转换为仅包含两种灰度值的图像,以便进行图像分析和处理。

二值化的基本原理就是根据一定的阈值将像素点的灰度值分为两类,一类是大于等于阈值的像素点,另一类是小于阈值的像素点。

然后将这两类像素点分别用黑色和白色进行表示,从而得到一幅二值图像。

二、常见的二值化算法1.全局阈值法全局阈值法也称为固定阈值法,是最简单、最基本的二值化算法之一。

它的原理是将整幅图像的灰度直方图进行分析,将图像中所有像素的灰度值设置为一个固定的阈值,一般取灰度直方图的平均值或中值。

然后对于灰度值大于等于该值的像素点置为白色,灰度值小于该值的像素点置为黑色。

但这种算法容易受到光照不均匀、噪声较多等因素的影响,产生误判。

2.手动阈值法手动阈值法是根据观察或经验设置阈值,也称为交互式的阈值法。

它适用于像素灰度值分布不均匀,且图像背景和目标差异大的情况。

3.自适应阈值法自适应阈值法是根据图像在局部区域内的灰度值特征进行划分,常见的有局部均值法和Otsu法。

局部均值法是将像素点周围一定大小的区域内的灰度值作为阈值,并将该像素点二值化。

这种算法可以对灰度分布不均匀、光照不均匀等情况适用。

Otsu法是利用图像中目标与背景之间灰度值分布的偏差,自适应地确定一个能够最大程度区分两个类别的阈值。

4.基于形态学的阈值法形态学阈值法基于二值图像形态学操作的方法,能够有效去除噪声和骨骼化等图像处理,并能够保留目标的边界。

它的核心思想是基于图像特征对阈值进行判断,通常是先对图像进行形态学膨胀操作,然后求出局部的最大值,作为阈值进行二值化操作。

《遥感数字图像处理》第九章图像二值化的处理方法(82P)

《遥感数字图像处理》第九章图像二值化的处理方法(82P)

图像预处理图像分析校正、增强、恢复分割、图像的连接、轮廓跟踪与细化。

分类与识别图像理解着重强调在图像之间进行变换。

主要是对图像进行各种操作以改善图像,或者校正图像误差等,狭义图像处理是从一个图像到另一个图像。

主要是对图像中感兴趣的目标进行检测和量测,从而建立对图像的描述。

图像分析是从一个图像到数值或符号表示过程。

进一步研究图像中各目标物的性质、特征和它们之间的相互关系,并给出对图象内容的理解和对地面客观地物、场景的解译第九章二值图像的处理方法主要内容⏹灰度图像的二值化处理⏹二值图像的连续性⏹二值图像的轮廓跟踪⏹二值图像的细化⏹二值形态学基本运算9.1 灰度图像的二值化处理是一种区域分割的技术图像的二值化处理设表示像素在(i,j)位置的灰度值,二值化处理为下式所示。

),(j i f 0255),(j i f tj i f t j i f ),(),(这里t 称为二值化阈值(Threshold).目标背景阈值的选取直方图二值图像阈值128阈值103阈值94确定阈值t的方法⏹1、全局阈值整幅图像用一个阈值处理。

当对比度强的图像。

前景和背景灰度值差别较大时频数t灰度级直方图呈现双峰分布前景和背景灰度值差别较小,但呈现双峰分布。

T )(z P o )(z P b )(T E b )(T E o )(z P 0z()b p z ()o p z误分割率最小的分割阈值。

背景和目标的概率密度分别是整幅图像的混合概率密度是其中和分别是背景和目标区域的平均灰度值,和是均值的均方差,和分别是背景和目标区域灰度值的先验概率。

()()()b b o o p z P p z P p z )()(z p z po b 和)(z p b ob o oP b P 1b o P P 最优阈值的选取如图所示,如果确定阈值是T ,则小于T 的像素分割为背景而使得灰度值大于T 的像素分割为目标。

这时,错误地将目标像素划分为背景的概率和将背景像素错误地划分为目标的概率分别为:T o b dz z p T E )()(T b o dz z p T E )()(确定最佳阈值:而总的误差概率是2、多阈值处理方法物体和背景的对比度在图像各处不一样时,需要选取多个阈值进行处理。

数字图像处理二值图像处理PPT课件

数字图像处理二值图像处理PPT课件
图6-8 曲线的链码表示
第14页/共57页
(d) 边界的8链码表
•链 码 的 表 示 方 法 具 有 下 面 一 些 有 趣 的 特 性 : • ① 如果曲线上的像素数目为N,那么链码的长度则为N-1; • ② 链码是和起点相关的,不同的起点可以得到不同的链码表示。 • ③ 链码具有平移的不变性,也就是说曲线的位置变动不改变其链码结构; • ④ 曲线的旋转将使得得到的链码中的每个元素分量增加相同的数值。
• 对于离散的的数字图像f(i,j),矩定义为:
• 对于二值图像,在目标区域R有f(i,j)=1,背景区域f(i,j)=0,因此:
M 1 N 1
mpq
i p j q f (i, j) p, q 0,1,2
i0 j0
mpq
ip jq
(i, j)R
第22页/共57页
• 同样的,考察二值图像各阶矩,我们可以知道,其零阶矩m00为目标区域的面 积,也即区域中包含的点数;假设
• ② 对称性:

• ③ 三角不等式:
d(A, B) 0
d(A, B) d(B, A) d(A,C) d(A, B) d(B,C)
第2页/共57页
•假 设 计 算 点 P ( a , b ) 与 Q ( c , d ) 间 距 离 可 以 采 取 下 面 的 几 种 定 义 形 式 :

① 欧几里德距离,用来De表示,如下式所示:
阶矩称为惯性矩。
•中心矩 :
pq (x x) p ( y y)q f (x, y)dxdy p, q 0,1,2
第21页/共57页
• 低阶矩主要描述区域的面积、转动惯量、质心等等,具有明显得几何意义,而高 阶矩一般主要描述区域的细节特征,比如三阶矩描述扭曲度,四阶矩描述峰值的状 态等等,一般来说高阶矩受到图像离散化等的影响,高阶矩一般在应用中不一定十 分准确。

二值图像的作用

二值图像的作用

⼆值图像的作⽤⼆值图像的作⽤:图像⼆值化( Image Binarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的⿊⽩效果的过程。

在数字图像处理中,⼆值图像占有⾮常重要的地位,图像的⼆值化使图像中数据量⼤为减少,从⽽能凸显出⽬标的轮廓。

将256个亮度等级的灰度图像通过适当的阈值选取⽽获得仍然可以反映图像整体和局部特征的⼆值化图像。

在数字图像处理中,⼆值图像占有⾮常重要的地位,⾸先,图像的⼆值化有利于图像的进⼀步处理,使图像变得简单,⽽且数据量减⼩,能凸显出感兴趣的⽬标的轮廓。

其次,要进⾏⼆值图像的处理与分析,⾸先要把灰度图像⼆值化,得到⼆值化图像。

所有灰度⼤于或等于阈值的像素被判定为属于特定物体,其灰度值为255表⽰,否则这些像素点被排除在物体区域以外,灰度值为0,表⽰背景或者例外的物体区域。

图像⼆值化的作⽤是为了⽅便提取图像中的信息,⼆值图像在进⾏计算机识别时可以增加识别效率。

⽐如:需要计算⽔⾯悬浮物的数量,就可以将⼀定⾯积的⽔拍成图⽚后⼆值化。

⼆值图像是指每个像素不是⿊就是⽩,其灰度值没有中间过渡的图像。

⼆值图像⼀般⽤来描述⽂字或者图形,其优点是占⽤空间少,缺点是当表⽰⼈物、风景的图像时,⼆值图像只能描述其轮廓,不能描述细节。

这时候要⽤更⾼的灰度级。

⼆值图像是每个像素只有两个可能值的数字图像。

⼈们经常⽤单⾊图像表⽰⼆值图像,但是也可以⽤来表⽰每个像素只有⼀个采样值的任何图像,例如灰度图像等。

⼆值图像中所有的像素只能从0和1这两个值中取,因此在MATLAB中,⼆值图像⽤⼀个由0和1组成的⼆维矩阵表⽰。

这两个可取的值分别对应于关闭和打开,关闭表征该像素处于背景,⽽打开表征该像素处于前景。

以这种⽅式来操作图像可以更容易识别出图像的结构特征。

⼆值图像操作只返回与⼆值图像的形式或结构有关的信息,如果希望对其他类型的图像进⾏同样的操作,则⾸先要将其转换为⼆进制的图像格式,可以通过调⽤MATLAB提供的 im2bw()来实现。

数字图像处理中的二值化算法研究

数字图像处理中的二值化算法研究

数字图像处理中的二值化算法研究数字图像处理是一种将数字信号进行转换和处理的技术,其中二值化算法是数字图像处理中最基本的算法之一。

在数字图像处理中,二值化是将一张彩色或灰度图像转换成只包含黑白两种颜色的图像。

这篇文章将讨论数字图像处理中的二值化算法研究,重点探讨二值化算法的基本原理、常见的二值化算法以及它们的优缺点。

一、二值化算法的基本原理二值化算法是将一张彩色或灰度图像转换为只包含黑色和白色的图像。

这仅仅是将像素值分为两类,其中一个像素集合表示白色,另一个表示黑色。

二值化的原理是将灰度图像中亮度值相近的像素映射为同一种颜色,以达到压缩图像数据并提高图像处理速度的目的。

二、常见的二值化算法1、全局阈值法全局阈值法是通过计算整个图像的灰度平均值来确定二值化的阈值。

该算法简单易用,但它假定图像的背景和目标的亮度值之间存在一个确定的边界,这在实际应用中并不总是正确的。

2、自适应阈值法自适应阈值法是针对全局阈值法的不足,通过对每个像素周围的像素值的统计分布进行分析,自适应地确定像素的阈值。

该算法对于图像的光照变化和背景模糊有很好的鲁棒性。

3、Otsu算法Otsu算法是一种自适应的阈值算法,通过最小化类内方差和类间方差的和来确定阈值。

这个算法假设图像存在不同的颜色区域,旨在找到阈值,以最大化识别两个区域的差异。

三、二值化算法的优缺点1、全局阈值法的优点是简单易用,运算速度快,因此非常适合处理简单的图像。

但是,它不能很好地处理灰度变化较大的图像和背景复杂的图像。

2、自适应阈值法比全局阈值法更适用于处理复杂的图像,由于每个像素的阈值是基于周围像素的,具有更好的图像复杂性,然而,该算法对于图像的光照变化较大的情况也有一定的局限。

3、Otsu算法能够通过最小化类内方差和类间方差的和来确定阈值。

该算法对于事先未知的图像类型以及图像颜色区域的不均衡分布具有适应性和鲁棒性,是一种广泛应用于图像二值化中的方法。

四、二值化算法的应用二值化算法在字符识别、边缘检测等领域中有着广泛的应用。

二值化与分段

二值化与分段

二值化与分段
二值化和分段是数字图像处理中常用的两种技术,用于处理图像中的灰度信息,将图像转换为黑白(二值)图像或根据灰度级别进行分段。

这两种技术通常用于图像分析、物体检测、边缘检测和特征提取等应用。

1. 二值化(Binarization):
2. 二值化是将灰度图像转换为黑白图像的过程,其中只有两个值:白色和黑色。

通常,通过设置一个阈值,将图像中的像素灰度值与阈值进行比较,大于阈值的像素被设为白色,小于等于阈值的像素被设为黑色。

这种处理有助于突出图像中的目标物体或特定特征。

3. 分段(Segmentation):
4. 分段是将图像划分为不同的区域或分段,每个区域内的像素具有相似的属性或特征。

分段的目的是将图像分成具有不同特征的部分,以便进一步的分析或处理。

分段可以基于像素的灰度值、颜色、纹理等特征进行,也可以使用不同的分段算法,如阈值分割、区域生长、边缘检测等。

通常,在数字图像处理中,二值化和分段经常一起使用。

首先,可以对图像进行分段以识别不同的对象或区域,然后对每个分段进行二值化以进一步处理或分析。

这两种技术在计算机视觉、医学影像处理、文档识别等领域都有广泛的应用,用于从图像中提取有用信息和特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理实验报告
实验二灰度变换
实验目的:通过实验掌握灰度变换的基本概念和方法
实验内容:
掌握基本的灰度变换:图像反转、对数变换、幂次变换和二值化1.图像反转、对数变换、幂次变换
I=imread('fengjing.jpg');
J=im2double(I);
subplot(2,3,1),imshow(J); title('原图');
K=255-I;
subplot(2,3,2),imshow(K); title('图象反转');
L=3.*log(1+J);
subplot(2,3,3),imshow(L);title('图象对数,系数为3');
M=10.*log(1+J);
subplot(2,3,4),imshow(M);title('图象对数,系数为10');
N=10.*(J.^0.2);
subplot(2,3,5),imshow(N);title('图象指数变换,γ=0.2');
P=10.*(J.^2.5);
subplot(2,3,6),imshow(P);title('图象指数变换,γ=2.5');
2.图象二值化
方法一:
I=imread('fengjing.jpg'); % 确定大小subplot(1,2,1),imshow(I);title('原图象'); [m,n]=size(I);
for i=1:m
for j=1:n
if I(i,j)<128
I(i,j)=0;
else I(i,j)>=128 & I(i,j)<256
I(i,j)=255;
end
end
end
subplot(1,2,2),imshow(I);title('图象二值化');方法二:
I=imread('fengjing.jpg'); % 确定大小subplot(1,2,1),imshow(I);title('原图象');
J=find(I<128);
I(J)=0;
J=find(I>=128);
I(J)=255;
title('图像二值化(阈值为128)'); subplot(1,2,2),imshow(I);title('图象二值化');。

相关文档
最新文档