相交线和平行线PPT课件

合集下载

人教版数学七年级下册第五章 相交线与平行线 课件(30张ppt)

人教版数学七年级下册第五章  相交线与平行线 课件(30张ppt)

知识点 对顶角的概念和性质
比例规张开的相对的两个角,就是一对对顶角.
知识点 对顶角的概念和性质
相等的角不一定是对顶角.
知识点 垂线与垂线段
用直角三角尺和量角器画垂线的方法:
知识点 垂线与垂线段
垂线段是图形,点到直线的距离是数量,是该点到直线的垂线段的长度, 所以不能说“垂线段是距离”,也不能说“作出点到直线的距离”.
平行线的判定与性质之间的关系.
知识点 命题、定理和证明
妈妈要榨果汁,她有苹果、橙子、雪梨三种水果,且其克数比为 9∶7∶6,小明发现妈妈榨完果汁后,苹果、橙子、雪梨的克数比变为 6∶3∶4,且榨果汁时妈妈没有使用雪梨.
知识点 命题、定理和证明
小明这样想:原来苹果、橙子、雪梨的克数比为9∶7∶6,即 18∶14∶12;榨汁后苹果、橙子、雪梨的克数比变为6∶3∶4,即 18∶9∶12.由于没有使用雪梨,所以也没有使用苹果. 他利用所学数学知识推断出妈妈榨果汁时只使用了橙子.
借助三角尺与直尺画平行线时,必须保持紧靠,否则画出的直线不平行.
知识点 平行公理及其推论
在绘制斑马线时,只要保证相邻的两条线彼此平行,就能保证所有的斑 马线都彼此平行.
知识点 平行线的判定方法
木工用角尺的一边紧靠木料边缘,另一边画两条直线a,b,根据“同位角 相等,两直线平行”可知这两条直线平行.
知识点 平行线的判定方法
同一平面内,垂直于同一直线的两条直线互相平行,即在同一平面内,若 a⊥c,b⊥c,则a∥b.
第五章 相交线与平行线
5.3 平行线的性质
知识点 平行线的性质
一条公路两次转弯后又回到与原来相同的方向,如果第一次转弯时 ∠A=140°,根据性质2可得∠B=140°.

《相交线》相交线与平行线PPT优秀课件

《相交线》相交线与平行线PPT优秀课件
所以∠BOD=12∠DOE=35°.
探 (2)若∠DOE∶∠EOC=2∶3,求∠AOC的度数.

与 解:因为∠DOE∶∠EOC=2∶3,
应 用
∠DOE+∠EOC=180°,
所以∠DOE=180°×25=72°.
又因为OB平分∠DOE,
所以∠BOD=1∠DOE=36°,
2
图5-1-7
所以∠AOC=∠BOD=36°.
检 所以∠AOC=∠BOD=40°.

因为OA平分∠EOC,
所以∠EOC=2∠AOC=80°, 所以∠EOD=180°-∠EOC=180°-80°=100°. 图5-1-12

用 互为邻补角.图中的邻补角 有: ∠3和∠4
∠1和∠2,∠1和∠Hale Waihona Puke ,∠; 2和∠3,图5-1-1
探 ②有一个公共顶点,并且一个角的两边分别是另一个角的两

与 边的反向延长线,具有这种位置关系的两个角,互为对顶角.
应 用
图中的对顶角有: ∠1和∠3,∠2和∠4
.
图5-1-1
探 例1 (教材补充例题)如图5-1-2,直线AB,CD,EF相交于点O.

与 ∠4的度数.

用 解:由邻补角的定义,
得∠2=180°-∠1=180°-40°=140°;
由对顶角相等,
得∠3=∠1=40°,∠4=∠2=140°.
图5-1-5
探 变式1 如图5-1-6,直线AB,CD相交于点O,射线OE把∠BOD

与 分成两部分.
应 用
(1)图中∠AOC的对顶角为 ∠BOD
相交线与平行线
相交线
探 究
理解邻补角和对顶角的概念,会识别邻补角和对顶角

青岛版小学四年级上册《平行与相交》课件

青岛版小学四年级上册《平行与相交》课件

十字路口
道路在十字路口相交,车辆和行人需要遵守交通规则来确保安全 。
树枝
树木的枝条有时会在顶端相交,形成美丽的形状。
河流
河流在流向大海的过程中可能会与其他河流相交。
平行与相交在生活中的应用
建筑设计和施工
建筑师利用平行和相交原理来构建稳定和安全的建筑物。
交通规划
道路、铁路和航空路线需要遵循平行和相交的原则,以确保交通流 畅和安全。
平行与相交课件
• 平行与相交的基本概念 • 平行的性质和判定 • 相交线的性质和判定 • 生活中的平行与相交 • 练习题与答案
01
平行与相交的基本概念
平行的定义
平行的定义
平行线的判定方法
在平面内,两条直线在同一平面内不 相交,则称这两条直线为平行线。
同位角相等、内错角相等、同旁内角 互补等都可以判定两条直线平行。
平行与相交的关系
平行线与相交线的相对性
在同一平面内,如果两条直线不相交,则它们是平行的;如果两 条直线相交,则它们一定不平行。
平行线与相交线的转化
在某些情况下,可以通过平移或旋转等方式将平行线转化为相交线 ,反之亦然。
平行线与相交线的应用
在几何学、工程学、物理学等领域中,平行与相交的概念被广泛应 用,如建筑结构、电路设计、光学仪器等。
内错角相等
当两条直线被一条横截线 所截,如果内错角相等, 则这两条直线平行。
同旁内角互补
当两条直线被一条横截线 所截,如果同旁内角互补 (即角度和为180度), 则这两条直线平行。
平行线的性质定理
两直线平行,同位角相等
01
如果两条直线平行,那么它们被第三条直线所截时,同位角相
等。
两直线平行,内错角相等

人教版七年级下册数学《平行线的性质》相交线与平行线研讨说课教学课件

人教版七年级下册数学《平行线的性质》相交线与平行线研讨说课教学课件
第五章 相交线与平行线
5.3.1 平行线的性质
第2课时
课件
平行性质
平行线性质1: 两直线平行,同位角相等 平行线性质2: 两直线平行,内错角相等
同旁内角之间又有什么关系呢?
1
【相关概念】性质3:两直线平行,同旁内角互补
如图,已知:AB// CD ,那么∠ 3与∠ 2有什么关系? 例如:∵AB//CD,
D. 100°
1 【例题讲解】性质3:两直线平行,同旁内角互补
【例2】如图, AB//CD,AD//BC.
求证:∠A=∠C.
证明:∵AB//CD(已知), ∴∠A+∠D=180°(两直线平行,同旁内角互补). ∵AD//BC(已知), ∴∠C+∠D=180°(两直线平行,同旁内角互补). ∴∠A=∠C(同角的补角相等).
答:∠2 =110º.因为AB∥CD, ∠1和∠2是内错角, 根据两直线平行,内错角相等, 得到∠1=∠2. 因为∠1=110º,所以∠2 =110º.
例题
如图,平行线AB,CD被直线AE所截.
(2)从∠1=110º.可以知道∠3是多少度吗?为什么?
答:∠3 =110º.因为AB∥CD, ∠1和∠3是同位角, 根据两直线平行,同位角相等, 得到∠1=∠3. 因为∠1=110º,所以∠3 =110º.
练习
已知:如图,∠AGD=∠ACB,∠1=∠2,CD与EF平行吗?为什 么? 答:CD∥EF.
理由如下: ∵ ∠AGD =∠ACB , ∴ GD∥BC. ∵∠1和∠3是内错角, ∴∠1=∠3(两直线平行,内错角相等). ∵∠1=∠2, ∴∠2=∠3. ∵∠2和∠3是同位角, ∴ CD∥EF(同位角相等,两直线平行).
1B 3
2

《平移》相交线与平行线PPT精品课件

《平移》相交线与平行线PPT精品课件

A.(2) B.(3)
C.(4)
D.(5)
课堂检测
3.如图所示,已知三角形ABC平移后得到三角形DEF,则下列
说法中,不正确的是( C ).
A.AC=DF
B.BC∥EF
C.平移的距离是线段BD的长 D.平移的距离是线段AD的长
课堂检测
4.如图所示,将△ABC沿水平向右的方向平移,得到△EAF,
若AB=5,BC=3,AC=4,则平移的距离是( C ).
上)且相等; 3.各对应点所连线段平行(或在
同一直线上)且相等. 1.关键在于按要求作出对应点;
2.然后,顺次连接对应点即可.
平移的方向、距离都相同.
(4)确定一个图形平移的方向和距离,只需确定其上一个点平
移的方向和距离即可.
探究新知
考 点 1 平移现象的识别
下列现象:(1)水平运输带上砖块的运动;(2)高楼电梯上
平移
上下下迎接乘客;(3)健身做呼啦圈运动;(4)火车飞驰在
平移
旋转
一段平直的铁轨上;(5)沸水中气泡的运动.
课堂检测
能力提升题
如何将平行四边形ABCD平移,使点A移动到点E,画出平移后
的图形.
E
F
A
B
H G
D
C
四边形 EFGH 就是四边形ABCD平移后的图形.
课堂检测 拓广探索题
(1)如图所示,图①是将线段AB向右平移1个单位长度,图②是将 线段AB折一下再向右平移1个单位长度,请在图③中画出一条有 两个折点的折线向右平移1个单位长度的图形. (2)若长方形的长为a,宽为b, 请分别写出三个图形中除去阴 影部分后剩余部分的面积. (3)如图④,在宽为10m,长为40m的长方形菜地上有一条弯曲的 小路,小路宽为1m,求这块菜地的面积.

《命题、定理、证明》相交线与平行线PPT精品课件下载

《命题、定理、证明》相交线与平行线PPT精品课件下载
(2)余角的性质:同角或等角的余角相等.
(3)对顶角的性质:对顶角相等.
(4)垂线的性质:①在同一平面内过一点有且只有一条 直线与已知直线垂直;②垂线段最短.
探究新知
考 点 1 利用公理定理进行推理
已知:b∥c, a⊥b .
求证:a⊥c. bc
证明: ∵ a ⊥b(已知), ∴ ∠1=90°(垂直的定义).
课堂检测
6.在下面的括号内,填上推理的依据. A
B
E
如图,AB ∥ CD,CB ∥ DE ,
求证:∠ B+ ∠D=180°
证明:
∵ AB ∥ CD,
C
D
∴ ∠B= ∠C( 两直线平行,内错角相等 ).
∵ CB ∥ DE,
∴ ∠ C+ ∠ D=180°( 两直线平行,同旁内角互补 ).
∴ ∠ B+ ∠ D=180°( 等量代换
2.会判断真假命题,知道证明的意义及必要性, 了解反例的作用. 1. 理解命题,定理及证明的概念,会区分命 题的题设和结论.
探究新知 知识点 1 命题的概念
请同学读出下列语句: (1)如果两条直线都与第三条直线平行,那么这两条直线也 互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边都加同一个数,结果仍是等式.
课堂检测
拓广探索题
如图,已知AB∥CD,直线AB,CD被直 线MN所截,交点分别为P,Q,PG平分 ∠BPQ,QH平分∠CQP, 求证:PG∥HQ.
证明:∵AB∥CD(已知),
M AP
H C
B
G
Q
D N
∴∠BPQ=∠CQP(两直线平行,内错角相等).
直线公理: 两点确定一条直线. 线段公理: 两点间线段最短.

《相交线与平行线》课件

《相交线与平行线》课件
《相交线与平行线》PPT 课件
本课程将介绍相交线和平行线的定义、性质以及实际应用。通过本课程的学 习,您将对这些几何概念有更深入的了解。
相交线的定义和性质
什么是相交线
相交线是在平面上有一个 公共点的两条线段。
相交线的性质
相交线的两条直线之间会 形成一对垂直的角。
如何判断两条线是否 相交
可以通过检查线段是否有 公共点、检查线段的斜率 是否相等或使用交叉乘积 判断线段关系。
总结和回顾
相交线和平 行线的定义 和性质
如何判断两 条线是否相 交
相交线和平 行线的实际 应用
重要概念
如果两条线段的斜率相 等,它们就可能相交。
3 使用交叉乘积
通过计算线段的交叉乘 积可以判断线段之间的 关系。
相交线和平行线的实际应用
1
几何构图中的应用
平行线和相交线在绘制和构图几何图形时起到重要作用。Βιβλιοθήκη 2建筑设计中的应用
平行线和相交线在建筑设计中用于布局、平面图和立面图。
3
数学问题中的应用
平行线和相交线在解决数学问题时提供了一些有用的工具和线索。
平行线的定义和性质
什么是平行线
两条直线在平面上没有任何公 共点的线段被称为平行线。
平行线的性质
平行线之间的直线拓展无限延 伸,永远不会相交。
平行线的实际应用
平行线在几何构图、建筑设计 和数学问题中都有重要应用。
如何判断两条线是否相交
1 检查线段的公共点 2 检查线段的斜率
如果两条线段有公共点, 它们就相交。

人教版七年级下数学《命题、定理、证明》相交线与平行线PPT课件

人教版七年级下数学《命题、定理、证明》相交线与平行线PPT课件

作用
线段的基本事实:两点间线段最短.
平行线的判定-基本事实:同位角相等,两直线平行.
平行线的基本事实:经过直线外的一点有且仅有 一条直线与已知直线平行.
定理:有些真命题它们的正确性是经过推理证实的, 也可以作为继续推理的依据.
作用 学过的定理: (1)补角的性质:同角或等角的补角相等.
(2)余角的性质:同角或等角的余角相等.
3.下列说法正确的是__①__④__⑤___ ① -3是9的平方根; ②25的平方根是5; ③ -36的平方根是-6; ④平方根等于0的数是0; ⑤64的算术平方根是8.
4.下列说法不正确的是___B___ A.0的平方根是0 B. 22 的平方根是2 C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
第五章 相交线与平行线
命题、定理、证明
知识回顾
前面, 我们学过一些对某一件事情作出判断的语句, 例如:
(1)如果两条直线都与第三条直线平行, 那么这两条直线 也互相平行;
(2)两条平行线被第三条直线所截, 同旁内角互补;
(3)对顶角相等;
(4)等式两边加同一个数, 结果仍是等式.
你能说明其中的条件 和结论分别是什么吗?
情景导入
操场上,裁判员向老师汇报训练成绩.
小刚的百米成 绩有进步,已 达到9秒9.
好!继续努 力,争取跑
进9秒.
获取新知 知识点一:命题的概念、形式和分类
能对一件事情作出判断的语句, 叫做命题.
备注: 1.只要能作出判断,无论判断的结果是对还是错 如对顶角相等(对);互补的角是邻补角(错); 2.常见的不能作出判断的情况 表示动作,或疑问句,或类似感叹句,或表示选择
没有,因为一个数的平方不可能是负数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


(
)
SUCCESS
THANK YOU
2019/7/3
2、如图5,(1)∵∠A= ∴AC∥ED(


)
(2)∵∠2= (
)
∴AC∥ED(
)
(3)∵∠A+ ∴AB∥FD(
=180°(
) )
(4)∵AB∥ (
)
∴∠2+∠AED=180°( )
(5)∵AC∥ (
)
∴∠C=∠1( )
3、如图,AB∥CD,∠1=45°,∠D=∠C,求∠D、∠C、∠B的度 数。
4、如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB, ∠PCD的关系,并请你从所得四个关系式中任意选一个说明理由.
(1)
(2)
(3)
(4)
SUCCESS
THANK YOU
2019/7/3
3.判断一件事情的句子称为
.
4.每个命题都是由

两部分构成的 .
5.如果由条件成立推出结论也成立,那么这样的命题称

.
6.如果由条件成立不能保证结论一定成立,那么这样的
命题称为
.
7.“如果a>b,那么a-1>b-1”这个命题是

题.
8.命题“同旁内角互补”中,题设是
,结
二、读下列解题过程,在括号内填出理由:
1、已知,如图4,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4, ∠ABC+∠BCD=180°。
(1)∵∠1=∠ABC(已知)
∴AD∥
(
)
(2)∵∠3=∠5(已知)
∴AB∥
(
)
(3)∵∠2=∠4(已知)
∴∥
(
)
(4)∵∠1=∠ADC(已知)
∴∥ (
)
(5)∵∠ABC+∠BCD=180°(已知)

第五章 相交线和平行线 测试题
一、填空:
1、a、b、c是直线,且a∥b, b∥c, 则a___c;
a、b、c是直线,且a⊥b, b⊥c, 则a___c;
2、如图3,量得∠1=80°,∠2=80°,由此可以判定
∥ ,它的根据


量得∠3=100°,∠4=100°,由此可以判定 ∥ ,
它的根据 是 。
相关文档
最新文档