常见的滤波电路有哪些

常见的滤波电路有哪些

常见的滤波电路有哪些

滤波电路概述

?

滤波电路常用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器C,或与负载串联电感器L,以及由电容,电感组成而成的各种复式滤波电路。

?

?

滤波是信号处理中的一个重要概念。滤波分经典滤波和现代滤波。?

?

滤波电路分类

?

1、无源滤波电路

?

?

无源滤波电路的结构简单,易于设计,但它的通带放大倍数及其截止频率都随负载而变化,因而不适用于信号处理要求高的场合。

?

?

2、有源滤波电路

?

?

RC 有源滤波器

实验19RC 有源滤波器 一、实验目的 1.深刻理解RC 有源滤波器的工作原理。 2.掌握有源滤波器的测量和调试技术。 二、实验原理 滤波器是一种能使有用频率的信号通过而同时能对无用频率的信号进行抑制或衰减的电子装置。在工程上,滤波器常被用在信号的处理、数据的传送和干扰的抑制等方面。滤波器按照组成的元件,可分为有源滤波器和无源滤波器两大类。凡是只由电阻、电容、电感等无源元件组成的滤波器称为无源滤波器。凡是由放大器等有源元件和无源元件组成的滤波器称为有源滤波器。由运算放大器和电阻、电容(不含电感)组成的滤波器称为RC 有源滤波器。本实验只研究RC 无源滤波器和RC 有源滤波器的特性以及它们之间的关系。 RC 有源滤波器按照它所实现的传递函数的次数分,可分为一阶、二阶和高阶RC 有源滤波器。从电路结构上看,一阶RC 有源滤波器含有一个电阻和一个电容。二阶RC 有源滤波器含有二个电阻和二个电容。一般的高阶RC 有源滤波器可以由一阶和二阶的滤波器通过级联来实现。所以本实验只研究一阶和二阶滤波器。重点研究二阶RC 有源滤波器。 滤波器按照所允许通过的信号的频率范围可分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。其中,低通滤波器只允许低于某一频率的信号通过,而不允许高于该频率的信号通过。高通滤波器只允许高于某一频率的信号通过而不允许低于该频率的信号通过。带通滤波器只允许某一频率范围内的信号通过而不允许该频率范围以外的信号通过。带阻滤波器不允许(阻止)某一频率范围(频带)内的信号通过而只允许该频率范围以外的信号通过。本实验重点研究RC 有源低通滤波器和带通滤波器。 1.一阶低通滤波器 图1.19.1(a )中虚线框内的电路是一个RC 组成的一阶低通滤波器。 它的传递函数为 其中,ω0=1/RC。 为了提高增益并提高带负载能力,可以将上述滤波电路接到由运算放大器组成的放大电路中, 图1.19.1一阶RC 低通滤波器及其幅频特性 (1.19.1)

单电源运放与滤波电路

单电源运放与滤波电路 我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh和Vol。需要

特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail的电压。虽然器件被指明是Rail-To-Rail的,如果运放的输出或者输入不支持Rail-To-Rail,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是Rail-To-Rail。这样才能保证系统的功能不会退化,这是设计者的义务。 1.2虚地 单电源工作的运放需要外部提供一个虚地,通常情况下,这个电压是VCC/2,图二 的电路可以用来产生VCC/2的电压,但是他会降低系统的低频特性。

常用运放电路及其各类比较器电路

常用运放电路及其各类比较器电路

————————————————————————————————作者:————————————————————————————————日期:

彭发喜,制作 同相放大电路: 运算放大器的同相输入端加输入信号,反向输入端加来自输出的负反馈信号,则为同相放大器。 图是同相放大器电路图。 因为e1=e2,所以输入电流极小,输入阻抗极高。 如果运算放大器的输入偏置电流,则 e1=e2 放大倍数: 原理图:

反相比例运算放大电路图: 1号图: 2号图: 反相输入放大电路如图1所示,信号电压通过电阻R1加至运放的反相输入端,输出电压vo通过反馈电阻Rf反馈到运放的反相输入端,构成电压并联负反馈放大电路。R ¢为平衡电阻应满足R ¢= R1//Rf。 利用虚短和虚断的概念进行分析,vI=0,vN=0,iI=0,则 即

∴ 该电路实现反相比例运算。 反相放大电路有如下特点 1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。 2.vN= vP,而vP=0,反相端N没有真正接地,故称虚地点。 3.电路在深度负反馈条件下,电路的输入电阻为R1,输出电阻近似为零。 运算放大器减法电路原理: 图为运放减法电路 由e1输入的信号,放大倍数为R3/R1,并与输出端e0相位相反,所以 由e2输入的信号,放大倍数为 与输出端e0相位相,所以

当R1=R2=R3=R4时e0=e2-e1 加法运算放大器电路: 加法运算放大器电路包含有反相加法电路和同相加法电路. 同相加法电路:由LF155组成。 三个输入信号同时加到运放同相端,其输入输出电压关系式:

常见运放滤波电路

滤波电路 这节非常深入地介绍了用运放组成的有源。在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。这个电容实际上是一个高通滤波器,在某种意义上说,像这样的运放电路都有这样的电容。设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。这样才可以保证电路的幅频特性不会受到这个输入电容的影响。如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。 这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。 这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。滤波器的实现很简单,但是以下几点设计者必须注意: 1. 滤波器的拐点(中心)频率 2. 滤波器电路的增益 3. 带通滤波器和带阻滤波器的的Q值 4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell) 不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。或者可以通过几次实验而最终确定下来。如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。 3.1 一阶滤波器 一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性 3.1.1 低通滤波器 典型的低通滤波器如图十三所示。

有源电力滤波器设计

1 引言 近年来,公用电网受到谐波电流和谐波电压的严重污染,而电力电子装置是其主要的谐波污染源。随着电力电子装置的日益广泛应用,电网中的谐波污染也日益严重,谐波污染影响到供电质量和用户使用的安全性,因此电网谐波污染的治理越来越受到关注。 滤波器在本质上是一种频率选择电路,通常用幅频响应和相位响应来表征一个滤波电路的特性。理想滤波电路在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的相互位置不同,滤波器可分为低通、高通、带通、带阻、全通5类。有源滤波器采用有源器件需要使用电源,加上功耗较大且集成运放的带宽有限,因此目前有源滤波电路的工作频率难以做得很高,一般不能用于高频场合。但总的来讲有源滤波器在低频(低于1MHz)场合中使用有较无源滤波器更优的性能,因而目前在音频处理、工业测控等领域广泛应用。有源电力滤波器是一种用于动态抑制谐波、补偿无功功率的新型电力电子装置,能对大小和频率都变化的谐波及无功功率进行补偿。和传统的无源滤波器相比,有以下几点突出的优点: (1)对各次谐波和分数谐波均能有效地抑制,且可提高功率因数; (2)系统阻抗和频率发生波动时,不会影响补偿效果。并能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响; (3)不会产生谐振现象,且能抑制由于外电路的谐振产生的谐波电流的变化; (4)用一台装置就可以实现对各次谐波和基波无功功率的补偿; (5)不存在过载问题,即当系统中谐波较大时,装置仍可运行,无需断开。 由以上可看出,它克服了传统的无源滤波器的缺点,具有良好的调节性能,因而有很大的发展前途。

有源滤波器实验报告

有源滤波器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

实验七集成运算放大器的基本应用(Ⅱ)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图7-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。

如图7-2(a )所示,为典型的二阶有源低通滤波器。它由两级RC 滤波环节与同相比例运算电路组成,其中第一级电容C 接至输出端,引入适量的正反馈,以改善幅频特性。图7-2(b )为二阶低通滤波器幅频特性曲线。 (a)电路图 (b)频率特性 图7-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。

7 集成运放组成的有源滤波电路

集成运放组成的有源滤波电路 有源滤波电路 1.低通滤波电路 1)同相输入一阶低通电路(康P416页,图9.2.1(a )) 2)反相输入一阶低通电路 3)同相输入二阶低通电路 o v i SRC A SRC R R S V S V S A f i +=++==111)()()(010SRC A SRC R R S V S V S A f i +=+-==11)()()(010 o v i 13)(13)(1)()()( 20210++=+++==SRC SRC A SRC SRC R R S V S V S A f i o v i

4)同相输入二阶低通电路(压控电压源二阶LPF )(康P418页,图9.3.1) 5)反相输入二阶低通电路 6)反相输入二阶滤波电路(无限增益多路反馈二阶低通滤波电路) o v i 1)3()(1)3()(1)()()(0200210+-+=+-++==sRC A sRC A sRC A sRC R R S V S V s A f i o v i o v i 1)111(1)111()()()(2122212202122212210++++=++++-==f f f f f f f i R R R R C sR C C R R s A R R R R C sR C C R R s R S V S V s A

2.高通滤波电路 1)同相输入一阶高通电路 2)反相输入一阶高通电路(康P472页,图题9.3.4) 3 4)同相输入二阶低通电路(压控电压源二阶LPF )(康P424页,图9.3.7) C SR C SR S V S V S A f i 101)()()(+-==o v i o v i o v i 。 o v i 。

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

7.有源滤波器设计实验

电气工程学院 实验名称:有源滤波器设计实验课程:电路与电子技术实验2 课程号:101C0330 学期:2018春夏学期 任课教师:沈连丰

课程名称:电路与电子技术实验2 指导老师:沈连丰成绩:__________________ 实验名称:有源滤波器设计实验实验类型:练习型 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握有源滤波器的分析和设计方法。 2.学习有源滤波器的调试、幅频特性的测量方法。 3.了解滤波器的结构和参数对滤波器性能的影响。 4.用EDA仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。 二、实验内容和原理 实验原理: 1.传递函数A v(s) :反映滤波器增益随频率的变化关系,也称为电路的频率响应、频率特性。 2.通带增益A v p:为一个实数。(针对LPF)、(针对HPF)、(针对BPF)、(针对BEF)。 3.固有频率f0:也称自然频率、特征频率,其值由电路元件的参数决定。 4.通带截止频率f p:滤波器增益下降到其通带增益A v p 的0.707倍时所对应的频率(也称–3dB 频率、半功率点、上限频率(ωH 、f H )或下限频率(ωL 、f L )。 5.品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同。例如,在低通和高通滤波器中,定义为当时增益的模与通带增益之比。 实验内容: 1.设计一个简单的二阶、有源、低通滤波器(LPF,同相型),并测量其幅频特性。 2.设计一个简单的有源、低通滤波器(LPF,同相型),并测量其幅频特性。 3.设计一个二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型),并测量其幅频特性。 4.设计一个二阶、有源、多路负反馈型、低通滤波器(LPF,反相型),并测量其幅频特性。 三、主要仪器设备 1.集成运算放大器LM358 2.电阻电容等元器件 3.MY61数字万用表 4.示波器 5.函数信号发生器

运算放大器基本电路——11个经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB 以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

基本运放电路总结

模拟电路网络课件第三十七节:基本运算电路 8.1 基本运算电路 一、反相比例运算放大电路 图 1 反相比例运算电路 反相输入放大电路如图1所示,信号电压通过电阻R1加至运放的反相输入端,输出电压vo通过反馈电阻Rf反馈到运放的反相输入端,构成电压并联负反馈放大电路。R ¢为平衡电阻应满足R ¢= R1//Rf。 利用虚短和虚断的概念进行分析,vI=0,vN=0,iI=0,则 即 ∴ 该电路实现反相比例运算。 反相放大电路有如下特点 1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要 求。 2.vN= vP,而vP=0,反相端N没有真正接地,故称虚地点。 3.电路在深度负反馈条件下,电路的输入电阻为R1,输出电阻近似为零。 二、同相比例运算电路

图 1 同相比例运算电路 同相输入放大电路如图1所示,信号电压通过电阻RS加到运放的同相输入端,输出电压vo通过电阻R1和Rf反馈到运放的反相输入端,构成电压串联负反馈放大电路。 根据虚短、虚断的概念有vN= vP= vS,i1= if 于是求得 所以该电路实现同相比例运算。 同相比例运算电路的特点如下 1.输入电阻很高,输出电阻很低。 2.由于vN= vP= vS,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑 制比。 三、加法运算电路 图 1 加法运算电路

图1所示为实现两个输入电压vS1、vS2的反相加法电路,该电路属于多输入的电压并联负反馈电路。由于电路存在虚短,运放的净输入电压vI=0,反相端为虚地。利用vI=0,vN=0和反相端输入电流iI=0的 概念,则有 或 由此得出 若R1= R2= Rf,则上式变为–vO= vS1+ vS2 式中负号为反相输入所致,若再接一级反相电路,可消去负号,实现符合常规的算术加法。该加 法电路可以推广到对多个信号求和。 从运放两端直流电阻平衡的要求出发,应取R′=R1//R2//Rf。 四、减法运算电路 1、反相求和式运算电路 图1所示是用加法电路构成的减法电路,第一级为反相比例放大电路,若Rf1=R1,则vO1= –vS1; 第二级为反相加法电路,可以推导出

(完整版)有源滤波器的设计

有 源 滤 波 器 姓名:xxx 班级:XXX 学号: xxx

目录 一、基本介绍 二、工作原理 三、有源滤波器的功能作用 四、有源滤波器分类 五、有源低通滤波器的设计 六、总结

一、基本介绍 滤波器是一种能使有用信号通过而大幅抑制无用信号的电子装置。在电子电路中常用来进行信号处理、数据传输和抑制噪声等。在运算放大器广泛应用以前滤波电路主要采用无源电子元件一电阻、电容、电感连接而成,由于电感体积大而且笨重导致整个滤波器功能模块体积大而且笨重。本文介绍由集成运算放大器、电阻和电容设计有源滤波器,着重讲解低通、高通、带通滤波电路。 二、工作原理 有源滤波器工作原理是:用电流互感器采集直流线路上的电流,经A/D 采样,将所得的电流信号进行谐波分离算法的处理,得到谐波参考信号,作为PWM的调制信号,与三角波相比,从而得到开关信号,用此开关信号去控制IGBT单相桥,根据PWM技术的原理,将上下桥臂的开关信号反接,就可得到与线上谐波信号大小相等、方向相反的谐波电流,将线上的谐波电流抵消掉。这是前馈控制部分。再将有源滤波器接入点后的线上电流的谐波分量反馈回来,作为调节器的输入,调整前馈控制的误差。 三、有源滤波器的具体功能及作用 1、滤除电流谐波 可以高效的滤除负荷电流中2~25次的各次谐波,从而使得配电网清洁高效,满足国标对配电网谐波的要求。该产品真正做到自适应跟踪补偿,可以自动识别负荷整体变化及负荷谐波含量的变化而迅速跟踪补偿,80us响应负荷变化,20ms实现完全跟踪补偿。 2、改善系统不平衡状况 可完全消除因谐波引起的系统不平衡,在设备容量许可的情况下,可根

无源滤波电路和有源滤波电路word版本

三、无源滤波电路和有源滤波电路 无源滤波电路:若滤波电路仅由无源元件(电阻、电容、电感)组成。 有源滤波电路:若滤波电路不仅由无源元件,还由有源元件(双极型管、单极型管、集成运放)组成。 1. 无源低通滤波器 如图所示为RC低通滤波器及其幅频特性,当信号频率趋于零时,电容的容抗趋于无穷大,故低频信号顺利通过。 带负载后,通带放大倍数的数值减小,通带截止频率升高。可见,无源滤波电路的通带放大倍数及其截止频率都随负载而变化,这一缺点不符合信号处理的要求,因而产生有源滤波器。 2.有源滤波电路 为了使负载不影响 滤波特性,可在无源滤波 电路和负载之间加一个 高输入电阻低输出电阻 的隔离电路,最简单的方 法是加一个电压跟随器, 如右图所示,这样就构成 了有源滤波电路。 在理想运放的条件下,由于电压跟随器的输入电阻为无穷大,输出电阻为零,因而仅决定于RC的取值。输出电压=,负载变化,输出不变。

有源滤波必须在合适的直流电源供电的情况下才能起作用,还可以放大,只适合于信号处理,不适合高电压大电流的负载。 RC低通滤波器的响应特性 曲电阻(R)和电容(C)构成的RC电路是电子电路中使用最多的电路。首先,研究简单的RC电路的特性,针对在CMOS数字电路中的应用进行实验。 图1是各使用一个电阻、一个电容的RC电路。这种电路从频率轴来看,可作为1次低通滤波器处理。所谓低通滤波器是指低频率时通过、高频率时截止,能除去噪声等不需要的高频率的滤波器。 图1 RC电路的频率一增益/相位特性 使用比RC常数所决定的频率f,(称截止频率)低的输人频率时,信号的衰减小;相反地,高频时,因电容C的阻抗(IhoC)与电阻R相比变小,故衰减将变大,并与频率成反比。 一般将低通滤波器上增益为-3dB()处的频率称为截止频率,表示为: 超过截止频率fc的高频域的衰减特性,是以-GdB/oct(频率为2倍时衰减6dB)或-20dB/dec(频率为10倍时衰减20dB,变为1/10)特性的倾率使增益下降。 另外,输入输出间的相位特性也与输人频率f有关。随着频率f的上升,相位延迟角θ变大,在截止频率fc处,变为如下关系: 高频处可接近-90°。

干货实图分析运放7大经典电路

干货实图分析运放7大经典电路 运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。 运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。 1、运放在有源滤波中的应用 上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。其中电阻R280是防止输入悬空,会导致运放输出异常。 滤波最常用的3种二阶有源低通滤波电路为 ?巴特沃兹,单调下降,曲线平坦最平滑; 巴特沃兹低通滤波中用的最多的是赛伦凯乐电路,即仿真的该电路。

一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。 如果该滤波器还有放大功能,要知道该滤波器的增益是多少。 当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。 二阶有源低通滤波电路的通带放大倍数为 1+Rf/R1 ,与一阶低通滤波电路相同; 截止频率为 注明,m的单位为欧姆, N 的单位为 u

所以计算得出截止频率为 ?切比雪夫,迅速衰减,但通带中有纹波; ?贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。 2、运放在电压比较器中的应用 电压比较

常见运放滤波电路1

3.1 一阶滤波器 一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性3.1.1 低通滤波器 典型的低通滤波器如图十三所示。 图十三 3.1.2 高通滤波器 典型的高通滤波器如图十四所示。

图十四 3.1.3 文氏滤波器 文氏滤波器对所有的频率都有相同的增益,但是它可以改变信号的相角,同时也用来做相角修正电路。图十五中的电路对频率是F 的信号有90 度的相移,对直流的相移是0度,对高频的相移是180度。 3.2 二阶滤波器 二阶滤波电路一般用他们的发明者命名。他们中的少数几个至今还在使用。有一些二阶滤波器的拓扑结构可以组成低通、高通、带通、带阻滤波器,有些则不行。这里没有列出所有的滤波器拓扑结构,只是将那些容易实现和便于调整的列了出来。 图十五(见图十七上) 二阶滤波器有40dB 每倍频的幅频特性。 通常的同一个拓扑结构组成的带通和带阻滤波器使用相同的元件来调整他们的Q 值,而且他们使滤波器在Butterworth 和Chebyshev 滤波器之间变化。必须要知道只有Butterworth 滤波器可以准确的计算出拐点频率,Chebyshev 和Bessell滤波器只能在Butterworth 滤波器的基础上做一些微调。 我们通常用的带通和带阻滤波器有非常高的Q 值。如果需要实现一个很宽的带通或者带阻滤波器就需要用高通滤波器和低通滤波器串连起来。对于带通滤波器的通过特性将是这两个滤波器的交叠部分,对于带阻滤波器的通过特性将是这两个滤波器的不重叠部分。

这里没有介绍反相 Chebyshev 和 Elliptic 滤波器,因为他们已经不属于电路集需要介绍的范围了。 不是所有的滤波器都可以产生我们所设想的结果――比如说滤波器在阻带的最后衰减幅度在多反馈滤波器中的会比在Sallen-Key 滤波器中的大。由于这些特性超出了电路图集的介绍范围,请大家到教科书上去寻找每种电路各自的优缺点。不过这里介绍的电路在不是很特殊的情况下使用,其结果都是可以接受的。 3.2.1 Sallen-Key滤波器 Sallen-Key 滤波器是一种流行的、广泛应用的二阶滤波器。他的成本很低,仅需要一个运放和四个无源器件组成。但是换成Butterworth 或Chebyshev 滤波器就不可能这么容易的调整了。请设计者参看参考条目【1】和参考条目【2】,那里介绍了各种拓扑的细节。 这个电路是一个单位增益的电路,改变Sallen-Key 滤波器的增益同时就改变了滤波器的幅频特性和类型。实际上Sallen-Key 滤波器就是增益为1的Butterworth 滤波器。 图十六(见图十七中) 3.2.2 多反馈滤波器 多反馈滤波器是一种通用,低成本以及容易实现的滤波器。不幸的是,设计时的计算有些复杂,在这里不作深入的介绍。请参看参考条目【1】中的对多反馈滤波器的细节介绍。如果需要的是一个单位增益的Butterworth 滤波器,那么这里的电路就可以给出一个近似的结果。

完整的有源滤波器设计

一.项目意义与目标 意义:本项目通过一个比较综合的、能覆盖《模拟电子技术》这门课程的大部分内容的三级项目,使我们能将整个课程的内容串联起来,实现一个系统的功能,巩固整个课程的学习内容,为以后学习和设计提供良好的模拟电子线路知识。本次有源滤波器设计主要注重的是电子电路的设计、仿真,意在培养学生正确的设计思想方法以及思路,理论联系实际的工作作风,在加深对知识的理解基础上,进一步培养学生综合运用所学知识与生产实践经验,分析和解决工程技术问题的能力。 目标:掌握有源滤波器的分析和设计方法,学习有源滤波器的调试、幅频特性的测量方法,通过仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响,尝试着制作实物来验证理论以及仿真求得的结果并比较三者之间的差距。 二.项目内容与要求 内容:滤波器是一种能够使有用频率信号通过,而同时抑制(或衰减)无用频率信号的电子电路或装置,在工程上常用它来进行信号处理、数据传送或抑制干扰等。有源滤波器是由集成运放、R、C组成,其开环电压增益和输入阻抗都很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用,但因受运算放大器频限制,这种滤波器主要用于低频范围。 要求:在模电课程对有源滤波器所学到的知识的基础上,设计出一阶低通有源滤波电路,一阶高通滤波电路,二阶低通滤波电路,二阶高通滤波电路,二阶带通滤波电路,二阶带阻滤波电路。研究和设计其电路结构、传递函数,并对有关参数进行计算,再利用multisim 软件进行仿真,组装和调试各种有源滤波器,探究其幅频特性。经过仿真和调试,观察效果。由滤波电路的曲线可以看出通带的电压放大倍数、通带上限截止频率,下限截止频率,特征角频率等的实际值,与计算出的理论值相比较,分析误差

常用运放电路

LFC2 高增益运算放大器 LFC3 中增益运算放大器 LFC4 低功耗运算放大器 LFC54 低功耗运算放大器 LFC75 低功耗运算放大器 F003 通用Ⅱ型运算放大器 F004(5G23) 中增益运算放大器 F005 中增益运算放大器 F006 通用Ⅱ型运算放大器 F007(5G24) 通用Ⅲ型运算放大器F010 低功耗运算放大器 F011 低功耗运算放大器 F1550 射频放大器 F1490 宽频带放大器 F1590 宽频带放大器 F157/A 通用型运算放大器 F253 低功耗运算放大器 F741(F007) 通用Ⅲ型运算放大器F741A 通用型运算放大器 F747 双运算放大器 OP-07 超低失调运算放大器 OP111A 低噪声运算放大器 F4741 通用型四运算放大器 F101A/201A 通用型运算放大器 F301A 通用型运算放大器 F108 通用型运算放大器 F308 通用型运算放大器 F110/210 电压跟随器 F310 电压跟随器 F118/218 高速运算放大器 F441 低功耗JEET输入运算放大器F318 高速运算放大器 F124/224 四运算放大器 F324 四运算放大器 F148 通用型四运算放大器 F248/348 通用型四运算放大器 F158/258 单电源双运算放大器 F358 单电源双运算放大器 F1558 通用型双运算放大器 F4558 双运算放大器 LF791 单块集成功率运算放大器LF4136 高性能四运算放大器 FD37/FD38 运算放大器 FD46 高速运送放大器

LF082 高输入阻抗运送放大器 LFOP37 超低噪声精密放大器 LF3140 高输入阻抗双运送放大器 LF7650 斩波自稳零运送放大器 LZ1606 积分放大器 LZ19001 挠性石英表伺服电路变换放大器LBMZ1901 热电偶温度变换器 LM741 运算放大器 LM747 双运算放大器 OP-07 超低失调运算放大器 LM101/201 通用型运算放大器 LM301 通用型运算放大器 LM108/208 通用型运算放大器 LM308 通用型运算放大器 LM110 电压跟随器 LM310 电压跟随器 LM118/218 高速运算放大器 LM318 高速运算放大器 LM124/224 四运算放大器 LM324 四运算放大器 LM148 四741运算放大器 LM248/348 四741运算放大器 LM158/258 单电源双运算放大器 LM358 单电源双运算放大器 LM1558 双运算放大器 OP-27CP 低噪声运算放大器 TL062 低功耗JEET运算放大器 TL072 低噪声JEET输入型运算放大器TL081 通用JEET输入型运算放大器 TL082 四高阻运算放大器(JEET) TL084 四高阻运算放大器(JEET) MC1458 双运放(内补偿) LF147/347 JEET输入型运算放大器 LF156/256/356 JEET输入型运算放大器LF107/307 运算放大器 LF351 宽带运算放大器 LF353 双高阻运算放大器 LF155/355 JEET输入型运算放大器 LF157/357 JEET输入型运算放大器 LM359 双运放(GB=400MC) LM381 双前置放大器 CA3080 跨导运算放大器 CA3100 宽频带运算放大器 CA3130 BiMOS运算放大器

运放的使用及滤波器设计

单电源运放图集 前言 前段时间去福州出差,看到TI的《A Single-Supply Op-Amp Circuit Collection》这篇文章,觉得不错,就把它翻译了过来,希望能对大家有点用处。这篇文章没有介绍过多的理论知识,想要深究的话还得找其他的文章,比如象这里提到过的《Op Amps for Everyone》。我的E文不好,在这里要感谢《金山词霸》。 ^_^ 水平有限(不是客气,呵呵),如果你发现什么问题请一定指出,先谢谢大家了。 E-mail:wz_carbon@https://www.360docs.net/doc/476483520.html, 王桢 10月29日

介绍 我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1. 1电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限V om以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在V om之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明V oh和V ol。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail的电压。虽然器件被指明是Rail-To -Rail的,如果运放的输出或者输入不支持Rail-To-Rail,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是Rail-To-Rail。这样才能保证系统的功能不会退化,这是设计者的义务。1. 2虚地

运算放大器基本电路

一:比例运算电路定义:将输入信号按比例放大的电路,称为比例运算电路。分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分)比例放大电路是集成运算放大电路的三种主要放大形式(1)反向比例电路输入信号加入反相输入端,电路如图(1)所示:输出特性:因为:,所以:从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。反向比例电路的特点: 一:比例运算电路 定义:将输入信号按比例放大的电路,称为比例运算电路。 分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分) 比例放大电路是集成运算放大电路的三种主要放大形式 (1)反向比例电路输入信号加入反相输入端,电路如图(1)所示: 输出特性:因为:, 所以: 从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。 反向比例电路的特点: (1)反向比例电路由于存在"虚地",因此它的共模输入电压为零.即:它对集成运放的共模抑制比要求低 (2)输入电阻低:r i=R1.因此对输入信号的负载能力有一定的要求. (2)同相比例电路 输入信号加入同相输入端,电路如图(2)所示: 输出特性:因为:(虚短但不是虚地);;

所以: 改变R f/R1即可改变Uo的值,输入、输出电压的极性相同 同相比例电路的特点: (1)输入电阻高;(2)由于(电路的共模输入信号高),因此集成运放的共模抑制比要求高 (3)差动比例电路 输入信号分别加之反相输入端和同相输入端,电路图如图(3)所示: 它的输出电压为: 由此我们可以看出它实际完成的是:对输入两信号的差运算。二:和、差电路 (1)反相求和电路 它的电路图如图(1)所示:(输入端的个数可根据需要进行调整)其中电阻R'为: 它的输出电压与输入电压的关系为: 它可以模拟方程:。它的特点与反相比例电路相同。它可十

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作 一.实验目的 1.掌握运算放大器和滤波电路的基本工作原理; 2.掌握运用运算放大器实现滤波电路的原理方法; 3.会用Multisim10对电路进行仿真分析; 二.实验内容 1.讲解运算放大器和滤波电路的基本工作原理; 2.讲解用运算放大器实现滤波电路的原理方法; 3.用Multisim10对二阶有源低通滤波电路进行仿真分析; 三.实验仪器 1.支持Win2000/2003/Me/XP/vista的PC机; 2.Multisim10软件; 四.实验原理 (一)运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线图2运算放大器输入输出端图示

图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 2.理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3. 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: i 1 f O U R R U -=

相关文档
最新文档